o Taylor & Francis
- Taylor & Francis Group
Automatika

Journal for Control, Measurement, Electronics, Computing and
Communications

Eovmn 18 mitmhe, s, pibisdn, s § et

[61]_atlomalla

ISSN: 0005-1144 (Print) 1848-3380 (Online) Journal homepage: https://www.tandfonline.com/loi/taut20

Optimizing physical protection system using
domain experienced exploration method

Dejan Cakija, Zeljko Ban, Marin Golub & Dino Cakija

To cite this article: Dejan Cakija, Zeljko Ban, Marin Golub & Dino Cakija (2020) Optimizing
physical protection system using domain experienced exploration method, Automatika, 61:2,
207-218, DOI: 10.1080/00051144.2019.1698192

To link to this article: https://doi.org/10.1080/00051144.2019.1698192

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

@ Published online: 09 Dec 2019.

N
CJ/ Submit your article to this journal &

||I| Article views: 359

A
& View related articles '

P

(&) View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=taut20

https://www.tandfonline.com/action/journalInformation?journalCode=taut20
https://www.tandfonline.com/loi/taut20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2019.1698192
https://doi.org/10.1080/00051144.2019.1698192
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1698192
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2019.1698192
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1698192&domain=pdf&date_stamp=2019-12-09
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1698192&domain=pdf&date_stamp=2019-12-09

AUTOMATIKA
2020, VOL. 61, NO. 2,207-218
https://doi.org/10.1080/00051144.2019.1698192

IVI N Taylor & Francis
N Taylor & Francis Group

REGULAR PAPER

8 OPEN ACCESS W) Check for updates

Optimizing physical protection system using domain experienced exploration

method

Dejan Cakija?, Zeljko Ban?, Marin Golub

2 and Dino CakijaP

aFaculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia; PFaculty of Transport and Traffic Sciences,

University of Zagreb, Zagreb, Croatia

ABSTRACT

Assessing physical protection system efficiency is mostly done manually by security experts due
to the complexity of the assessment process and lack of tools. Computer aided numerical vul-
nerability analysis has been developed to quantitatively assess physical protection systems. A
variety of methods have been proposed to optimize physical protection systems, where one of
the most advanced approaches entails precisely defining which security components should be
selected and where they should be placed at protected facilities, taking into consideration adver-
sary type, to maximize the probability that an adversary will be stopped at minimum system cost.
The most computationally intensive part of the optimization process is the evaluation. The eval-
uation involves recreating search space and finding optimal adversary's attack paths from each
entry point. We present the domain experienced exploration method that optimizes evaluation
process during the search for optimum solutions, considering results from previous evaluations.
Performed experiments show that using the presented method, in real-world domains, results in

ARTICLE HISTORY
Received 5 July 2019
Accepted 4 November 2019

KEYWORDS
Multi-objective optimization
of physical protection
system; domain experienced
exploration; genetic
algorithms; PPS design;
numerical vulnerability
analysis

a reduction of evaluation iterations.

1. Introduction

The basic function of any physical protection system is
to detect and delay an adversary’s attack so that secu-
rity team can prevent the adversary from reaching the
intended target, such as people, valuable items and pro-
prietary data [1]. An example of highly valuable target is
data centre whose destruction or sabotage causes pos-
sible downtime and the extraction or loss of data. For
that reason, beside energy management, event moni-
toring and effective maintenance, security system is a
key element of a highly available and secure data centre
[2-4]. The primary components of physical protection
systems are security cameras, intrusion detection sys-
tem, video analytics, locks, vaults, monitoring applica-
tion, etc. Selecting security components and their place-
ment is part of physical protection system planning
and is typically executed by security analysts, based
mostly on experience. A disadvantage of this approach
is that the effectiveness of the physical protection sys-
tem is assessed subjectively. An alternative approach is
to use computer aided numerical vulnerability analysis
to quantitatively assess physical protection systems. The
main concept of quantitative methods is to find possible
physical paths that an adversary could use to reach the
goal and to detect which paths give the adversary the
best probability of a successful attack. Once detected,
these paths are considered the most critical paths.

One of the earliest papers on the numerical assess-
ment of physical protection system [5] uses stochastic
modelling. A facility is presented as block diagrams
and networks and time that an adversary requires to
complete a task on an attack path and guard time
are expressed as probability density functions in the
complex domain, using Laplace transforms. Sandia
National Laboratories is very active in developing quan-
titative assessment methods. In the 1970s Sandia had
already developed a number of quantitative assess-
ment methods, including the Estimate of Adversary
Sequence Interruption (EASI) method that is used
as the foundation for many other assessment meth-
ods [1,6]. Assessing protection systems requires that
a facility is modelled in a format appropriate for
numerical vulnerability analysis. Systematic Analysis
of Vulnerability to Intrusion (SAVI) [1] is a method
that expects the operator to define possible adversary
paths as adversary sequence diagram (ASD) - sim-
ple model where a facility is split in several adjacent
physical areas, between each are protection layers, con-
taining path elements, interconnected via path seg-
ments. An improvement over this kind of model rep-
resentation is SAPE - Systematic Analysis of Physical
Protection Effectiveness [7], where the facility layout
is split into a two-dimensional, grid-like map with
a certain resolution. This kind of representation is

CONTACT Dejan Cakija @ dejan.cakija@gmail.com

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1698192&domain=pdf&date_stamp=2019-12-09
http://orcid.org/0000-0002-8042-7076
mailto:dejan.cakija@gmail.com
http://creativecommons.org/licenses/by/4.0/

208 D. CAKIJA ET AL.

computationally-demanding due to the large number of
elements required for the model.

More advanced techniques, that allow automatiza-
tion of assessment process, include methods where a
facility is defined in 3D applications, usually BIM -
Building Information Modeling, and then transferred
into the graph-based model, where nodes represent
facility building elements and edges are available paths
between them [8-10].

Finding critical paths in complex search space is
computationally expensive. Heuristic methods have an
advantage in this area as they decrease the number of
searches [11]. Informed search algorithms use a heuris-
tic function that guides the search space exploration
based on problem-specific knowledge. Besides the well-
known heuristic algorithm A* [12,13], modern com-
puter architectures allow running A* in parallel, using
algorithms such as PNBA* [14] and Meet in the middle
(M2M) [15] that starts parallel search from start and
end nodes and finishes in the middle of graph when all
requirements are met. Another approach in the search
for a critical path is using an ant colony optimization
algorithm [16].

Previously we presented tools to asses existing or
proposed physical protection systems. The next step
is to optimize the facility protection by placing secu-
rity elements on critical paths. In this scenario, security
experts attempt to identify optimal tradeoffs between
system cost and probability of adversary interruption.
The optimization process is presented in Figure 1.

Different approaches have been proposed to help
security experts with system optimization. Some
authors use genetic algorithms for optimizing the cov-
erage set (percentage values) of protection mechanisms
at available budget [17,18], or model-based methodol-
ogy with Petri Net patterns [19]. More detailed opti-
mization requires that method provide the exact selec-
tion of security components and their placement for

Place security
components
N

Y
0

Find Critical
adversary paths
7

Acceptable solution

not found
Found
acceptable
solution

Calculate
Interuption
probability and
System cost

Figure 1. Optimization process.

achieving near-optimal solution. A significant chal-
lenge in the optimization process is that there are many
possibilities for selecting security components and their
placement. If a security expert makes selections based
solely on experience, there is a high probability that
the selected combination will be far from an optimal
solution. Complex facilities and a variety of security
elements offer too many combinations for a human to
find near-optimal solutions, without using appropriate
tools. One method for solving such problems is using
evolutionary algorithms. Game-theoretic model has
been presented [20] that, besides considering security
elements properties and uncertainty of response force
times, considers budget limitations and the impact
of false alarms on system performance. Authors use
greedy algorithm to seed the genetic algorithm. This
model is extended with support for connecting between
weather, visibility conditions and intruder capabilities
with detection probability, and interruption probabil-
ity is calculated including the impact of nuisance and
false alarm rates on operator performance [21]. Some of
the listed articles expect predefined budget or optimize
only one starting point or optimize predefined critical
paths, without taking into consideration that applying
security equipment changes critical paths.

Our approach considers all available starting points
for an adversary when optimizing protection systems.
Also, before each search iteration for critical paths, it
redefines search space based on selected security com-
ponents so that calculated probability interruption is
always correct, and not approximated. The next chap-
ter defines a model that is used for automatically finding
near-optimal solutions of physical protection systems.

2. Definitions

Let G = {V, £} be a graph where V is a set of vertices,
V| = n, and & is the set of edges |£| = m. Each ver-
tex is mapped to the element of facility that is being
protected, such as door, window or room. Vertex has
following properties:

dp(v) - detection probability.

pt(v) — time required for passing the element,
sn(v) - standard deviation of time required for
passing the element.

ae(v) — set of security elements available for apply-
ing to the facility element

ap(v) - set of applied security elements to the
facility element

co(v) - cost of applied security elements to the
facility element

Let S, such that S C V(G), be a set of vertices that
could be used by an adversary as starting attack points
and let 7, such that 7 C V(G), be a set that contains
vertex which is attacker target.

The edges represent possible movement of the adver-
sary from one vertex to the other. Graph is directed,
edges are defined as e;; = (v;, vj), where ¢;; € £.

Edge has following properties:

pt(e;j) — time required for passing from vertex v; to
vertex vj,

sn(e;j) — standard deviation of time required for
passing from vertex v; to vertex v;,

For each element of set S, we could find a path
pi = (vienzv2 ... YN—1eN—INVN) (1)
so that
f®i) =f(vienzvz...vN—1en—1NVN) = min(Pp) (2)

where Py is probability that adversary would be detected
and intercepted before reaching the target vertex v;e7 .
Interruption probability can be calculated as

N i-1
Py = PriPpyPc +) PriPpiPe- [[(1 = PpiPe) (3)
i=2 =1

where Pp; is a probability that security guards will arrive
from vertex v; to target vertex v; before adversary, Pp; is
a probability that adversary will be detected at v;, and P¢
is a probability that communication is successful during
detection and response.

Probability detection Pp; is a function of inde-
pendent detection probability of all security elements
applied at vertex v; and equals dp(v;).

Probability function Pg; is calculated as:

1 (thUl')2

232-
e “ni dt (4)
SpiN/ 2T

Tui is difference between time required for guard to
reach v; after adversary is detected Tg, and Tg; -
time required for adversary to reach v; from w;.
Tri equals Z]’.zl pt(x), where x is element of path
(vienava ... vi1€i-1ivi).

o
Pri = E(Ty; > 0,s) = /
0

Tui=Tc — Tri (5)
Standard deviation s, of Ty; equals
53 (Tui) = 53(Tri = Te) = sp(Tw) + 5,(Tg) (6)
System cost can be calculated as

cost(G) = Zco(v,-),where vieV (7)

i=1

3. Optimization problem

The objective is to find which security elements from
ae(v) should be applied to facility elements, so that for

AUTOMATIKA (&) 209

minimal cost of security system cost(G), a maximum
probability that adversary is stopped P; is achieved.
This is a multi-objective problem, where number of
possible solutions for each adversary type is |S| - 2™,
havingm =)", |ae(v;)| where n = |V|.

The goal is to find a set of non-dominated solutions
within an entire feasible search space.

P* = {x € Q|-3x’ € QF(x") < F(x)} (8)

Such set is called the pareto-optimal or non-dominated
set.

J () = (F(x), cost(x)))

Figure 2 shows set of solutions where Pareto-optimal
solutions are presented as rounded marks, while non-
optimal solutions are presented as squares.

F is a fitness function and represents average value
of probability that adversary will be successful in his
attack. If Py equals 0, then penalty is introduced so that
optimization algorithm finds solutions where P; = 0 is
omitted.

S| 4,) Pr(xi), Pr(x;) >0
F() i=1f(xz) —|S|,P1(xi) -0 (10)
xX) =
|S]

3.1. Problem optimization

We optimize finding the solution in two steps. The first
step is graph pruning, where the algorithm removes
vertices and associated edges from the search space. The
second step is introducing an algorithm that uses pre-
viously acquired knowledge about found solutions to
speed up the evaluation of proposed solution.

3.1.1. Pruning the search space

Pruning the search space could be accomplished by
repeatedly finding critical paths and applying all avail-
able security elements to nodes on critical paths until
there are no new nodes found on critical paths. Nodes
that are not included in a set of found on critical paths
during the search, have no significance to optimiza-
tion results. Therefore, they could be removed from the
search space, together with associated edges. Pseudo
code is shown in Figure 3.

Figure 4 shows a simple graph, used for an expla-
nation of the pruning algorithm. A search for a critical
adversary path, if there are no security elements imple-
mented, would find path (A, B, E). In the first step, the
pruning algorithm would place found nodes A, B and
E to set FN and assign them to all available security
elements to achieve maximum security for that path.
The next search for a critical path would find (A, C,
E) as the most critical. Node C is not present in set
FN so the algorithm would place all assignable secu-
rity elements to node C and add C to FN . Therefore,
the set of all found vertices in critical paths F A\ equals

210 (&) D.CAKUAETAL

. 100%
Interruption ’

probability g0,
80%
70%
60%
50%
40%
30%
20%

10%

0%

Optimal solutions —

Figure 2. Pareto front in optimizing physical security system.

Solution cost

PruningSearchSpace algorithm
foundNodes « @

do

for each element v in criticalPaths

ap(v) « ae(v)
add v to foundNodes

previouslyFoundNodes « foundNodes
criticalPaths = FindCriticalPathsForAllEntryNodes()

while not foundNodes is proper subset of previouslyFoundNodes

RemoveAllINodesFromSearchSpaceThatAreNotIn(f oundNodes)

Figure 3. Pruning search space algorithm.

{A, B, E, C}. Further search would find (A, B, E) or (A,
C, E) as the new critical path. Since both possible result
sets are proper subsets of found nodes set, there are no
new nodes found and the algorithm can stop searching
for new critical paths. The pruned search space is then
created using vertices in F. N set {A, B, E, C} and associ-
ated edges. Node D does not appear in any critical path,
so it is safely removed from search space.

3.1.2. Domain experienced exploration (DEX2)
method
For a facility that has five entry elements, fifteen posi-
tions to place security elements and 3 security elements
that could be applied per each position, it would take
5x23*15 or 1.76 x 10'* evaluations to calculate all possi-
ble solutions. Real facilities could have tens to hundreds
of possible entries, thousands of positions to place secu-
rity elements and choices for tens to hundreds of secu-
rity elements. Therefore, brute-force calculation is not
a viable option for this problem.

Searching for minimal cost of security system which
achieves a maximum probability that adversary is

Figure 4. Simple graph for explanation of pruning algorithm.

stopped makes it a multiple, competing objectives prob-
lem. Simultaneous optimization of competing objec-
tives, lowest system price and highest probability to
stop adversary, can be achieved by combining those two
values via utility functions, as a weighted sum, into a
single scalar value that is optimized as a single objec-
tive [22]. Utility function is not well known prior to the

optimization process so there are few drawbacks if the
single objective optimization method is used for solv-
ing multi-objective optimization problem. The result of
such method depends on weight coefficients so optimal
solution could be unacceptable due to an inappropri-
ate setting of coefficients and additional runs of the
optimizer are required [23]. Another challenge is that
in some problems small changes in coeflicients could
create significant change in the result [24].

The main drawback in using single-criteria opti-
mization method for our problem is that it produces
single result, compared to multi-objective evolution-
ary algorithms (MOEA) [25] which produce a set
of Pareto optimal solutions, based on which decision
maker can make informed decision. MOEA operate
on a generational population that presents set of indi-
viduals, an encoded solution, which could be repre-
sented as the binary vector x = (x1,...,xp) where b =
Z?:l |ae(v;)|. Each bit represents if available security
element is applied to associated construction element.

No matter which MOEA algorithm is chosen for
finding the solution, for each individual there are many
repeated changes of search space and consequently
searches for critical paths. Applying security elements
to construction elements changes vertices properties,
affecting an adversary’s critical path.

We introduce the algorithm that takes into consid-
eration knowledge acquired during searches to avoid
unnecessary calculation, as shown in Figure 5. The
main concept is to check if the intersection of known
solutions and proposed solution is an empty set. If
proposed security elements do not have an impact on
known critical path, then there is no need to calculate
the critical path. If there is no knowledge about pro-
posed security elements placement, then the algorithm

AUTOMATIKA (&) 211

will find the critical path, calculate solution quality and
cost, and add it to the list of found solutions.

For the purpose of explanation of how domain expe-
rienced search algorithm operates, the sample graph is
created, as shown at Figure 6, consisting of seven nodes
{A,B,C, D, E, E G}, connected with eleven edges, where
the starting node is node A and the target node for
adversary attack is node G. During the optimization
process, different algorithms may propose individuals
as problem solutions. An algorithm is creating tree-like
structure of found solutions, organized in such a way
that it’s possible to decide if new a search is necessary
or if existing solutions could be used, as shown in the
next examples.

As shown at Figure 6, position 1, if there are no secu-
rity elements placed, the optimal path for the adversary
is {A, C, E, G}. For proposed individuals that place
security elements at nodes B, D and F nodes only, the
intersection with set {A, C, E, G} would be an empty set.
That means that proposed security elements would not
influence the change of the critical path. The proposed
algorithm would not initiate an update of the search
space and the calculation of the critical path would
become unnecessary because known solution {A, C, E,
G} already exists.

The evaluation of individual that consists of set {B,
C, F} would take two steps. The intersection of the ini-
tial critical path {A, C, E, G} and individual {B, C, F}
is set {C}. In the first step, an algorithm applies a secu-
rity element at node C, updates the search space and
searches for the critical path. The critical path in our
example, when security element is applied at node C, is
{A, B, D, E, G} as shown at position 2 of Figure 6. In the
next step, the initial set with active nodes {A, C, E, G}
is united with nodes that are on critical path {B, D} and

l

Multi-objective algorithm

Solution
Costand Pi

Proposed
solution

Evaluator J

about this solution

There is no experience

Check if solution Return solution

Update search space

v

Find critical path for
each entrance node

\2

Calculate solution

Solution
Costand P/

has to be evaluated Costand PI

There is a knowledge
about this solution

Costand Pi

»| Store search information

Figure 5. Optimization flowchart using domain experienced exploration.

212 (&) D.CAKUAETAL

E—6—O®—0© ®—O

@ 0

&—©

Figure 6. Explanation of domain experienced search algorithm.

now the algorithm calculates {A, B, C,D,E, G} N {B, C,
F} = {B, C}. The intersection is not an empty set, so the
search space is updated by placing security elements at
nodes {B, C} and new calculated critical path is {A, C,
E, G}, as shown at position 3. Node F from initial indi-
vidual has no influence at critical path {A, C, E, G} so
further exploration is not necessary.

Based on this exploration, if individual {C, F} is eval-
uated, a new calculation of the critical path is avoided.
In the first step {A, C, E, G} N {C, F} equals {C} and
there is already information about critical path {A, B, D,
E, G} for the search space with active node C. Therefore,
there is no need to calculate that critical path. Node F
has no influence, so the previously calculated solution
is returned, without the need to update the search space
and find the critical path.

The second example is with individual {B, C, D,
E} and in the first step {A, C, E, G} N {B, C, D, E}
equals {C, E}. There is not a known solution for {C,
E} so security elements are applied and a new criti-
cal path {A, B, D, E G}, as shown in position 4 of
Figure 1, is found and stored as a new sub solution. In
the next step, intersection {A, B, C, D, E, E G} N {B,
C, D, E} equals {B, C, D, E}, and critical path {A, C,
E, G}, shown in position 5, is found. The new inter-
section is the same, so this solution is returned as a
result.

The individual in our third example is {C, E, F} and
inthefirststep {A, C,E, G} N {C, E, F} equals {C, E}. The
algorithm finds existing sub solution, at position 4, with
critical path {A, B, D, F, G}. In the next step, intersection
{A,B,C, D, E, E G} N {C, E, F} equals {C, E, F}. There

Evaluate(individualVector)
for eachvs e S
if initialSolutions|v,] is null

Pseudo code DomainExperiencedExplorationEvaluator

searchSpace € ApplySecurityElementsToSearchSpace(elements.: @)

possibleSolution < initialSolutions|vg)
while —solutionFound do

else

initialSolutions[vg] €< FindCriticalPath(searchSpace, vy)

intersection € individualVector N possibleSolution.activeElementsSinceStart
if ((intersection # possibleSolution.activeElements) and (intersection # 9))
if intersection € possibleSolution.subsolutions
possibleSolution € possibleSolution.subsolutions[intersection)

searchSpace €< ApplySecurityElementsToSearchSpace(intersection.activePositions)

else
solutionFound < true

return possibleSolution.criticalPath

newSolution = FindCriticalPath(searchSpace, vg)
possibleSolution.subsolutions|intersection] < newSolution
possibleSolution € initialSolutions[vg)

Figure 7. Domain experienced exploration algorithm pseudo-code.

is not an existing sub solution, so the algorithm applies
security elements at {C, E, F} and searches for the crit-
ical path. The found solution {A, B, D, E, G}, shown in
position 6, is added as a sub solution of {A, B, D, E G},
position 4.

The last example is with individual {B, E}. In the first
step {A, C, E, G} N {B, E} = {E} and the new critical
pathis {A, C, D, E G} (position 7). Node B is not on the
critical path, so exploration is not continued.

REeHG G&-»-8/a2-F0A

S0 = 0] -
8- ZE | B - F

B Achitecture Structure Steel Systems Insert Annotate Analyze Massing &Site Collaborate View

< Render
23 Render in Cloud
Render Gallery

Select ¥ Graphics N Presentation

Properties X 3 From Parking Area X -/ (3D}

@ 3D View

3D View: From Park v 8 Edit Type
Graphics A
Detail Level Medium
Parts Visibility Show Original
Visibility/Gra. Edit
Graphic Dis... Edit

i 03 - Floor Public - Day Rendering

Discipline |Architectural
Default Anal... None
Sun Path
Extents
Crop View
Crop Rego..
Far Clip Active
Far Clip Offs...[130468.1
Scope Box | None

Section Box
Properties help Fonl

Project Browser - rac_advanced... X
03 - Floor ~
Roof
-1 3D Views
03 - Floor Public - Day
03 - Floor Public - Nig
Balcony View
Building Courtyard
From Parking Area
{30}
Elevations (Building Elevat
Courtyard Elevation -
East
North
South
West
= Sections (Building Section
Section Through Main
Sections (Wall Section)
Typical Wall Section
Detail Views (Detail)
Detail 0
Detail At Grade v
> Perspective (P Ix Q GEEH WY RAG S <
Ready i

Figure 8. Autodesk Revit “rac_advanced_sample” building.

rac_advanced_sample_project.vt - 3D View: From Parking Area

AUTOMATIKA 213

Algorithm details are presented in Figure 7.

4, Experimental setup
4.1. Test dataset and test environment

A multi-objective search for an optimal solution was
performed using the HeuristicLab framework for evo-
lutionary algorithms that was developed by members of

« 4 2 signin () = (=] &3
Manage Add-lns Modify @~
* {3 Sheet =0 B | E‘
O]) i
Switch _ Close Tab Tile User
Windows Inactive Views Views ~ Interface
Create Sheet Composition Windows

i 03 - Floor Public - Night Rendering i Building Courtyard

1

11

rrrrrrrrrrr T T T TrTTrT

Figure 9. The entry level and first level floor plans of RAC_advanced_sample.

214 D. CAKIAET AL.

I S T Y I |

M\
T T l‘I T T 1T
Figure 10. Test facility A, represented as graph.
el Y =l
} f .iﬂ;: Q;
o
@ﬁ,
e = ; : g / ;
i] B
= o— - — — Ty |] . = n
o L [] ! 3 : 1 I i il L
&)W..:‘ = . = *;'“r‘ﬁ?:] | = & |2 el 5 =Hs
: T i T 1‘; IIII\IIIII’III\II‘I!II
Figure 11. Test facility B, represented as graph.
1 1
0,9 0,9
0,8 0,8
E 0,7 0,7
—
o
= 06 0,6
o
o
o
=z 0,5 0,5
o
'_
o
204 , 0,4
o
w
'_
Z 03 0,3
0,2 , 0,2
0,1 é 0,1
0 0
0 2000 4000 6000 8000 10000 12000 14000 16000

SOLUTION COST

—{I— Gen:500, Pop:200, Mut: 0% ~—(Gen:500, Pop:200, Mut: 5%

Figure 12. Results of Facility A optimization.

the Heuristic and Evolutionary Algorithms Laboratory
(HEAL) since 2002 [26]. Multiple objective optimiza-
tion was performed using a computationally fast eli-
tist evolutionary algorithm based on a non-dominated
sorting approach NSGA-II (Non-dominated Sorting
Genetic Algorithm II) [27]. It finds the spread of solu-
tions near the true Pareto-optimal front. Population
size, number of evaluations, mutation and crossover
probabilities, presented in experiments results, are
selected after numerous experiments with different
parameters of genetic algorithms. Lower numbers of
population size and the number of evaluations gener-
ated lower quality results, while increasing them didn’t
contribute to better results.

Evaluation algorithm was written in. Net Frame-
work, using C# programming language syntax.

Facility samples used to run tests were made
using “RAC_Advanced_sample”, available as Autodesk

Table 1. Experimental results for facility A.

Running
Running sum of New
sum of DEX2 Avoided solutions Improved
Search no. evaluations evaluations evaluations found solutions

NSGA-II, Population size: 500, Generations: 200, Mutation

Algorithm: probability: 0%, Crossover probability: 90%
1 2.010.000 1.087.000 46% 435 -
2 4.020.000 2.197.108 45% 295 124
3 6.030.000 3.506.118 42% 191 116
4 8.040.000 4.623.331 42% 149 181
5 10.050.000 5.755.194 43% 68 90
NSGA-II, Population size: 500, Generations: 200, Mutation
probability: 5%, Crossover probability: 90%
1 2.010.000 1.524.477 24% 451 -
2 4.020.000 3.171.812 21% 276 81
3 6.030.000 4.595.692 24% 213 191
4 8.040.000 6.099.798 24% 137 118
5 10.050.000 7.355.339 27% 93 280
12.000.000
10.000.000
(%]
c
o
% 8.000.000
&
< 6.000.000
RS
S
©
S 4.000.000
©
>
w
2.000.000
0
1 2

AUTOMATIKA 215

Revit 2020 distribution. Building has three floors —
entry level, first and second floor, as shown at Figure 8.

Entry level and first floor were used to create test
models (Figure 9). Computer room on first floor (room
no. 222) has been selected as target position.

Two test models were created to evaluate a depen-
dence of domain experienced exploration evaluator
performance to the number of facility elements and
dependence on number of entry elements. The first
test model represents a standard commercial building.
The building has glass elements at entry levels that
an adversary can use for entrance into the building.
Glass elements at first floor were not used as pos-
sible entrance elements in this experiment. The sec-
ond test model represents the same building as the
high security facility. Glass elements are replaced with
walls and only two windows are available as entry
points.

The first test model (Facility A), as shown in
Figure 10, is represented as a graph, consisting of 85
nodes, where 20 of them are entry nodes. The nodes
are denoted with different colours that represents ele-
ment type. Yellow nodes represent doors, green nodes
represent rooms and blue represent windows. Rooms
and doors that are not represented as nodes are not
important as they would be pruned in first step of the
optimization process.

Second test model (Facility B), is shown in Figure 11
and, represented as a graph, consists of 50 nodes, where
7 of them are entry nodes.

5. Experimental results

Figure 12 shows two sets of solutions proposed for
Facility A, presented as Pareto fronts, found using

3 4 5

Search no.

=== Running sum of evaluations without DEX2 optimization

==@=PRunning sum of DEX2 evaluations, with mutation 5%

Running sum of DEX2 evaluations, 0% mutation

Figure 13. Comparison of iterations with and without DEX2 - Facility A.

216 (&) D.CAKUAETAL.

Table 2. Experimental results for facility B.

Running
Running sum of New
sum of DEX2 Avoided solutions Improved
Search no. evaluations evaluations evaluations found solutions

NSGA-II, Population size: 200, Generations: 200, Mutation

Algorithm: probability: 0%, Crossover probability: 90%
1 281.400 206.839 26% 189 -
2 562.800 340.533 39% 135 25
3 844.200 523.768 38% 85 55
4 1.125.600 685.735 39% 66 29
5 1.407.000 886.320 37% 67 53
NSGA-II, Population size: 300, Generations: 300, Mutation
probability: 5%, Crossover probability: 90%
1 632.100 323.909 49% 247 -
2 1.264.200 589.623 53% 169 36
3 1.896.300 918.673 52% 122 13
4 2.528.400 1.242 51% 70 60
5 3.160.500 1.520 52% 54 79

NSGA-II with two algorithm setups. Both setups run
genetic algorithm with 500 generations, each having
200 individuals. The first setup does not use the muta-
tion method, and the second setup mutates 5% of parent
individuals when creating the new generation. As the
graph in Figure 12 shows, the mutation method helps
in finding more diverse solutions.

The first experiment results, presented in Table 1,
compare the number of evaluations with and with-
out a knowledge-based evaluator for Facility A. The
NSGA-II algorithm is run in five sequential runs
and the domain exploration algorithm keeps explo-
ration knowledge for each run. Solution results found
after each run are compared to all previous results

0,9
0,8

0,7 JJ

0,6 |"_'|

0,5 —T‘A

0,4 -

INTERRUPTION PROBABILITY

0,3

0,2 /

0,1 G

0 1000 2000 3000

to calculate the count of new and improved results.
Table 1 shows results for two NSGA-II setups, and dif-
ference between them is that column “Running sum
of evaluations” values are the running sums evaluation
when DEX2 algorithm is not used. In this experiment,
each NSGA-II run executes 2.010.000 evaluations. Col-
umn “Running sum of DEX2 evaluations” presents the
running sum of number of evaluations when domain
experienced exploration algorithm is applied to evalu-
ation process. Comparisons of running sums of eval-
uations, with and without DEX2 applied, show that
usage of domain experienced exploration algorithm
decreases the number of iterations, as shown in col-
umn “Avoided evaluations” and graphically presented
in Figure 13. Mutation probability decreases algorithm
optimization effectiveness as more mutated individu-
als require more significant branching in the search
tree. Column “New solutions found” presents count of
new solutions found, compared to all previous NSGA-
I runs. Column “Improved solutions” is the number of
newly found solutions that offer higher probability that
an adversary will be stopped, compared to previously
found solutions with the same budget.

Figure 14 shows two sets of solutions proposed
for Facility B, presented as Pareto fronts, found using
NSGA-II with two algorithm setups. The first algorithm
setup has 200 generations, 200 individuals per gen-
eration and doesn’t use the mutation method, while
second setup has population of 300 individuals, 300
generations and 5% mutation. A bigger population size
and greater number of generations in the second setup

— 0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2

0,1

4000 5000 6000 7000 8000

SOLUTION COST

—{— Gen:200, Pop:200, Mut: 0%

Figure 14. Results of Facility B optimization.

Gen:300, Pop:300, Mut: 5%

1600000
1400000
1200000
1000000
800000
600000
400000
200000

ons

Evaluation iterat

Search no.

=== Running sum of evaluations without
DEX2 optimization
@ Running sum of DEX2 evaluations,
population: 200, 200 generations

AUTOMATIKA 217

3500000
3000000
2500000
2000000
1500000
1000000

Evaluation iterations

500000

Search no.

=== Running sum of evaluations without
DEX2 optimization
@ Running sum of DEX2 evaluations,
population: 300, 300 generations

Figure 15. Comparison of iterations with and without DEX2 — Facility B.

find more dominant solutions compared to the first
setup, as seen in Figure 14.

Experiment results for facility B are presented in
Table 2. The goal of this experiment is to explore
the influence of graph branching and the number of
generations to DEX2 algorithm effectiveness. Results
show that, compared to the previous experiment, larger
number of entry nodes and graph branching increases
algorithm effectiveness. Also, as Figure 15 shows that, a
higher number generations produce a greater number
of similar solutions that causes the algorithm to have
higher effectiveness.

6. Conclusion

The objective analysis and optimization of physical
protection systems require mathematical model and
multi-objective search algorithm. In real-world scenar-
ios, facilities that are being protected are comprised of
a large number of construction elements and a vari-
ety of available security elements. In this paper we
presented a method that reduces the number of eval-
uation searches, by initial pruning of search space and
by using experience from previous domain exploration.
For each proposed solution the algorithm will check
if there is existing knowledge that helps to avoid any
unnecessary search for critical paths and calculation of
cost and solution quality. The benefit of applying this
algorithm is that reducing the number of evaluations
shortens the time of the optimization. It is not an opti-
mal method if the graph model representing the facility
layout has the form of a grid, in which case the new crit-
ical paths are predominantly found for each proposed
solution and the algorithm cannot use previously found
results.

Our algorithm was empirically evaluated on two
facilities that represent real-world projects, having dif-
ferent problem sizes and facility layouts. We used

NSGA-II as an evolutionary multi-objective algorithm
to propose solutions and to create Pareto front.
Experiments showed that our method improves
evaluation by pruning the search space and avoiding
unnecessary searches, where some results showed sig-
nificant reduction in searches. The advantage of our
algorithm concept is that accumulated domain explo-
ration knowledge can be used with different multi-
objective algorithms, configured with various param-
eters, run at same problem, avoiding unnecessary
searches. Example is running the genetic algorithm
with different parameters.

Proposed evaluation algorithm could be used in
other problem domains where search space, and
consequently critical path, changes dynamically based
on proposed solution.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Marin Golub (© http://orcid.org/0000-0002-8042-7076

References

[1] Garcia ML. The design and evaluation of physical pro-
tection systems. 2nd ed. Amsterdam: Elsevier/Butter-
worth-Heinemann; 2008.

[2] Matko V, Brezovec B. Improved data center energy
efficiency and availability with multilayer node event
processing. Energies. 2018;11(9):1-17.

[3] Jia M, Srinivasan RS, Raheem AA. From occupancy to
occupant behavior: an analytical survey of data acqui-
sition technologies, modeling methodologies and sim-
ulation coupling mechanisms for building energy effi-
ciency. Renew Sustain Energy Rev. 2017;68:525-540.

[4] Brezovec B, Matko V. Software and equipment for
remote testing of sensors. Sensors. 2007;7(7):1306—
1316.

http://orcid.org/0000-0002-8042-7076

218 D.CAKUAET AL.

(5]

(6]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Doyon LR. Stochastic modeling of facility security-
systems for analytical solutions. Comput Ind Eng. Jan.
1981;5(2):127-138.

Garcia ML. Vulnerability assessment of physical pro-
tection systems. Amsterdam: Elsevier Butterworth-
Heinemann; 2006.

Jang S-S, Kwan S-W, Yoo H-S, et al. Development of
a vulnerability assessment code for a physical pro-
tection system: systematic analysis of physical pro-
tection effectiveness (SAPE). Nucl Eng Technol. 2009
Jun;41(5):747-752.

Porter S, Tan T, Tan T, et al. Breaking into BIM: perform-
ing static and dynamic security analysis with the aid of
BIM. Autom Constr 2014 Apr;40:84-95.

Zou Y, Kiviniemi A, Jones SW. A review of risk manage-
ment through BIM and BIM-related technologies. Saf
Sci. 2017 Aug;97:88-98.

Cakija D, Ban Z. Modeling facility protection for
numerical vulnerability assessment. 2011 Proc. 34th Int.
Conv. MIPRO; 2011.

Edelkamp S, Schrodl S. Heuristic search: theory and
applications. Amsterdam: Morgan Kaufmann; 2012.
Hart P, Nilsson N, Bertram R. A formal basis for the
heuristic determination of minimum cost paths. IEEE
Trans Syst Sci Cybern. 1968;SSC-4:101-107.

Zou B, Yang M, Zhang Y, et al. Evaluation of vulnerable
path: using heuristic path-finding algorithm in physi-
cal protection system of nuclear power plant. Int J Crit
Infrastruct Prot. 2018 Dec;23:90-99.

Rios LHO, Chaimowicz L. PNBA*: a parallel bidirec-
tional heuristic search algorithm. p. 12.

Holte RC, Felner A, Sharon G, et al. Bidirectional search
that is guaranteed to meet in the middle. AAAI16 Proc.
Thirtieth AAAI Conf. Artif. Intell.; 2016. p. 3411-3417.
Zou B, Yang M, Guo], et al. A heuristic approach for the
evaluation of physical protection system effectiveness.
Ann Nucl Energy. 2017 Jul;105:302-310.

Gargano ML. Evolving efficient security systems. 2003
May; p. 10.

Flammini F, Gaglione A, Mazzocca N, et al. Optimi-
sation of security system design by quantitative risk
assessment and genetic algorithms. Int] Risk Assess
Manag. 2011;15(2/3):205.

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

Flammini F, Gentile U, Marrone S, et al. A petri
net pattern-oriented approach for the design of phys-
ical protection systemsComputer Safety, Reliability,
and Security: 33rd International Conference, SAFE-
COMP 2014 Vol. 8666. Florence, Italy: Springer; 2014.
p. 230-245.

Brown NJK, Jones KA, Nozick LK, et al. Multi-layered
security investment optimization using a simulation
embedded within a genetic algorithm. In: 2015 Winter
Simulation Conference (WSC), Huntington Beach, CA;
2015. p. 2424-2435.

Brown N, Jones K, Bandlow A, et al. A stochastic
programming approach to the Design optimization of
Layered physical protection systems. Presented at the
Hawaii International Conference on system Sciences;
2017.

Fonseca CM, Fleming PJ. Genetic algorithms for mul-
tiobjective optimization: formulation, discussion and
generalization. p. 8.

Coello C, Romero C. Evolutionary algorithms and mul-
tiple objective optimization. In: Ehrgott M, Gandibleux
X, editors. Multiple criteria optimization: state of
the art annotated bibliographic surveys. Boston, Dor-
drecht, London: Kluwer Academic Publishers; 2002.
p.277-331.

Caballero R, Rey L, Ruiz E, et al. An algorithmic pack-
age for the resolution and analysis of convex multiple
objective problems. In: Fandel G, Gal T, editors. Mul-
tiple criteria decision making, Proceedings of the 12th
International Conference. Hagen, Germany: Springer;
1997. p. 275-284.

Coello CAC, Lamont GB, Veldhuizen DAV. Evolution-
ary algorithms for solving multi-objective problems sec-
ond edition. Boston (MA): Springer; 2007.

Wagner S, Kronberger G, Beham A, et al. Architec-
ture and design of the HeuristicLab optimization envi-
ronment. In: Klempous R, Nikodem J, Jacak W, et al.,
editors. Advanced methods and applications in compu-
tational intelligence Vol. 6. Heidelberg: Springer Inter-
national Publishing; 2014. p. 197-261.

Deb K, Pratap A, Agarwal S, etal. A fast and elitist multi-
objective genetic algorithm: NSGA-IIL. IEEE Trans Evol
Comput. 2002 Apr;6(2):182-197.

	1. Introduction
	2. Definitions
	3. Optimization problem
	3.1. Problem optimization
	3.1.1. Pruning the search space
	3.1.2. Domain experienced exploration (DEX2) method

	4. Experimental setup
	4.1. Test dataset and test environment

	5. Experimental results
	6. Conclusion
	Disclosure statement
	ORCID
	References

