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ABSTRACT
Continuous growth of video traffic and video services, especially in the field of high resolution
andhigh-quality video content, places heavydemandsonvideo coding and its implementations.
High Efficiency Video Coding (HEVC) standard doubles the compression efficiency of its prede-
cessor H.264/AVC at the cost of high computational complexity. To address those computing
issues high-performance video processing takes advantage of heterogeneous multiprocessor
platforms. In this paper, we present a highly performance-optimized HEVC transform and quan-
tization kernel with all-zero-block (AZB) identification designed for execution on a Graphics
Processor Unit (GPU). Performance optimization strategy involved all three aspects of parallel
design, exposing as much of the application’s intrinsic parallelism as possible, exploitation of
high throughputmemory and efficient instruction usage. It combines efficientmapping of trans-
form blocks to thread-blocks and efficient vectorized access patterns to shared memory for all
transform sizes supported in the standard. Two different GPUs of the same architecture were
used to evaluate proposed implementation. Achieved processing times are 6.03 and 23.94ms
for DCI 4K and 8K Full Format, respectively. Speedup factors compared to CPU, cuBLAS and
AVX2 implementations are up to 80, 19 and 4 times respectively. Proposed implementation
outperforms previous work 1.22 times.
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Introduction

The share of video traffic in global Internet traffic will
undergo significant growth, from 75 percent in 2017 to
predicted 82 percent by 2022 [1]. It is estimated that
ultra-high definition (UHD) or 4K video will account
for 22 percent of that amount. To support fast deliv-
ery and inexpensive storage of video data of such a
huge size, video compression with high coding effi-
ciency is required. HEVC [2] is a state-of-the-art video
coding standard that doubled compression efficiency
compared to its predecessor Advanced Video Coding
(AVC). This accomplishment wasmade at the cost of an
increase in computational complexity of video encod-
ing and decoding.

HEVC standard is devised for a hybrid video cod-
ing where transform, scaling, and quantization (TQ)
are contained in an important functional block. In
modern hybrid video coding systems that block fol-
lows the motion-compensated prediction and precedes
entropy coding. Regardless of how effectively the pre-
ceding prediction process is exercised, there is typically
a remaining prediction error residual signal that has
to be further processed. In overall encoding time, TQ
and its inverse process take about 25 percent for the
all-intra and 11 percent for the random-access con-
figurations in HM 8.0 encoder [3]. As a new feature,
when compared to prior standards, HEVC introduced

additional transform block (TB) sizes to make encod-
ing of video files of 4K and 8K resolutions more effi-
cient; replaced real-valued discrete cosine transform
(DCT) with integer DCT to ensure device interoper-
ability and avoid encoder-decoder mismatch; simpli-
fied (de)quantization process by turning it into scalar
multiplication (division). Efficient implementation in
software exploiting SIMD capabilities and parallel pro-
cessing were set as design goals during HEVC TQ
development [4].

To cope with increased computational complexity,
which is especially challenging for the design of real-
time applications, advanced computing architectures
are required. Heterogenous multiprocessor computing
architectures are one possible solution in such cases.
There, the application is portioned in a way that tasks
are distributed among coprocessors depending on their
specialized processing capabilities. Currently, the most
common heterogeneous systems are made of a mul-
ticore Central Processing Unit (CPU) and GPU [5].
Serial portions of applications are run on the for-
mer, while data-parallel, compute-intensive portions
are offloaded to the latter. Programming paradigms
for these two architectures are different, which has to
be considered during the application design. In addi-
tion to GPUs, Field Programmable Gate Array (FPGA)
is another possible hardware node in heterogeneous
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architectures. Very high energy efficiency, reconfigura-
bility, and low latency put them ahead of other hard-
ware solutions for compute-intensive signal-processing
computations.

In this paper, we present a highly parallel HEVC
transform and quantization kernel withAZB identifica-
tion designed for execution on a GPU. Memory band-
width, instruction throughput, and on-chip memory
allocation were properly balanced to achieve efficient
execution and high resource utilization. Different opti-
mization techniques, from overlapping data transfers
with computation to fine-tuning arithmetic operations
sequences, were incorporated to reach high perfor-
mance. By exploiting the Compute Unified Device
Architecture (CUDA) programming model [6] experi-
mental results exhibited processing times 6.03–8.88ms
for the Digital Cinema Initiatives (DCI) 4K video
depending on block partitioning granularity for trans-
form coding. Speedup factors which were obtained
compared to the CPU, manufacturer’s CUDA Basic
Linear Algebra Subroutines (cuBLAS) and Advanced
Vector Extensions (AVX2) implementations are 80, 19
and 4 respectively. In comparison with related work
1.22 times lower processing time is achieved.

The rest of the paper is organized as follows: second
Section describes related work and motivation for this
research. In Section 3 HEVC transform and quantiza-
tion operations, which are the base for parallelization,
are presented. In Section 4 the proposed GPU paral-
lelization methods are described and justified using a
mid-end GPU. Implementation results are discussed
and evaluated using a high-end GPU of the same archi-
tecture in Section 5. Section 6 presents the conclusion
of the paper.

Related work andmotivation

Previous research in this field which focused on
CPU+GPU heterogeneous platforms mainly tackled
motion estimation as a functional block with the high-
est computational load [7,8]. A step further was taken
with massive parallelization in [9] and all functional
blocks of HEVC decoder, except entropy decoder, were
ported to GPU. Quite the contrary, solutions with TQ
acceleration using FPGAs rather than the GPU [10] are
much more represented as a research topic.

Regarding the migration of HEVC TQ to the GPU
in [11] two tables, one describing transform unit (TU)
partitioning and the other quantization parameter (QP)
value storing, together with the mapping algorithm at
theCTU level, were proposed to achieve efficient imple-
mentation. In [12] authors dealt with a heterogeneous
system for HEVC encoder where motion-compensated
prediction processing already resides at the GPU side
and additionally the TQ has to be ported there.
Parallel TU address list construction and coefficient
packing were proposed to get high processing speed.

Benchmarking the performance of four differentHEVC
2D transform kernel designs against its industrial solu-
tion, which combine assembly and AVX2 instructions,
was carried out in [13] without conducting perfor-
mance optimizations. In [14] the highly optimized par-
allel implementation of the HEVC dequantization and
inverse transform is presented using the unified pro-
gramming model for the CPU+GPU heterogeneous
system.

Previously mentioned works mainly focus on the
integration aspect of GPU implementation of HEVC
TQ and do not reveal in detail the design of kernel
function and optimizations which are made to effi-
ciently balance between GPU resources, sum of regis-
ters, allocated on-chipmemory per thread-block, num-
ber of threads per multiprocessor and global mem-
ory bandwidth. That is preventing proper validation of
their performance gains and gaps. Additionally, it has
to be mentioned that fair comparison using only TQ
processing time is not feasible. In [11], GPU acceler-
ation is done at the CTU block level and in [12] and
[14] it is done at the frame level with transform blocks
previously grouped for GPU acceleration. The latter
approach allows much better use of GPU parallelism.

The highest workload stage during HEVC TQ is the
2D forward transform which is mathematically real-
ized as double matrix multiplication. Many guidelines
exist with general optimizations principles exampled
in matrix multiplication and other basic linear alge-
bra subroutines (BLAS) [15–17]. They mainly deal
with the multiplication of two large size (one or both
dimensions) matrices which are tiled to small size
subblocks e.g. 16×16 and distributed among GPU
thread-blocks. Values from input matrices are repeat-
edly loaded in subblocks and the resulting subblock is
computed as the sum of products of these subblocks.
HEVC TQ operates with batches of small size matri-
ces i.e. TBs where the tiling approach would degrade
performance. The efficient mapping of TBs and dot
product computations to various components of the
GPU subsystem with the adaptation of known perfor-
mance optimization techniques was set as the main
design objective. The final proposal presents a system-
atic and efficient solution for the multithreaded GPU
kernel function for all supported transform sizes in
HEVC.

HEVC transform and quantization TQ

HEVC TQ processes the TBs coming from the
residual quadtree (RQT) structure. The output con-
sists of quantized transform coefficients (levels). The
process consists of three stages: the 2D integer
DCT transform, quantization, and AZB identifica-
tion. The standard specifies 4-, 8-, 16- and 32-point
transform.
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HEVC transform of size N × N,N ∈ {4, 8, 16, 32} is
given by

Y = D × X × DT (1)

whereD is theHEVC transformmatrix with predefined
values, X is the residual matrix and DT is a transpose
of the transform matrix. All matrices are of size N×N.
HEVC transformmatrix is scaled by a predefined factor
compared to orthonormal DCT but it keepsmost of the
properties which are useful for compression efficiency
and efficient implementation [4]. To retain the norm
of the residual block, additional scaling is needed after
each step in the first process stage, each of two integer
1D transforms, and in the second quantization stage.

Quantization is a scalar operation. Transform coef-
ficients are quantized by a QP value. HEVC also
supports frequency-dependent quantization. Low fre-
quency coefficients can be quantized with finer quanti-
zation step to adjust to the human visual system.

AZB identification is the last stage in the process.
The information if all levels coming out from one TB
are zero is used to set the value of the syntax ele-
ment coded block flag (CBF). This helps to reduce the
number of bits to be transmitted.

Decoder is built-in in HEVC encoder since the
frame has to be fully decoded to be used as a ref-
erence in the estimation and prediction process for
subsequent frames. As the first step in the reconstruc-
tion of the frame, quantized transform coefficients are
dequantized and inverse transform is applied there-
after. Computation complexity of dequantization and
inverse transform (DQIT) is equivalent or lower to that
of the TQ process. Double matrix multiplication of
input blockswithHEVC transformmatrix and its trans-
pose with intermediate scaling, the same number of
scalar multiplications and bitwise shifts appear in both
functional blocks. AZB identification is part of the TQ
process only.

Proposed GPU parallelizationmethods

GPUs are powerful arithmetic engines suited to run
thousands of threads in parallel. To obtain the best
performance from a GPU and to achieve suitable low
video latency, GPUprocessing is done at the frame level
or frame’s horizontal segment level. Compared with
pure CPU implementation, heterogeneous accelerator-
based architecture could potentially suffer from a large
overhead in data transfer between the CPU (host) and
the GPU (device). As shown later, that overhead could
reach up to 26% of overall processing time in case
of a mid-end GPU and 73% in case of a high-end
GPU. Residual data blocks are copied asynchronously
in groups from host to device as shown in Figure 1.
One group includes all the blocks of the same size. Data
transfers are optimized according to [18]. Once com-
puted, blocks of quantized coefficients and their zero

markings are returned to the host. The device receives
data into its global memory and transfers them from
there to streaming multiprocessors (SM). Transform
matrices of all sizes are written to the global mem-
ory in advance. To reach the full SM utilization and
decrease thread creation and destruction cost, the grid-
stride loop technique [19] was employed for kernel
design. Accesses to the device global memory are done
in a coalesced way to maximize the effective memory
bandwidth. A thread-block accesses a group of residual
blocks, block by block in the raster scan order where the
data belonging to a residual block are accessed row by
row.

Residual image is dynamically partitioned into TBs
whose size adapts to spatial and frequency characteris-
tics of the corresponding image area. Transform opera-
tions performed with TBs of different sizes are different
and TBs are grouped before the transfer to the device.
Gathering the same sized TBs can be done by resum-
ing our previous work [20]. The prediction stage can
be modified in a way that residual values are stored to
memory location for particular block size. The index of
the addressing information for the block is written into
the TU data structure.

Since matrix-matrix multiplications are the most
compute-intensive part in the process, shared mem-
ory, located on the chip, is used to hold the input data
to reduce global memory accesses. To achieve high
bandwidth, it is divided into banks. Each bank pro-
vides a bandwidth of 64 bits per clock cycle. Buffered
data, byte-aligned residuals and intermediate trans-
form coefficients are each 16-bit wide. For efficient
communication with the memory, vectorized mem-
ory access is used and four data are retrieved from
the memory per bank per transaction. Bank size is
reconfigured to 64 bits so that in a thread-block
successive 64-bit vectors are assigned to successive
banks.

Shared memory is additionally exploited as the sin-
gle access point for AZB identification. Since mapping
residual block to thread-block is n : 1(n ∈ N), an inter-
mediate array of Booleans of length n is allocated in
the shared memory. Group of threads in a thread-block
that computes levels in a TB will initiate a write request
to the same corresponding array element if the non-
zero level was identified in its vector. As the last step,
each array element is tested by a single thread in the
group to set a related array element in the output AZB
array in global memory. To ensure correct results of
values in both arrays, the threads are synchronized
two times. First time after the initialization of arrays
in shared and global memory and the second time
after thread wrote a corresponding value to the match-
ing residual block’s array element. The shared memory
access pattern which enables maximum throughput of
shared memory will be presented below. If the AZB
identification stage is skipped in the process kernel, the
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Figure 1. Data transfers between host and device.

Table 1. Processing times for different block mappings for 4×4 transform blocks.

TB size No. of blocks Block mapping
Kernel execution

time [ms] Regs per thread
Shared memory
per block (bytes) Occupancy [%]

4× 4 829,440 (DCI 4K) 1:1 49.55 28 112 25
64:1 5.02 32 4160 100
128:1 5.60 32 8320 100
192:1 7.59 31 12,480 75
256:1 8.71 32 16,640 100

processing time is shortened 4% or 2% depending on
the used GPU type.

Mapping transform blocks to thread-blocks

For performance optimizedHEVCTQwithmaximized
parallel execution, themaximumutilization of available
device resources has to be achieved. GPU physical lim-
its relate to numbers of threads, thread-blocks, available
registers, allocatable size of sharedmemory per SM. SM
schedules and executes threads in warps, groups of 32
parallel threads. The number of active thread-blocks
and warps depends on the amount of shared mem-
ory and registers used by the kernel but is constrained
by their physical limits. The ratio of the number of
active warps per SM to the maximum number of possi-
ble active warps is the manufacturer’s metric for warp
utilization called occupancy [21].

A straightforward approach for execution configura-
tion is to map one residual block to one thread-block.
Table 1 shows processing time for several configura-
tions for 4×4 TBs including boundary cases when only
oneTB is processedwithin a thread-block andwhen the
maximum thread-block size is configured. Configured
number of threads depends on the mapping ratio. For
example, as four threads process one TB, there are 512
threads configured for 128:1 block mapping.

Low occupancy for 1:1 block mapping is caused
by the low utilization of thread-blocks. Though the
maximum number of thread-blocks resides on every
SM, there is only one warp allocated per thread-block.
Moreover, this one warp is not fully utilized. Only four
of its threads are active. In the case of 64:1 block map-
ping, higher thread-block utilization yields higher per-
formance, with a kernel speed-up of 9.8 times. As the
mapping ratio further increases, so does kernel execu-
tion time. This behaviour is caused by the progressive
reduction of global memory throughput. As more TBs
are mapped to a thread-block the stride of the kernel
loop is larger and fewer memory transactions can be
served from the L2 cache load. The L2 cache is shared
by all SMs and used to cache accesses to globalmemory.
By using vectorized memory access the kernel becomes
computation-bound and therefore lower occupancy in
case of 192:1 block mapping is not penalized with addi-
tionally longer execution time. The block mapping of
ratio 64:1 with TB and thread indexing is illustrated in
Figure 2. This thread-block size will be employed for all
transform sizes in the rest of the paper.

Considering the selected thread-block size, the num-
ber of TBs which are mapped to one thread-block is
determined for TBs of larger size by the equation:

nTB = 256
N×N/4 (2)
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Figure 2. 64:1 residual to thread-block mapping from host to device for 4× 4 transform block.

where 256 is the selected thread-block size, N × N the
size of TB and divisor 4 appears due to vectorized
access, as each thread processes 4 residuals.

Efficient vectorized access pattern to shared
memory

By using 64-bit vectors, an adjustment to the bus width
of the sharedmemory bank is accomplished. To achieve
overall high memory bandwidth, an appropriate access
pattern for all TB sizes has to be created. In the 2D
transform application, every thread will execute a dot
product of a matching row inmultiplicand block with a
matching column in the multiplier block. Reading row
data is performed as reading along the banks and as
such is naturally parallel. In the case of the widest row,
which appears for 32 × 32 TB, row data will reside in
eight different banks. Data load can be done within one
transaction.

Loading of column data within a warpwith an access
pattern which results in reading from the same bank
causes bank conflicts. With an array width of 8, which
is the least commonmultiple for all array widths in vec-
torized access (1, 2, 4, 8), and regular access pattern
bank conflict would happen for transform sizes larger
than four. For that particular transform size memory
locations, belonging not only to column data from one
TB but to complete row of TBs in thread-block, always
map to different memory banks. For example, in the
case of transform size 8× 8, 32 memory locations in
separate banks are sufficient to store only half of one
row of TBs in a thread-block.

Memory requests to one bank are split into as many
requests as there are requested 64-bit words in that
bank. To prevent bank conflicts, shared memory 2D
array is padded with an additional column. The addi-
tional column will cause data to shift right to the new
bank but this technique is not efficient for all trans-
form sizes. Access pattern to padded shared memory
array for one thread-block is shown for 4× 4 TBs and
32× 32 TBs in Figure 3. Padded array locations are
marked with striped squares. In the case of a 4-point
1D transform, threads which process eight consecutive
TBs compose one warp. As can be seen, when padding
is used, some data which are processed by the first warp
are spilled to the next memory location in the already
used banks. Such data couldn’t be accessed in the same
transaction as one from the upper memory location.
Without padding, the first warp would access memory
location 0 in all 32 banks in the same cycle. Simi-
lar happens for 8×8 TBs where warps would retrieve
necessary data from shared memory in three requests
when padding is applied instead of two requests when
padding is omitted. For 16× 16 and 32× 32 TBs there
are four and eight serialized memory requests to col-
umn data respectively when there is no padding. With
padding, those accesses are conflict-free. For the latter
transform size, the padding is shown in Figure 3(b).

It is obvious that padding is not appropriate for
smaller transform size and as such it is not applied
there. The impact on the kernel execution time for
different sizes is confirmed with measurements pre-
sented in Table 2. For every test case, it is assumed that
the frame is split to same sized TBs. Manufacturer’s
quality metric shared efficiency, defined as the ratio
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Figure 3. Padded shared memory with the access pattern for (a) 4× 4 and (b) 32× 32 TBs.

of requested shared memory throughput to required
shared memory throughput, is used as the decision
criteria.

Core transform matrix is predefined for each trans-
form size. It is loaded from global memory and stored
to the shared memory once for a whole thread-block.
Read accesses from threads in a warp, belonging to dif-
ferent TBs, to a single core transform array result in the
performance efficient broadcast mechanism.

Implementation and evaluation

In this section, the performance of the proposed paral-
lel implementation named GHTQ is evaluated in terms
of overall and kernel processing time per frame. TBs
with random values were generated at the host side,
transferred to the device using page-locked memory
and processed there. Quantized transform coefficients
and AZB identification are sent back as process outputs
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Table 2. Execution times and shared memory efficiency with or without data padding.

TB size
No. of blocks (DCI

4K)
Shared memory
array padding

Overall execution
time [ms]

Kernel execution
time [ms]

Shared memory
efficiency [%]

4× 4 829,440 No 9.69 4.99 81
Yes 10.01 5.15 67.5

8× 8 207,360 No 12.59 7.89 90.2
Yes 12.67 8.07 83.4

16× 16 51,840 No 17.92 13.26 69.9
Yes 17.49 12.87 91

32× 32 12,960 No 30.04 25.37 26.7
Yes 27.69 22.93 95.3

Table 3. Experiment environment.

Environment name Desktop GPU Workstation GPU

CPU Intel Core i5-4570 (3.20 GHz) Intel Core i5-3570K
(3.40 GHz)

GPU NVIDIA GeForce GT 640 NVIDIA Tesla K40c

Bus PCI Express x16 Gen3

to the host. The number of blocks matches to two video
resolutionsDCI 4K and 8KFull Format. To place results
in the context of other computing platforms and eval-
uate the efficiency of performance optimization strate-
gies, processing times were compared with CPU, AVX2
and GPU implementation based on NVIDIA’s library
cuBLAS. The proposed and cuBLAS implementation
are made using CUDA Toolkit 10.1. The cuBLAS func-
tions don’t support integer data types larger than eight
bits so cuBLAS function for strided batched matrix
multiplication for a 32-bit floating-point was used to
carry out 1D transforms with scaling. Custom high-
performance rounding and rounding with quantization
kernels were designed, following principles for pro-
posed TQ kernel, to get HEVC compliant intermediate
and output values.

Since computational complexity differs for differ-
ent transform sizes, the three block distributions were
evaluated, frame split to only 4× 4 and 32× 32 TBs
respectively and simulated real-valued block distribu-
tionwith block shares for transform sizes 4× 4–32× 32
as 58%, 32%, 8% and 2% according to [22]. QP value
was set to 22 for all measurements.

The proposed parallel HEVC transform and quanti-
zation kernel with AZB identification was implemented
using the environments given in Table 3.

GPUs fromboth environments have the sameKepler
architecture but Tesla K40c exhibits higher perfor-
mance due to more SMs and faster memory as shown
in Table 4. For measurements obtained for benchmark-
ing and comparison with competing implementation
in this section, the Workstation GPU was used with
exception of the AVX2 implementation. The CPU in
theWorkstation GPU environment doesn’t support the
AVX2 instruction set. The AVX2 implementation was
therefore made on the Desktop GPU with the most
computational complex block distribution and DCI 4K
resolution.

Table 4. GPU comparison.

GPUmodel NVIDIA GeForce GT 640 NVIDIA Tesla K40c

SM count 2 15
Core count per SM 192 192
Core clock (MHz) 902 745
Memory bandwidth (GB/s) 28.51 288.4

The average frame processing times for different
HEVC TQ distributions and frame resolutions are pre-
sented in Tables 5 and 6.

The results show that the GHTQ implementation
outperforms others. Compared to the CPU implemen-
tation speed-ups range from 40 to 80 times depend-
ing on block distribution. The cuBLAS implementation
unexpectedly exhibits lower performance for the lower
complexity 4-point transform and quantization. This
is the reason why that implementation has a different
performance trend compared to the proposed imple-
mentation. Using the manufacturer’s profiling tool, the
NVIDIA Visual Profiler, it can be seen that kernel
functions which implement the 1D transform are char-
acterized by inefficient access to global and shared
memory respectively and low thread utilization. More-
over, kernel function with a limitation of a grid in
x-dimension, which was valid for earlier GPU versions,
was invoked. With many kernel function calls, the per-
formance is significantly degraded. For the 32-point
transform memory, accesses are not an issue but low
occupancy indicates low resource utilization. If block
distribution with real-valued distribution is observed,
the achieved speed-up compared to cuBLAS is about
5.8 times for the DCI 4K resolution and 6.7 times for
the 8K Full Format. For the block distribution 32× 32
for DCI 4K on the Desktop GPU environment, where
it is supported, AVX2 implementation is slower about 4
times.

Performance comparison is made with a paral-
lel implementation on a GPU from [14] for the
3840× 2160 frame resolution. Though that proposal
brings parallel, fully HEVC compliant, implementa-
tion of DQIT, the share of control logic for bypassing
TQ, handling CBF and transform skip in processing
time can be assessed as neglectable. Moreover, the pro-
posed implementation contains AZB identification as
an additional processing stage. As written before, the
computational complexity for TQ and its inverse is
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Table 5. Frame processing time for different implementations of the HEVC TQ with AZB identification on the Workstation GPU
environment.

Processing time [ms]

Resolution Block distribution CPU GHTQ overall GHTQ kernel cuBLAS overall cuBLAS kernel

DCI 4K 4× 4 246.26 6.03 0.79 113.84 101.75
real-valued 421.32 8.51 2.30 48.95 38.55
32× 32 708.11 8.88 3.66 21.48 8.96

8K Full Format 4× 4 9.79 23.94 2.96 447.65 407.12
real-valued 1693.29 29.12 8.49 193.71 153.12
32×32 2832.67 36.19 14.00 76.38 35.84

Table 6. Frame processing time for different implementations of the HEVC TQ with AZB identification on the Desktop GPU environ-
ment.

Processing time [ms]

Resolution Block distribution CPU AVX2 GHTQ overall GHTQ kernel cuBLAS overall cuBLAS kernel

DCI 4K 32× 32 818.7 109.48 27.53 22.95 37.62 28.80

Figure 4. Overlapping TQ kernel execution and data transfers by using two CUDA streams.

Table 7. Comparison with related implementation.

Implementation Block distribution Processing time [ms]

De Souza “DucksTakeOff” B
Frame, Random
Access

6.56

Proposed 32× 32 6.17
real-valued 5.38

the equivalent or lower. OpenCL implementation used
in the related work doesn’t obtain worse performance
than CUDA [23]. To be able to have a fair comparison,
kernel execution is overlapped with data transfers in
the proposed implementation by using CUDA streams.
The frame is broken up into two segments with the
execution flow shown in Figure 4.

Frame processing times for parallel implementations
are shown in Table 7. In the case of the proposed imple-
mentation, two block distributions are considered, real-
valued and 32× 32, as worst-case distribution related
to performance. Time comparison is made against the
best time for a given resolution in the competing pro-
posal. As can be observed, the proposed implementa-
tion achieved a speedup as high as 1.22 times.

The performance gain achieved through the over-
lapping generally depends on the ratio between the

data transfer duration and the duration of kernel execu-
tion. Closer this value is to one, the higher the speedup
is. Highest speedup for the worst-case distribution is
obtained with nine segments where the frame pro-
cessing time equals 4.82ms. Resulting processing time
exposes the capability of this implementation to be used
in real-time applications. For a frame rate of 50 fps, each
frame has to be processed in less than 20ms. Consider-
ing the decoding time distribution for DQIT functions
in all intra configuration [3], the remaining time would
be sufficient for other decoding stages to be done.

Conclusion

This paper presents the performance-engineered, trans-
parent HEVC TQ kernel to be executed on GPU accel-
erators. Proposedmethods combine efficient transform
block to thread-block mapping and vectorized access
patterns to shared memory. Using page-locked mem-
ory, residual data blocks were transferred to the device,
processed to transformed quantized coefficient blocks
and accompanied by the AZB identification array.
Result data are transferred back to the host. Experi-
ments were conducted using mid and high-end GPUs
to confirm performance optimizations. They showed
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increases in speed up to 80, 19 and 4 times com-
pared to the CPU, cuBLAS and AVX2 implementations
respectively. Comparison with the related highly paral-
lel implementation exhibits speedups up to 1.22 times.
The proposed GPU implementation can support the
real-time decoding process.
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