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ABSTRACT
In recent years, with the continuous development of computer application technology, net-
work technology, data storage technology, and the large amount of investment in information
technology, enterprises have accumulated a large amount of data while transforming and
improving enterprisemanagementmodes andmeans. How tomine useful data, discover impor-
tant knowledge and extract useful information has become a hot topic of current research.
Industrial big data is significantly different from traditional big data. The traditional big data
is based on the Internet environment. Although the data has a high degree of discretiza-
tion and distribution, its association is relatively simple. The collection of industrial process
data is relatively easy, but the mathematical and physical and chemical mechanism models
involved make the inherent relationship of data complex, so it is difficult to use common ana-
lytical models and methods for processing. In this paper, we propose a complex industrial
automation data stream Mining algorithm based on random internet of robotic things, and
experimental results show that the proposed algorithm has higher data mining efficiency and
robustness.
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1. Introduction

The development of information technology has trig-
gered the explosive growth of the scale of information
production and the speed of communication, making
human social life and scientific research enter the era
of big data. Studies have shown that the amount of
data generated by human activities over the past three
years is more than the sum total of the data created
by the entire history of human civilization, and this
trend is still accelerating [1–4]. In the field of industrial
manufacturing, in order to improve the process and
control the cost, the conventional method presupposes
that the characteristics of the research object are known
in advance, and then performs closed-loop control
according to the characteristics of the object, so that the
output characteristics meet the requirements. Existing
manufacturing process modelling methods and auto-
matic control methods are all studied in this way based
on a small amount of valuable data. However,many sys-
tems in real life are too complicated, and there is no cor-
responding theoretical knowledge as research support.
Their characteristics and behaviours cannot be under-
stood and mastered, and traditional methods cannot
play a role. In this case, Jim Gray’s data-centric research
thinking is equally applicable. For example, in the face
of complex industrial production systems, the system’s

operational process data is preserved by informatizing
the complex behaviour of the system.

In the 1960s, in order to meet the requirements of
electronic information, information technology began
to change from a simple file processing system to an
effective database system. In the 1970s, three major
models of database systems: research and development
of hierarchical, network, and relational databases made
significant progress. Since the mid-1980s, the combi-
nation of relational database technology and new tech-
nologies has become an important symbol of database
research and development. In the 1990s, distributed
databases became more mature in theory, and dis-
tributed database technology was widely used. How-
ever, the application of these databases is based on
real-time query processing technology. In essence, the
query is a passive use of the database, so it still has
a long way to go with advanced applications such as
analytical forecasting and decision support [5–8]. With
the rapid development of information technology, the
scale, scope and depth of database applications con-
tinue to expand, and data clusters have evolved from
single machines to network environments. In recent
years, with the rapid growth of data, data analysis tools
in existing informationmanagement systems have been
unable to adapt to new demands. Because the data is
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processed in a simple way, the specified data is simply
digitally processed, and the intrinsic information con-
tained in the data cannot be extracted. Peoplewant to be
able to provide a higher level of data analysis, automat-
ically transforming the data to be processed into useful
information and knowledge. At present, the emergence
of large-scale databases, especially data warehouses,
provides an excellent platform for the development and
application of data mining technologies. Large-scale
databases and data warehouses provide a material basis
for the implementation and application of data mining
technologies.

The industrial big data analysis platform is a pow-
erful weapon to enhance the competitiveness of enter-
prises in the industrial field. From the perspective of
platform products, data analysis platforms are mostly
built on cloud computing and cloud services, with no
obvious industrial features. Although China has a large
industrial scale, the level of intelligence and informa-
tion is not high, and the development of industrial big
data has just started. According to survey data from the
Ministry of Industry and Information Technology, the
smart manufacturing readiness rate of China’s indus-
trial enterprises is only 5.1%.Comparedwith developed
countries, there is still a big gap in the level of indus-
trialization and informatization, and their industrial
big data platform may not be applicable to the current
domestic industrial environment. In terms of data accu-
mulation, building a big data platform can optimize the
ability to collect, store, mine, and apply large amounts
of data in the production process through clustering.
This can speed up the processing speed of data, col-
laboratively manage and analyze the data generated in
each link of the production process and improve the uti-
lization of data. Industrial Internet and industrial big
data are new concepts put forward by GE in the context
of the big data era. Internet-connected sensors collect
large amounts of data for analysis, facilitating produc-
tion and service through a combination of devices,
the Internet, and big data. According to General Elec-
tric, the sensor has been embedded in 250,000 “smart
machines” manufactured by General Electric, includ-
ing jet engines, power engines, medical equipment and
more. The data collected and analyzed by these sensors
has great potential for optimizing industrial operations
[9–11]. Standard process for data mining is presented
in the Figure 1.

(1) Business Understanding: To implement any data
mining project, data miners must have an in-
depth understanding of the domain knowledge
involved in the project. This phase requires
extensive research on data mining projects, deep
understanding, and then translates this knowl-
edge into tasks that data mining can describe
and designs a preliminary plan to achieve the
goals.

Figure 1. Standard process for data mining.

(2) Data Understanding: Data understanding involves
understanding the source, shape, and reliability of
the data. At the same time, preliminary analysis
is needed to understand the preliminary charac-
teristics of the data set. The smooth implemen-
tation of the follow-up process relies on the data
miner’s understanding of the data. The CRISP-
DM model divides the data understanding phase
into four subtasks: data collection, data descrip-
tion, data exploration and quality verification. The
more you master the data, the more targeted the
subsequent processes will be.

(3) Data Preprocessing: The task at this stage is to
provide an accurate and efficient data set for sub-
sequent data mining models. The specific tasks of
data preprocessing are closely related to specific
mining tasks and models (algorithms). In general,
data cleaning is a necessary step to successfully
complete all data mining tasks. Depending on the
needs of the algorithm, it is sometimes necessary
to standardize and discretize the data. This part of
the work is very important, it directly affects the
quality of the data being mined.

(4) Modelling: The modelling phase is the narrowly
defined datamining phase, which uses datamining
algorithms to analyze and process data. The first
three processes are all preparing for the modelling
phase, and the next two processes are to finish the
work of the modelling results. It can be seen that
the modelling phase is the core part of data min-
ing. Common data mining models are: clustering
model, classification model, rule extraction, time
series analysis and so on.

(5) Evaluation: From the point of view of data anal-
ysis, a high-quality data mining model has been
established at this stage. Before finally extending
the model, the model should be evaluated more
thoroughly, examining the steps it performs and be
confident that it has achieved its goals correctly.



572 L. CUI

Table 1. Three stages of industrial database management.

Manual management File systemmanagement Database systemmanagement

Background Application Scientific computing Scientific computing, data
management

Large-scale data management

Hardware No direct storage Disk Large capacity disk
Software No operating system File system Database system

Processing method Batch processing Real-time processing Real-time processing,
distributed processing,
batch processing

Features Data manager User File system Database system
Data sharing Non-shared Poor sharing High sharing and low

redundancy
Data independence Not independent Poor independence Highly physically independent

and logically independent
Data structure No structure Poor structured Overall structuralization of data

Data control ability – – Database service
Data oriented object An application An application Real world

(6) Deployment: Apply the data mining model to the
actual process and successfully complete the origi-
nally set goals.

After data mining was put forward in the 1990s, after
more than ten years of research, many new concepts
and methods have been produced. Especially in recent
years, some basic concepts andmethods have gradually
become clear, and its research is developing in a more
in-depth direction. Three stages of industrial database
management is demonstrated in the Table 1.

At this stage, China’s intelligent manufacturing has
just started, and the existing data storage mode of
the enterprise cannot meet the requirements of large-
scale data analysis. Therefore, the existing data of the
enterprise must be imported into the big data analy-
sis platform through certain methods. In addition, for
large-scale manufacturing enterprises, the data gener-
ated by enterprises every day is above the GB level.
The traditional data import and export method cannot
meet the needs of enterprise data import and export, so
this paper proposes an industrial data stream mining
system based on IORT.

2. Random Internet of robotic things

2.1. Composition of industrial robot vision
guidance system

With the introduction of the visual system, the matu-
rity of the robot technology has led to the use of many
industries, and the sensing technology has changed
from contact to non-contact. The robotic IoT technol-
ogy makes it more comfortable to use on the produc-
tion line. The vision system monitors the product and
aggregates the collected information. In addition, visual
guidance technology is also widely used in other places.
Nowadays, the use of robots in production is increasing,
the production line needs to be fully automated, and
the flexibility is also increasing. The maturity of visual
guidance technology has also led to a continuous reduc-
tion in costs, and companies have chosen to use visual
systems [12–16].

Figure 2. 2D vision system schematic.

The 2D vision guidance system is relatively simple.
We usually install a camera above the position where
the workpiece passes to identify and position the work-
piece. The 2D vision system first needs to establish a
mathematical model to determine the shape of the dif-
ferent workpieces to calculate the coordinate values of
the feature points and as shown in Figure 2, the work-
piece is positioned in three degrees of freedom on the
X-axis, Y-axis, and Z-axis rotation Rz. Such vision sys-
tems are typically used in horizontal transport applica-
tionswhere theworkpiece is not positioned, such as belt
conveyor. 2D vision system schematic is demonstrated
in the Figure 2.

The establishment of the 2.5D vision system model
is similar to that of 2D, with only one additional Z-axis
height monitoring. However, the acquisition of such
information is difficult in visual calculations [17–19].
In some applications, in order to solve this problem, it
is usually only a simple addition of the distance sensor,
which only measures the deviation of the Z axis. The
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2.5D vision system uses a monocular camera to detect
changes in the Z-axis height of the workpiece [20–22].

Select the feature points on the workpiece that can
easily obtain the distance of the workpiece length. For
example, you can select a fixed edge or a hole and select
the longer feature on theworkpiece asmuch as possible.
This can improve the accuracy. We select 2 lengths of 2
points between L points. Feature points. The following
equations are listed according to the principle of similar
triangles:

X1

L
= f

H0
(1)

X2

L
= f

H0 + H1
(2)

X3

L
= f

H0 + H1 + H2
(3)

Simplified:

X0 • H0 = X2(H0 + H1) = X3(H0 + H1 + H2) (4)

Through the above calculations, we can solve theH0 we
need. Due to the accuracy error in the motion of the
robot, we need to repeat the experiment several times
to calculate theH0 with smaller error. After obtaining a
more accurate H0, the moving height Hn of the work-
piece that passed later can be calculated. The result is as
follows:

Hn = X1 • H0

Xn
− H0 (5)

A Cartesian coordinate system is defined in the digital
image, where the coordinate (u, v)of each pixel repre-
sents the number of columns and the number of rows
of the pixel in the image array. (u, v)is a coordinate value
of a pixel in pixels in the image digital coordinate sys-
tem. According to the three-dimensional position of
the image point on the image plane, a two-dimensional
coordinate systemof the image plane expressed in phys-
ical units can be established. The x-axis and the y-axis
of the coordinate system are parallel to the u-axis and
the v-axis, respectively, and the origin is a corner point
of the camera optical axis and the image plane [23,24].

In general, the origin is at the centre of the image,
but in practice, the origin will have a certain amount
of offset. In the two-dimensional coordinate system, we
record the coordinates as B [25–27]. In the x-axis and
y-axis directions, the physical size of each pixel is the
sum Sx and Sy. Then the coordinates of any pixel in the
image in two coordinate systems can be expressed in
homogeneous coordinates and matrix form:

⎡
⎣
u
v
1

⎤
⎦ =

⎡
⎣
1/Sx, 0, uo
0, 1/Sy, vo
0, 0, 1

⎤
⎦

⎡
⎣
x
y
1

⎤
⎦ (6)

The inverse relationship of equation (6) is expressed as:
⎡
⎣
x
y
1

⎤
⎦ =

⎡
⎣
Sx, 0,−uoSx
0, Sy,−voSy
0, 0, 1

⎤
⎦

⎡
⎣
u
v
1

⎤
⎦ (7)

Therefore, the correspondence between pixel points
and world coordinate points is:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Xw = fx(u − uo)l · tgα
fx(u − uo) + tgα

Yw = −fy(v − vo)l · tgα
fx(u − uo) + tgα

Zw = fx(u − uo)l
fx(u − uo) + tgα

(8)

2.2. 3d vision guidance system

The 3D system can position the 6 degrees of freedom of
the workpiece, so the 3D vision system is themost com-
plex of these types of vision systems, typically used in
complex processes and equipment. The 3D vision sys-
tem is like the two eyes of a person. When positioning
the workpiece, it usually takes two cameras with dif-
ferent angles to shoot together. Using only one camera
is the goal of the new vision guidance system, which
reduces costs [28–30]. The 3D vision system can be
used to identify its orientation without touching the
workpiece, which is basically suitable for all occasions.
There are several main advantages:

(1) Has a wide range of usage. Take the car production
workshop as an example, the body-in-white pro-
duction line can use this vision guidance system.
Different production lines have different require-
ments for the accuracy of the products, as well as
the shape and structure of the workpieces. We can
choose different numbers of cameras to meet the
requirements. For small workpieces, we can use a
single camera to achieve spatial positioning. For
larger workpieces, such as vehicle positioning, we
can use multiple cameras. We can use the collab-
orative work of multiple cameras to complete the
positioning of different parts of the vehicle, thus
establishing its spatial position relationship.

(2) Multiple objects can be measured simultaneously.
When measuring multiple objects, we can indi-
vidually measure the individual objects using the
reference coordinate system. In this way, the mea-
surements between multiple objects do not affect
each other and can better handle the accuracy
problem [31,32].

(3) Can be applied in complex environments.
(4) Have the ability to learn. The accumulation of fea-

ture templates, the system will remember these as
an example, so that the same processing can be
used directly later, which makes the recognition
rate of the system higher.
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(5) The system is highly integrated. The 3D system
can connect many robots with colleagues, and its
interface is also very diverse.

(6) The system is very scalable. Recalibrate the system
when the error is large, without having to teach
again. The vision system also automatically saves
the template and optimizes it.

2.3. Visual system composition of robotic Internet
of things

The role of the vision guidance system in the entire pro-
duction line is mainly to cooperate with the robot to
complete the action, it plays the role of connecting the
robot and external equipment. In a coherent work, the
camera part is responsible for the shooting task, and
the information of the shooting is processed to obtain
the position information of the current workpiece, and
the robot is instructed to perform the correction, and
the grasping task is completed after the position is con-
sistent. With the intervention of the vision system, the
robot will maintain a posture when grabbing the work-
piece, but only need to adjust the position each time
to ensure that the grasping task can be successfully
completed every time the workpiece position changes
[33–35].

The purpose of introducing a visual guidance system
is to achieve a high degree of automation of the produc-
tion line, and to fully utilize the characteristics of high
efficiency, flexibility and high level of intelligence. The
visual guidance system is a bus system, an identification
system, a vision system, a robot system, and an auxiliary
systemaremain components of the vision guidance sys-
tem. The working principle of the vision system is that
the visual part first plays a role, and the photograph of
the workpiece is taken when the workpiece is in place,
and the coordinates of the feature points selected in
advance are calculated after the processing. After that,
the correction amount of the workpiece coordinate sys-
tem is acquired, and finally the correction amount is
converted into hexadecimal data recognizable by the
robot and the transmission is completed. After receiv-
ing the data, the robot will make an action to complete
the establishment of the new workpiece coordinate sys-
tem. In this project, the bus system completes the entire
signal transfer task.

(1) Robot system: The main components of the robot
system are the robot part, the robot control part,
the teaching part and other auxiliary parts. The
robot system has two main parts, power and con-
trol. Up to eighteen controllers can be installed
according to the latest robot control cabinet equip-
ment. In reality, the external axis of the robot gen-
erally uses a dedicated motor, and the external axis
can make the robot have a lot of freedom, so that

the space for the robot to complete the action is
larger.

(2) The system of consciousness: the function of the
robot lies in the execution, and the part of the
vision is the compensation. The camera needs to
complete the acquisition task.When theworkpiece
is in place, the camera collects the photo of the
workpiece, extracts the feature points in the photo,
and finally obtains the deviation amount, and then
transmits the acquired deviation to the robot or to
the PLC.

(3) Bus system: In industrial production, the bus acts
as a control system tie. If the bus fails during
operation, all other devices will be affected and
cause downtime. Downtime in industrial produc-
tion would cause significant losses. The use of var-
ious interface technologies and coupling boards
can reduce this situation and ensure the normal
transmission of data between devices.

3. High lights of the proposedmethodology

3.1. Data streammodel and its characteristics

The definition of the data flow model is different for
different application environments, and the data flow
models under different definitions have their own char-
acteristics and scope of application. Therefore, we need
to design a targeted analysis method to achieve various
mining tasks.

The data stream can be described as a one-
dimensional digital signal, denoted by S, in which the
signal data arrives in real time, in order, and item by
item. at represents the data item that arrives at the
timestamp t, and F is a function that generates the data
stream S.

F : [1, 2, . . . , t, . . .] → S (9)

Combined with the definition of time series data, the
data stream is described as a dynamic, real-time, and
unlimited time series. Then the time series data flow
model is as follows:

F = {. . . , ai−1, ai, ai+1, . . .}, ai = 9(i, It) (10)

For monitoring IP addresses, the same IP can access
the server multiple times and send multiple packets,
because the packet transmission at different times on
the same IP link constitutes the Cash Register data
stream, as shown below:

F = {. . . , Si−1, Si, Si+1, . . .}, Si = Si−1 + Ii, ai = (i, Ii)
(11)

The time series data flow model and the Cash Register
data flow model have good practical application signif-
icance, and they relax the restrictions on the definition
of the data flow model. Therefore, these two methods
reduce the difficulty of various data flow analysis and
mining tasks.
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3.2. Characteristics of data flow

A data stream is a data model that describes the
dynamic characteristics of a data. Compared with a
static data set stored on a storage medium, it has the
following characteristics:

(1) real-time. The data flow model is a dynamic data
generation process, and each data item has a times-
tamp indicating the order inwhich the data arrives.
The generation, transmission, reception and pro-
cessing of data are all done in a real-time environ-
ment.

(2) Independence. The generation of data streams is
only relevant to the associated generation system
and is independent of the analytical processing sys-
tem. The order of arrival of the data stream is
independent, and the analysis processing system
can only analyze and process the data stream in the
order of the timestamp of the data item.

(3) Infinite scale. The continuous and continuous
arrival of data streams does not predict the overall
data size. The theoretical scale of the data stream
can be infinite, and it is impossible to save all the
data streams in memory for analysis.

(4) Locality. The characteristics of the data stream
determine that the application system cannot pre-
dict the overall distribution of the data stream.
Therefore, we can only analyze the local fea-
tures of the data stream and aggregate the
low-level local information into high-level local
information.

For these characteristics of the data stream, the anal-
ysis and processing method of the data stream must
make corresponding changes to meet the requirements
of the data stream mining task. The design of the data
stream mining method needs to follow the following
two principles:

(1) Unit time principle. The time that the data stream
mining method processes each data item should
be fixed, that is, the time complexity of the data
streamminingmethodmust be linear, and the pro-
cessing timemust be smaller than the time interval
at which the data stream arrives. When the time
for processing a single data item is greater than
the time when the data stream arrives, it will cause
blocking of data reception and processing or loss of
data, which will affect the efficiency and accuracy
of data processing.

(2) Unit space principle. We need to complete the
processing of data streams and the storage and
update of intermediate results in a limited mem-
ory space. The intermediate result of saving data
stream mining and the memory space for pro-
cessing a single data item should be fixed, that is,

the spatial complexity of the data stream mining
method should be constant or linear.

When the intermediate result of data stream mining in
memory is large, the data mining update time is longer,
and vice versa. Therefore, in the data flow mining pro-
cess, the balance between the unit time principle and
the unit space principle reflects the balance of efficiency
and precision of data streammining. Efficientmining of
data streams requires less time to analyze and process
the data stream, thereby reducing the size of the inter-
mediate results of the data stream mining in memory
to reduce update time. High-precision mining of data
streams requires the storage of more detailed, larger-
scale intermediate results in memory, which in turn
increases the time spent on data mining and the update
of intermediate results. Therefore, the final result of
data stream mining is an approximate result, and the
data stream mining method should be able to balance
the efficiency and precision of data stream mining.

3.3. Data streamminingmethod implementation

In the data stream application environment, when the
data stream reaches a fast rate and the data size is huge,
only usingwindow technologymay cause systemblock-
ing or data loss, which may reduce the accuracy of data
mining. Therefore, sampling technology, as an impor-
tant data stream processing technology, can extract
feature information reflecting the overall data set as a
sample data set, and effectively reduce the size of the
data set that datamining needs to process. For the char-
acteristics of the locality and scale of the data stream,
the size and overall distribution of the data cannot be
predicted. Therefore, it is necessary to design a dynamic
sampling technique that satisfies the data flow appli-
cation environment, that is, the sampling process is a
dynamic process.

Density-based data stream clustering method can
find clusters of the arbitrary shapes, but the algorithm
presets too many parameters. The clustering method
of data flow based on grid runs very fast, and clusters
of any shape can be found, but the clustering quality
depends on the selected grid granularity. In order to
improve themining speed of window sliding, rela_table
is established in the algorithm CFMoment to store the
relationship between frequent non-closed itemsets and
frequent closed itemsets. In addition, the algorithm also
uses an extended closed-loop enumeration tree based
on prefix tree to store data as closed frequent item-
sets and related information for w transactions in the
stream, further improvingmining efficiency and reduc-
ing memory consumption.

The reservoir sampling method is a simple random
sampling method in which each data stream element
is extracted to the sample set with the same proba-
bility. The core idea is as follows: maintain a sample
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of size m, called the “reservoir”. By scanning the data
stream elements entering the window, the data ele-
ment is selected into the reservoir with a probability of
m/n, and the time-stamped data stream in the reservoir
is replaced. The reservoir sampling method assumes
that the data stream elements are independently and
identically distributed, so there is no need to consider
the correlation between the data streams, which makes
implementation relatively simple.

The reservoir sampling algorithm in the data flow
environment is as follows:

Input: D, Data stream; k, Reservoir sampling scale.
Output: S, Sample collection.
1: Initialize the reservoir
Inset first k elements from D into S;

2: Uniform sampling, update the reservoir
for i = 1,2, . . .

generate a random integer M from the
range [1,i];

if M< = k
insert di into S from D;
delete si from S;

end
end

3.4. Cardinality estimation: Loglog Counting

First, we need to hash all the elements in the data collec-
tion. The hash function here must be guaranteed to be
evenly distributed (even if the elements in the collection
are not uniform). This premise is the basis of Loglog
Counting. The data normally collected by the nonlinear
electronic network is continuous in time series and is
only active in a small range. When there is interference
in the electronic network, the network data transmis-
sion will produce a certain packet loss phenomenon,
and abnormal data will appear. The abnormal data is
data that is different from other data in the electronic
network data sequence, and some abnormal data is
higher than normal. When the value is one data level, if
it is not processed in time, the statistical feature quan-
tity of the nonlinear electronic network model data will
be changed, and the number of classifications will be
increased.

Using pull up criterion can effectively identify the
nonlinear electronic network abnormal data points in
the data, but this method is mainly based on network
data to describe the whole time series, there are certain
error of judgment, and the main reference sliding win-
dow to restrict, the identification method of abnormal
data in determining if a pull up near point abnormal
data points, if it is to change nonlinear electronic net-
work transformer condition, does not carry on the data
processing, will use the sliding window average instead
of abnormal data. Because other complete item setmin-
ing algorithms require more than two scans, and the

Figure 3. Loglog Counting for Data Stream.

base tree needs to be reorganized during the process-
ing of the new batch arrival of the data stream, the
calculation time is longer, and the algorithm effectively
solves these two problems as a significant improvement
in computing time. The algorithm has the following
advantages: 1 only need to scan the data set once; 2 the
top-down tree traversal process; 3 themaintenance effi-
ciency of the transaction in the sliding window is high;
4 it can accurately find the complete frequent item set.

Under the assumption of uniform distribution, the
generated hash value has the distribution ratio in the
following figure, because the probability that each bit
is 0 or 1 is 1/2, so the more the number of consecu-
tive zeros at the beginning, the smaller the probabil-
ity of occurrence, the more times you need to try the
Bernoulli process. Loglog Counting is based on this
principle, based on themaximum number of ranks that
appear, to estimate the number of Bernoulli processes
(ie, Cardinality). Loglog Counting for Data Stream is
demonstrated in the Figure 3.

Suppose we use a two-dimensional hash table, where
w is the value space of the hash table, and d is the
number of hash functions. For an element, use d hash
functions to calculate the corresponding hash value,
and increment by 1 on the corresponding bucket. The
value of each bucket is called sketch, and then when
querying the frequency of an element, we only need
to fetch all d sketches, and then take the smallest one
as the estimated value. This approach saves data space.
w*d is much smaller than the actual number of ele-
ments, so there will inevitably be many conflicts. The
idea of this method is similar to the bloom filter, which
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Figure 4. Frequency Estimation: Count-Min Sketch.

Table 2. Factory resource configuration.

Component Quantity

Data collection point 50
Master machine 1
Task management component 1
Database management component 11
Data query component 2
Data analysis component 1

is to reduce the impact of the punch through multi-
ple hashes. Figure 4 presents the Frequency Estimation:
Count-Min Sketch.

4. Experiment and analysis

4.1. Experiment 1

According to the above estimation of the input param-
eters of the numerical control equipment factory, we
select the resource configuration parameters of each
functional component as following Tables 2 and 3:

In this section, bolt tightening data are clustered.
Based on the simulation results, under the premise

of factory input parameter estimation, the system bot-
tleneck is first reached as the task management compo-
nent. If you havemore task requests, consider deploying
the task management component as a cluster. At this
point, the bottleneck point of the system will be deter-
mined by the host computer or network bandwidth.
Table 4 gives the demonstration.

By analyzing the above table, the cumulative con-
tribution rate of the first four principal factors has
exceeded 94% by the fourth principal factor. It can be
considered that the first fourmain factors can represent
most of the information of the 14 indicators.

Estimate the application requests that the system
needs to process on average every day, such as data
query requests, data analysis requests, and so on.

Table 4. Comparison of evaluation factors in each hub.

Initial eigenvalue
Ingredient Total % of variance Accumulated %

1 12.153 60.76 60.76
2 2.939 14.69 75.46
3 2.455 12.28 87.73
4 1.287 6.46 94.17
5 0.665 3.32 97.49
6 0.353 1.77 99.26
7 0.079 0.39 99.65
8 0.045 0.23 99.88
9 0.021 0.11 99.98
10 0.004 0.20 100.00

Table 5. System parameters estimation diagram.

Parameters Meaning Value Unit

WriteQRate Message middleware
queue speed

10 M/second

MOMworkingrate Message middleware
handles message speed

30000 M/second

MOMthroughtput Message middleware
throughput

100 M/second

SAworkingRate Master control request rate 3000 kb/second
SearCOMworkingRate Data query component

request rate processed
by a single node

3000 kb/second

StaCOMWorkingRate Data analysis component
single node processing
request rate

3000 kb/second

TMworkingRate Task management
component single node
processing request rate

300 1/second

dataCOMworkingRate Database management
component single node
processing request rate

300 kb/second

LANBandwidth LAN bandwidth 100 M/second

According to the statistical information of the CNC
machine tool factory, the average demand for data
query and data analysis is about 20 times per day, and
the message size of a single request is only between tens
of bytes and 1 kb.

The other parameters of the simulation process are
shown in Table 5:

4.2. Experiment 2

In the experiment we match the template and com-
pare the coordinates of the workpiece image. Map the
image coordinates to the robot’s coordinate system to
get the coordinates of the workpiece on it. The Kalman
filter is used to estimate the position of the workpiece
in the robot’s gripping area. After several tests, the cal-
culated data is compared with the position data of the

Table 3. Analysis results.

Category Proposed Stat = 0 Stat = 1 STKmeans Stat = 0 Stat = 1

0 54315 54311 4 153835 153814 21
1 64542 64540 2 90 14 76
2 25485 25485 0 291 291 0
3 29441 29425 16 24 24 0
4 68275 68275 0 40 40 0
5 58101 58101 0 164 163 1
6 545 468 77 146260 146295 1
Total 300704 300605 99 300704 300605 99
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Table 6. Workpiece positioning and grabbing experiment
results.

Serial number

Visual positioning
experimental

results
End position of the

robot

1 (420.25, 136.97,−25.08) (419.9, 135.7,−25.1)
2 (410.36, 190.53,−25.16) (410.7, 191.5,−24.9)
3 (460.36, 201.35,−25.33) (469.1, 201.5,−26.6)
4 (465.35, 260.32,−25.43) (464.9, 259.1,−25.5)
5 (532.13, 190.77,−25.51) (531.4, 199.3,−25.1)

TCP movement point touched by the robot end within
1mm. Table 6 gives the simulation.

5. Conclusion

With the continuous development of industrial informa-
tization and the explosive growth of industrial big data,
the demand for decision-making of data support has
been continuously improved, and industrial big data
analysis has become a very important subject. In this
paper, the application of machine vision in industrial
robots is deeply studied, and its principle and imple-
mentation method are studied. This paper focuses on
the construction of enterprise data flow analysis plat-
form and relies on the historical data of an enterprise
to introduce the general flow of data analysis for big
data platform. In order to improve the effectiveness of
the data stream mining method in the industry, this
paper proposes a complex industrial automation data
stream mining algorithm based on random internet of
robotic things. Based on the principle of industrial cam-
era imaging, we analyze the method of solving inter-
nal and external parameters of industrial cameras and
study the method of hand-eye calibration in industrial
robot vision system. According to the IORT technology
and the computer vision method, we establish a rela-
tionship model between the coordinate systems in the
visual guidance system and determine the positional
relationship between them. Experimental results show
that the proposed method has higher efficiency and
robustness.
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