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ABSTRACT
To solve the problem of the slow convergence rate of the reaching law and the chattering prob-
lems in the dynamic response in the sliding mode control, an improved double-power sliding
mode reaching law is proposed. The reaching law is adjusted by changing the magnitude of the
power terms adaptively at different stages of the systemapproach process, and the convergence
speed of the dynamic response process is greatly improved. Its existence, accessibility and stabil-
ity are proven by theory. The simulation results show that the improved double-power reaching
law is faster than the double-power reaching law and the fast power reaching law. When there
is uncertainty in the system, the system state and its derivatives can rapidly converge to the
neighbor-hood of the equilibrium zeros. In the presence of time-varying perturbations of the
two-order system, the sliding mode control system based on the improved double-power slid-
ing mode reaching law has higher tracking precision of the given signal and differential signal
and effectively reduces the high-frequency chattering phenomenon of the control input signal.
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1. Introduction

Sliding mode control (SMC) is a systematic and effec-
tive robust control approach to maintain the system
stability and consistent performance in the presence
of modeling uncertainties and disturbances. SMC is
widely applied to various uncertain systems due to
its ideal robustness. The sliding mode control consists
of two processes: reaching motion and sliding mode
motion. In the approaching stage, the slidingmode con-
trol system is affected by parameter uncertainties and
external disturbances. Therefore, a research hotspot is
the method to speed up the convergence rate of the
approaching phase, ensure the tracking accuracy of
the given signal under disturbance and suppress the
chattering of the control variables in the process.

The reaching law can improve the dynamic perfor-
mance of the approaching motion. The fundamental
design procedure of the SMC is to properly design a
stable sliding surface, which satisfies the desired speci-
fications, and select a feedback control law such that the
sliding surface can be reached and retained in the sense
of Lyapunov despite the presence of modeling uncer-
tainties and disturbances. An extended state observer
(ESO)-based SMCmethod is designed to deal withmis-
matched disturbances in ref. [1]. A new switching type
reaching law for sliding mode control of discrete-time

systems is proposed in ref. [2], the proportional term is
modified, so that the rate is always bounded. In ref. [3],
a multi-power reaching law of sliding mode control is
proposed in this paper, which aims at reducing chat-
tering phenomenon, fastening convergence speed and
making dynamic process smoothly. In ref. [4], a novel
approach to the design of reaching law based on SMC
for multi-input multi-output (MIMO) non-linear sys-
tems so as to overcome the drawbacks associated with
conventional reaching law based SMCdesign strategies.
In ref. [5], a new reaching law for sliding mode control
is constructed by using a special power function and an
inverse hyperbolic sinusoidal function, and an adaptive
slidingmode control law is designed using this reaching
law. The asymptotic convergence property of the slid-
ing mode control system error is proven. Ref. [6] uses
an exponential function to design a nonlinear reaching
law. The exponential function can dynamically adapt
to the change of the controlled system, reduce the jit-
ter of the control input, and maintain the high track-
ing performance of the controller in the steady-state.
The sliding mode control method based on the fast
double-power reaching law is used to realize the asymp-
totic tracking of the position and velocity signals in ref.
[7], which overcomes the disadvantage of serious chat-
tering caused by the traditional sliding mode control
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reaching law. A generalized discrete-time reaching law
for sliding variables with arbitrary relative degree is
proposed in ref. [8], the reaching law is based on Gao’s
strategy and ensures higher-order switching type slid-
ing motion, which is a novel concept in the field of
discrete-time plants. To avoid the chattering problem
in the reaching-law-based discrete-time sliding mode
control (DSMC) and the generation of over-large con-
trol action in the equivalent-control-based DSMC, a
new DSMC method based on non-smooth control is
proposed in ref. [9]. In ref. [10], a slidingmode reaching
law is constructed, which can drive the state trajectory
to the specified sliding surface within a specified finite
time interval. By introducing the partitioning strategy,
the boundedness of finite time is guaranteed at the
arrival stage and sliding mode stage. The generalized
reaching law is proposed in ref. [11]. The proposed
reaching law in ref. [12] eliminates undesirable chatter-
ing, and ensures that the sliding variable rate of change
is upper bounded by a design parameter which does
not depend on the system initial conditions. Ref. [13]
presents a two-power reaching law with second-order
sliding mode characteristics and finite-time conver-
gence, which is verified by simulation in the attitude
control of a flying-wing UAV with complex distur-
bances. Ref. [14] presents an adaptive reaching law slid-
ing mode controller, which is verified by simulation in
a double-shaking-table system with parameter uncer-
tainties and disturbances. The SMC has been success-
fully applied in the permanent-magnet synchronous
motor [15] and steer-by-wire system in vehicles [16]. A
control structure to solve the tracking problem in a class
of uncertain mechanical systems is proposed in ref.
[17]. The numerical simulations and real-time exper-
iments carried out in a mass-spring-damper system
show the performance and effectiveness of the control
structure.

However, the isokinetic reaching law has the fol-
lowing problems: slow approach speed and single
approaching speed. The exponential reaching law has
a larger chattering phenomenon when approaching the
sliding mode. The power reaching law has a relatively
low approaching rate in the approaching state of the
state away from the sliding mode. To weaken the chat-
tering phenomenon of the input signals of the sliding
mode control and improve the sliding mode approach-
ing rate, a sliding mode control method with the
variable-parameter double-power reaching law is pro-
posed in this paper. First, the reachability, existence and
steady-state buffeting characteristics of the reaching law
are analysed. Then, the approaching rate of the reaching
law is compared and analysed. Finally, the slidingmode
control method with the variable-parameter double-
power reaching law is used to simulate a class of second-
order nonlinear systems with uncertain time-varying
disturbances.

2. Second-power convergence law of variable
parameters and its characteristic analysis

2.1. Design of the double-power convergence law
with variable parameters

For continuous-time systems, the double-power reach-
ing law with variable parameters is designed as follows.
When the state of the system is far away from the sliding
mode | s | > 1:

ṡ = −k1|s|α1sgn(s) − k2|s|α2sgn(s) (1)

When the system state is near the sliding mode
| s | < 1:

ṡ = −k1|s|β1sgn(s) − k2|s|β2sgn(s) (2)

Among them: α1 > 1,α2 > 1; 0 < β1 < 1,0 < β2
< 1; k1 > 0, k2 > 0. By adjusting the size of the power
coefficient under different conditions of the system, the
motion quality of the system state in the process of
approaching the sliding mode is guaranteed.

2.2. Proof of existence and accessibility

Lemma 1. For reaching law (1) and law (2), the system
state can reach the equilibrium point s(0,0) = 0 under its
action. According to the continuous system sliding mode
approach law exists and reachability conditions [18],
which satisfied sṡ ≤ 0, then the designed sliding mode
approach law exists, that is, the system states can reach
the equilibrium point under the action of the approach
law (1) and law (2). It is proven that the formula can be
obtained according to formula (1):

sṡ = −k1|s|α1 · s · sgn(s) − k2|s|α2 · s · sgn(s)

= −k1|s|α1+1 − k2|s|α2+1 ≤ 0 (3)

Based on formula (2), the relation can be obtained:

sṡ = −k1|s|β1 · s · sgn(s) − k2|s|β2 · s · sgn(s)

= −k1|s|β1+1 − k2|s|β2+1 ≤ 0 (4)

When and only when s(0,0) = 0, there is sṡ = 0.

2.3. Steady-state buffeting analysis

For the variable-parameter double-power approach
law(1) and law(2), because all the components of the
formula contain s, when s = 0+ and s = 0−, for-
mula(1) and formula(2) can be obtained by integration
ṡ(0+) = ṡ(0−) = 0 as ṡ = 0, i.e. the system will not
produce buffeting when it is near the steady-state.
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2.4. Velocity analysis of the slidingmode reaching
law

For law (1), state s and ds converge to the zero point
in finite time, i.e. after the finite convergence time, the
states are s = ṡ = 0.

According to the sliding mode reachability, combi-
nation law (1) and condition: α1 >1, α2 >1; k1 >0,
k2 > 0. Assuming that the initial state of the system
is s(0), the finite-time t calculation is performed in 2
stages.

(1) s(0) > 1 near s=1. At this point, because: α1 >1,
α2 >1; k1 >0, k2 >0. The rate is affected by for-
mula (1). Formula (1) is considered as:

ṡ = −k1|s|α1sgn(s) (5)

ṡ = −k2|s|α2sgn(s) (6)

The two equations are separately solved. In the case
of (5) and (6), the approximate time required is solved.
The specific process of solving formula (5) is as follows:

s−α1
ds
dt

= −k1 (7)

The two sides of formula(7) are integrals, the required
time for s(0) to approach s = 1 under formula(5) can
be obtained:

t1 = 1 − s(0)1−α1

k1(α1 − 1)
(8)

Similarly, we can find the required time under for-
mula (6):

t11 = 1 − s(0)1−α2

k2(α2 − 1)
(9)

(2) s(0) = 1 near s = 0. At this point, because 0 < β1
< 1, 0 < β2 < 1; k1 >0, k2 >0. the rate is affected
by formula (2). Formula (2) is considered as:

ṡ = −k1|s|β1sgn(s) (10)

ṡ = −k2|s|β2sgn(s) (11)

The required time for s(0) = 1 to approach s = 0 under
formula(10) can be obtained:

t2 = 1
k1(1 − β1)

(12)

The required time for s(0) = 1 to approach s = 0
under formula(11) can be obtained:

t21 = 1
k2(1 − β2)

(13)

When the initial states s(0)< −1, it is also possible
to calculate the time of convergence in the stages. The
system state convergence time can be obtained.

2.5. Analysis of the stable boundary of the
variable-parameter double-power reaching law

The lemma for uncertain systems is:

ṡ = −k1|s|α1sgn(s) − k2|s|α2sgn(s) + d(t) (14)

ṡ = −k1|s|β1sgn(s) − k2|s|β2sgn(s) + d(t) (15)

Suppose that |d(t) |� δ, δ >0 is a positive num-
ber. The state of system (14) converges to the following
regions in a limited time:

|s| ≤ min

((
δ

k1

)1/α1
,
(

δ

k2

)1/α2
)

(16)

|ṡ| ≤ min

(
δ, k1

(
δ

k2

)α1/α2
)

+ min

(
δ, k2

(
δ

k1

)α2/α1
)

+ δ (17)

The state of system (15) converges to the following
regions in a finite time:

|s| ≤ min

((
δ

k1

)1/β1
,
(

δ

k2

)1/β2
)

(18)

|ṡ| ≤ min

(
δ, k1

(
δ

k2

)β1/β2
)

+ min

(
δ, k2

(
δ

k1

)β2/β1
)

+ δ (19)

In the application of the actual control system, the
uncertainty can be estimated online by designing the
disturbance state observer to eliminate the effect and
guarantee the second-order sliding mode s = ṡ = 0.

2.6. The variable-parameter power term design
for double-power reaching law

The double-power reaching law with variable-
parameters power term function is redesigned as fol-
lows:

ṡ = −k1|s|s·arctan( π
2 ·s)sgn(s) − k2|s|s·arctan( π

2 ·s)sgn(s)
(20)

The power term in law (20) has the following charac-
teristics:

(1) Because the definition domain of arctangent
function is all real numbers, and it increases
monotonously in (-∞,+∞) interval. So the power
term arctan(π

2 · s) increasesmonotonously in (-∞,
+∞) interval.
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Figure 1. Comparison of the parameters of different power term function.

(2) When s>0, arctan(π
2 · s) > 0, and when s<0,

arctan(π
2 · s) < 0, so the power term s · arctan

(π
2 · s) is constant greater than or equal to 0.

(3) Because the power term arctan(π
2 ) → 1, andwhen

|s|>1, s · arctan(π
2 · s) > 1, when 0< |s|<1, s ·

arctan(π
2 · s) < 1, so the power function can adjust

the power parameters adaptively under different
conditions of the system.And the reaching law (20)
has fast reaching speed both far away from and
near sliding mode.

As s�=0, the power term function satisfies the con-
ditions of the power parameters in Section A. Under
different conditions of s, the parameters of the power
term function proposed in this paper and the power
term switching function are shown in Figure 1. When
the sliding mode state |s|>1, the switching function
parameters only have a fixed value greater than 1, and
the farther the sliding mode states s is away from the
equilibrium state, the bigger the power term parameter
values are, so the faster the sliding mode approaching
speed is.When the slidingmode 0< |s|<1, the switch-
ing function parameters are only fixed values less than
1 and more than 0, but the closer the sliding modes s
is to the equilibrium state, the smaller the power term
parameters are, so the variable-parameter sliding mode
approaching speed is faster. Therefore, in the whole
process of sliding mode approaching, the power term
function of the variable-parameter approaching law can
guarantee the adaptive adjustment of the power term
parameters, thereby improving the approaching speed
of sliding mode.

3. Simulation example and analysis

For the equation of state of the second-order system:

x = Aẋ + Bu (21)

where:

x =
[

x1
x2

]
,

A =
[

A11 A12
A21 A22

]
,

B =
[

B1
B2

]
,

Thus, there is: ẋ2 = A21x1 + A22x2 + B2 · u + d(t).
The sum of the internal and external disturbances
of the system are included in d(t). And d(t) has a
boundary: |d(t) |�D.

It is assumed that the set of inputs for the second-
order system is r(t) and ẋ1 = x2. The errors are:

e = r(t) − x1 (22)

The error rate is:

ė = ṙ(t) − x2 (23)

The sliding mode function is:

s = c · e + ė (24)

Then, we have:

ṡ = c · ė + ë = Qslaw (25)

By substituting the equation of states (20) into for-
mula (23), we find:

u = 1
B2

[c(ṙ−x2) + r̈−A21x1 − A22x2−d(t) − Qslaw]

(26)

3.1. Comparative simulation of the reaching laws

Nonlinear single-input single-output systems are con-
sidered:

ṡ = u + d(t) (27)

d(t) is the uncertainty of the system. Assuming that the
initial state of the system is d(t) = 0, and the initial
value of the system is s(0) = 5. The fast single-power
reaching law, double-power reaching law and variable-
parameter double-power reaching law, which is pro-
posed in this paper, are used to design the control law
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Figure 2. Comparison of the convergence speed of the sliding
modes in different reaching laws.

Figure 3. Comparison of the convergence rates of different
reaching laws.

u, and a comparative simulation is performed. Sliding
mode s and its first derivative convergence curve ds are
shown in Figures 2 and 3.

Fast sliding mode reaching law:

ṡ = −k1|s|α1sgn(s) − k2s (28)

Double-power sliding mode reaching law:

ṡ = −k1|s|α1sgn(s) − k2|s|α2sgn(s) (29)

As illustrated in Figures 2 and 3, the fast power
reaching law, double-power reaching law and variable-
parameter double-power reaching law eliminate chat-
tering in the steady state. The system states ṡ converge
to the steady-state bound error limit in 0.5×10−3s.
Figure 3 shows that when the system state is far away
from the sliding mode, the rate of the double power
approaching law proposed in this paper is higher than
other approaches. When the system state is close to the
sliding mode, the rate of the double power approaching
law is lower than other approaching laws. The rate of the
double power approaching law proposed in this paper
achieves a smooth transition with the sliding mode,
which is beneficial to weaken the system chattering. A
larger initial error that corresponds to the speed advan-
tage of the double-power reaching law with variable
parameters is more obvious. The system states s con-
verge to the steady-state bound error limit in a finite
time less than 0.5×10−3s and the variable-parameter
double-power reaching law is the fastest.

Figure 4. Convergence curves of ds and its steady-state error
bounds under perturbation.

Figure 5. Convergence curves of s and its steady-state error
bounds under perturbations.

3.2. Steady-state error bound simulation of the
variable-parameter double-power reaching law

When the perturbation is d(t) = 0.3sin(3t)+ 0.3cos
(2t), based on the variable-parameter double-power
reaching law (26), control law u is designed and sim-
ulated. The correctness of the test formula (16), (17),
(18) and (19) is verified. The initial value of the sys-
tem is s(0) = 5; in formula (1) and formula (2): order
α1 = 1.5, α2 =1.6; β1 = 0.75, β2 = 0.8;k1 = 1.5,
k2 =0.8. The parameters were substituted into (16) and
(18), andwe obtained: |s|1 ≤ 0.295, |s|2 ≤ 0.543. A sub-
stitution of formula (17) and formula (19) can obtain
|ṡ| ≤ 1.5.

The simulation results are shown in Figures 4 and 5.
As illustrated in Figures 4 and 5, in the case of distur-
bance, system state s and ṡ converge to the steady-state
bound error limit in a finite time. The steady-state error
does not exceed the result of formula formula(16), (17),
(18) and (19). Moreover, system state s converges to its
minimum steady-state error bounds in its entire sliding
mode.

3.3. Variable-parameter double-power reaching
law slidingmode control simulation

For equation of state (21):

A =
[
0 1
0 −30

]
,B =

[
0
120

]
,

C = [350 1].

The given instruction r is a sinusoidal signal. Sup-
pose the second-order system (21) is set to input a



350 Z. KANG ET AL.

Figure 6. Tracking curve of a given signal.

Figure 7. Tracking curve of a given differential signal.

signal: r(t) = 0.5 sin(2t), d(t) = 0.5sin(2π t). The ini-
tial state of the system is not consistent with the ini-
tial value of the input signal. The system uses the
variable-parameter double-power sliding mode con-
trol law(1) and law(2). Among them, take parameters
α1 =1.5,α2 =1.6;β1 =0.75,β2 =0.8;k1 =1.5,k2 =0.8.
A given signal tracking curve and a given differential
signal tracking curve of the system are shown in Figures
6 and 7, respectively. The control input signal is shown
in Figure 8. Figure 6 shows that the tracking accuracy of
the given signal is high. The steady-state tracking error
of the system is less than 0.01, when the initial state is
x0 = [5,5]. Figure 7 shows that the given differential sig-
nal has a higher tracking accuracy, and the steady-state
tracking error is less than 0.26. With the increase of C
in the slidingmode function (24), the tracking accuracy
will be improved. Figure 8 shows that when the initial
state is not 0, the amplitude of the input signal is rapidly
reduced at the initial stage. After 0.002s, the absolute
value is less than 2.5. Moreover, the sliding mode con-
trol reaching law(1) and law(2) effectively reduce the
chattering phenomenon of the input signals.

4. Conclusion

In this paper, we propose a double-power reaching
law, which can be pertinently adjusted by changing the
power term adaptively at different stages of the system
in the reaching process. Its existence, reachability and
stability are proven. The simulation results show that
the variable-parameter multi-power reaching law has
faster convergence speed than the double-power reach-
ing law and the fast power reaching law. In the case of

Figure 8. Curve of the control input signal.

uncertain time-varying perturbations, the system state
and its derivatives can converge rapidly to the neigh-
bourhood of the equilibrium zero. The sliding mode
control system based on variable-parameter double-
power sliding mode reaching law has higher tracking
accuracy for given signal and given differential signal.
It also effectively reduces the high-frequency buffeting
phenomenon of control input signal. In this publica-
tion, we show that numerical experiment has higher
tracking precision of given signal and given differen-
tial signal and effectively reduced the high-frequency
buffeting phenomenon of control input signal.

The new sliding mode control approaching law is
simple in structure, and the effect of suppressing the
chattering phenomenon of the sliding mode control
input signal is obvious.When the parameters satisfy the
certain relationship between the parameters in the pro-
posed double-power approach law, the system’s inter-
ference stability boundary will be reduced. The system
has better anti-interference ability, can be applied in
engineering practice, and the above content and appli-
cation effect in actual system need further research.
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