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ABSTRACT
Brain tumour segmentation evolved as the dominant task in brain image processing. Most
of the contemporary research proposals devise deep neural networks and sparse representa-
tion to address this issue. These methods inherently suffer from high computational cost and
additional memory requirements. Thus, optimization of the computational cost became a chal-
lenging task for the contemporary research. This paper discusses an optimizedU-Netmodelwith
post-processing for fast brain tumour segmentation. The proposed model includes two phases:
training and testing. Training phase computes weights for optimized U-Net and an adaptive
threshold value. In the testing phase, a trained U-Net model predicts a rough tumour segment.
Adaptive thresholdinggrabs the final tumourwith improved segmentation results.Wehave con-
sidered a brain tumour dataset of 3064 images with three types of brain tumours for evaluation.
Our proposedmodel exhibits superior results than the existingmodels in terms of recall and dice
similarity metrics. It exhibits competitive performance in accuracy and precision. Moreover, the
proposed model outperforms its competitive models in training time.
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Introduction

Brain cancer is the 10th leading type of cancer that
causes death and established as the deadliest hazards
in the world [1]. In olden days, a brain cancer diag-
nosis is a tedious task for the neurologists. Later, neu-
roscience is enriched with magnetic resonance (MR)
imaging. It simplifies the task of brain tumour diagnosis
with the visualization of brain structure. More aggres-
sive or high-grade tumours are incurable and decrease
life expectancy [2]. According to the American Can-
cer Society annual report, there is a rapid increase in
the number of brain cancer cases [1]. So, there is a
need for automated diagnosis systems to help neurol-
ogists. The main objectives of brain tumour diagnosis
automation systems are to reduce human intervention
and early-stage tumour detection. Some of the con-
temporary diagnosis applications include brain tumour
growth estimation [3], brain health tissue estimation
[4], brain tumour nuclei/cell detection [5] and brain
image classification [6].

Brain tumour segmentation is one of the essen-
tial operations for automated brain diagnosis system.
In general, brain segmentation techniques can be seg-
regated as region-based, threshold-based, clustering-
based and classification-based methods [7].

(1) Region-based methods select a seed point and then
grow or split the region based on the intensity

of regions. Thus, these methods depend on the
homogeneity of image intensity. Contour/shape-
based, level-set based and graph-based methods
are some of the region-based methods for tumour
region detection.

(2) Threshold-based methods segment objects by the
comparison of intensity values with one or more
thresholds. They can be segregated as fixed or
adaptive thresholding based on a threshold value.

(3) Clustering-basedmethods are pixel-based statistical
techniques. Various similarity measures are used
to cluster tumour pixels fromMR images. Hard or
Soft clustering techniques are the majority of this
category.

(4) Classification-based methods obtain a set of most
effective and discriminating features from MR
images. These features help in labelling tumour
regions with classification.

In general, threshold-based segmentation methods are
computationally effective than other methods. Figure
1 demonstrates the influence of threshold on tumour
segmentation. Consider the most common types of
brain tumours, namely, meningioma, glioma and pitu-
itary, as shown in Figure 1(a, e and i), respectively.
Then, the second column of Figure 1 depicts binary
images with threshold (th) > 0.2. Similarly, the third
and fourth column show binary images with th > 0.3
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Figure 1. Influence of threshold on different types of tumours.

and th > 0.4, respectively. It also evidences that a
common threshold can be expected within the thresh-
old range [0.3, 0.4] for these three images. However,
this threshold range changes as the number of images
increases.

The threshold value depends on the type of tumour,
orientation of slice, number of slices and modality of
tumour (T1, T2 and FLAIR). A simple threshold value
is not sufficient in all cases and there is a need for
adaptive threshold value. Although the threshold-based
methods are computationally efficient, they are unable
to achieve high segmentation accuracy.

Nowadays, classification-based methods especially
deep learning techniques are gaining popularity in the
applications of medical image analysis [8]. U-Net [9]
and its variants are the most dominant deep convo-
lutional neural network (DCNN) models for medical
image segmentation. DCNN refers to neural networks
with many layers that extract hierarchical features from
raw input images [8]. The major bottleneck of the deep
convolutional neural networks is computation time due
to a huge number of convolution layers. Thus, the
design of DCNN with an optimal number of layers is
a challenging task for researchers. Moreover, DCNN
produces a grey-scale segment image which needs a

thresholding operation to achieve a final binary tumour
segment.

Basic U-Net consists of two paths, namely, the con-
tracting path and the expansion path. Convolution
along with pooling is performed in the contracting
path. On the other hand, up-convolution is performed
in the expansion path to produce tumour segment.
Consider a brain tumour image and its ground truth
image, as shown in Figure 2(a, b), respectively. Result-
ing tumour segment obtained from basic U-Net can be
observed from Figure 2(c). This image represents prob-
abilities of the tumour pixels and hence it needs thresh-
olding to produce a binary tumour mask. In general,
binary thresholding with threshold th > 0.5 is used
to extract the tumour mask, as shown in Figure 2(d).
Shape of this tumour mask depends on the threshold
value which can be visualized from Figure 2(e, f). These
images reveal that the shape of predicted tumour varies
with varying threshold values. However, the shape of
the tumour segment obtained using th > 0.3 is more
accurate than other threshold values in this case. Thus,
there is a need of adaptive threshold after U-Net to
achieve the accurate shape of the tumour.

It motivated us to propose a new model with opti-
mized U-Net and adaptive thresholding. The proposed
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Figure 2. Influence of threshold on U-Net segmentation results.

model encompasses training and testing phases. The
training phase acquires weights for optimized U-Net
and an adaptive threshold value. These weights and
adaptive threshold value are used in the testing phase
to predict tumour segment.

Rest of the paper is organized as follows; Section 2
consists of a detailed analysis on the existing models.
Optimized U-Net architecture is discussed in Section
3. Section 4 consists of the working process of the pro-
posed model. The discussion of results is included in
Section 5. Finally, Section 6 concludes our findings.

Literature review

In this section, we have analysed various brain tumour
segmentation methods. Kermi et al. [10] presented
a new fully automated brain tumour segmentation
method. It performs segmentation as a three-step pro-
cess. Initially, image pre-processing is applied to remove
the noise. Then, symmetry analysis is performed to
locate the tumour de-formable model. Finally, region
growing and geodesic level set methods are used to
acquire the final tumour. Experiments are conducted
using 285 subjects of 3DMR imageswith different types
and shapes of tumours fromBraTS 2017 dataset and the
attained sensitivity scores of 81.59% and 89.01% for T2
and FLAIR, respectively.

Hao et al. [11] developed a voxel-wise residual net-
work with a set of training schemes. The 2D residual
learning is extended into a 3D variant for solving seg-
mentation tasks with a deeper network. Twenty-five
layers are used to train deep network with limited train-
ing data for brain segmentation. Results are evaluated
using BrainS 2013 dataset and achieved dice similarity
of 89.46%.

Wu et al. [12] proposed a radionics framework for
the differentiation of two clinical problems. It per-
forms feature extraction and selection using sparse
representation. Statistical characteristics of the tumour
regions are explored with dictionary learning and
sparse representation-based feature extraction. A new
coefficient of regularization term is introduced using a
multi-feature collaborative sparse representation clas-
sification framework. Results are evaluated using a pri-
vate dataset of 102 patients and achieved 98.51% accu-
racy.

Chen et al. [13] devised a light-weight dilated multi-
fibre network to attain real-time segmentation. Group
convolution is performed to explore multi-fibre units.
3D dilated convolutions are used to build a multi-scale
feature representation. Results are evaluated on BraTS
2018 challenge dataset and acquired 90.62% of dice
similarity.

Majority of these existing methods use a deep con-
volutional neural network and sparse representation.
Common demerit of these methods is high compu-
tational cost [14,15]. Moreover, deep neural networks
suffer from high memory to store training parame-
ters or weights. Thus, the objective of the proposed
model is to perform optimization of U-Net without los-
ing its performance. Our proposed method uses only
10 convolution layer to acquire optimal computational
cost. Moreover, the number of trainable parameters is
reduced as the input image is resized to (64, 64). Adap-
tive thresholding is performed as post-processing to
improve segmentation results. Existing methods used
BraTS dataset that consists of low-grade and high-
grade tumours. We considered three-tumour dataset
to exhibit the performance of multi-tumour segmenta-
tion.
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Figure 3. Block diagram of the optimized U-Net.

Proposed optimized U-Net architecture

U-Net model [9] is the most dominant deep convo-
lutional neural network to handle medical image seg-
mentation. Basic U-Net model consists of two separate
convolution paths, namely, the contracting path and the
expansive path. Two 3× 3 unpadded convolutions are
performed in the contracting path to produce the same
size of images as input images. Convolution layers are
followed by a rectified linear unit (ReLU) and max-
pooling of (2, 2) operationwith stride 2 is performed for
down-sampling. Two convolutions and max-pooling
are collected as a block. Totally four blocks are used in
the contraction path. Up-sampling of feature map fol-
lowed by a 2× 2 up-convolution is performed in each
step of the expansive path. This path expands size of the
image which is reverse to the contracting path. Con-
catenation with the correspondingly cropped feature
map from the contracting path will be performed. The
expansion path also uses four blocks of up-convolutions
to regain the original size of the image. The final layer
uses a 1x1 convolution to map each 64-component
feature vector to the desired number of classes.

Basic U-Net and its variants include more than 20
convolution layers along with pooling and dropout lay-
ers. Our proposed optimized U-Net (OU-Net) model
uses one convolution layer in each convolution block
instead of two convolution layers. We have used a batch
normalization layer instead of a second convolution
layer. Normalized results are passed through pooling
layers in the concatenation path. Dropout layers with a
dropout value of 0.05 are included to optimize trainable
parameters. Thus, the proposedOU-Netmodel consists
of ten convolution layers and can be visualized from
Figure 3.

Complete configuration of the proposed OU-Net
can be observed from Table 1. The number of filters
used in the proposed OU-Net for down-convolution
blocks C1, C2, C3, C4 and C5 are 16, 32, 64, 128 and
256, respectively. On the other hand, the number of fil-
ters used in up-convolution blocks T1, T2, T3 and T4
are 128, 64, 32, and 16 respectively. In our experiments,
we have trained basic U-Net and proposed OU-Net
with 100 epochs. Then, the training and validation loss

Table 1. Configuration of the optimized U-Net.

Block Layer (type) Output Shape Parameter #

InputLayer (64, 64, 1) 0
C1 Conv2d (64, 64, 16) 160

Batch-Normalization (64, 64, 16) 64
Relu (64, 64, 16)
Max-Pooling2d+ Dropout (32, 32, 16)

C2 Conv2d (32, 32, 32) 4640
Batch-Normalization (32, 32, 32) 128
Relu (64, 64, 16)
Max-Pooling2d+ Dropout (16, 16, 32)

C3 Conv2d (16, 16, 64) 18496
Batch-Normalization (16, 16, 64) 256
Relu (64, 64, 16)
Max-Pooling2d+ Dropout (8, 8, 64)

C4 Conv2d (8, 8, 128) 73856
Batch-Normalization (8, 8, 128) 512
Relu (64, 64, 16)
Max-Pooling2d+ Dropout (4, 4, 128)

C5 Conv2d (4, 4, 256) 295168
Batch-Normalization (4, 4, 256) 1024
Relu (64, 64, 16)

T1 Conv2d-Transpose (8, 8, 128) 295040
Concatenate+ Dropout (8, 8, 256)
Conv2d (8, 8, 128) 295040
Batch-Normalization (8, 8, 128) 512
Relu (64, 64, 16)

T2 Conv2d-Transpose (16, 16, 64) 73792
Concatenate+ Dropout (16, 16, 128)
Conv2d (16, 16, 64) 73792
Batch-Normalization (16, 16, 64) 256
Relu (64, 64, 16)

T3 Conv2d-Transpose (32, 32, 32) 18464
Concatenate+ Dropout (32, 32, 64)
Conv2d (32, 32, 32) 18464
Batch-Normalization (32, 32, 32) 128
Relu (64, 64, 16)

T4 Conv2d-Transpose (64, 64, 16) 4624
Concatenate+ Dropout (64, 64, 32)
Conv2d (64, 64, 16) 4624
Batch-Normalization (64, 64, 16) 64
Relu (64, 64, 16)
Conv2d (64, 64, 1) 17

of each model is compared, as shown in Figure 4(a, b),
respectively. These plots reveal that the error became
consistent after 10 epochs in both themodels. However,
basic U-Net and proposed OU-Net models generate an
approximate error of 0.04 and 0.7, respectively, after 10
epochs.

In the proposedOU-Net, feature vector probabilities
of tumour pixels are decreased due to lesser convolution
layerswhen compared to basicU-Net and can be visual-
ized from Figure 5. Consider a sample brain MR image
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Figure 4. Training and validation loss.

and its ground truth image, as shown in Figure 5(a, b),
respectively. After training, basic U-Net has predicted
tumour region more accurately, as shown in Figure
5(c). However, the proposed OU-Net fails to retain the
complete shape of the tumour which can be observed
from Figure 5(d). This figure shows that a few tumour
pixels at the bottom right corner are not included in
tumour prediction. This is due to the removal of fewer
relevant tumour pixels in binary segmentation (using
threshold th > 0.5). Thus, the proposed OU-Net suf-
fers from high validation error when compared to basic
U-Net. It motivated us to use adaptive thresholding
as post-processing operation for the improvement of
segmentation results. Adaptive threshold value is the
mean threshold value of dataset which helps to include
relevant tumour pixels in segmentation.

Proposed optimized U-Net and adaptive
thresholding

The proposed Optimized U-Net and Adaptive Thresh-
olding (OUAT)model uses adaptive thresholding along
with optimized U-Net. The proposed OUAT model
consists of two phases, namely, training and testing. The
training phase acquiresweights of optimizedU-Net and
an adaptive threshold (ath) value. Tumour segment is
predicted using trainedOU-Net and adaptive threshold

Figure 5. Comparison of the U-Net and OU-Net tumour predic-
tion.

in the testing phase. A complete block diagram of the
proposed model is depicted in Figure 6. Details of each
step are as follows.

Training phase

Training phase designates two independent tasks: train-
ing of optimized U-Net model and computation of
adaptive threshold value. Compilation process gener-
ates an untrained model with random weights. Our
model has compiled using adam optimizer and jac-
card loss function. Training of OU-Net needs to be
performed using train data after the compilation pro-
cess. Training process reads each image of train data
and updates model weights to produce trained OU-
Net. In addition to the OU-Net, the proposed model
uses an adaptive threshold selection algorithm to com-
pute an adaptive threshold value. Let DI is a set of N
train images and GI is a set of N ground truth tumour
images. If the size of each image is (X, Y), then the pro-
posed adaptive threshold selection algorithm is given
by Algorithm 1.

Here, isthi represents mean threshold of ith image.
Similarly, ath denotes the mean threshold of the train
dataset. This threshold value helps in the rejection of
non-tumour pixels and inclusion of tumour pixels from
the convoluted image obtained from the optimized U-
Net model.

Testing phase

Initially, trained OU-Net is used to predict tumour
segment. It incurs less segmentation accuracy due to
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fewer numbers of layers. Then, adaptive thresholding is
performed as a post-processing operation. This oper-
ation gives final segmentation results by suppressing
non-tumour region and inclusion of tumour region. If
TE(x,y) is the output of trained OU-Net, then final pre-
dicted tumour image PI(x,y) can be computed using the
following equation:

PI(x, y) =
{
1 if TE(x, y) ≥ ath
0 otherwise

(1)

Results and discussion

Basic U-Net [9] and variants of residual network
(Resnet) [16] like Resnet18, Resnet34 are the most
promising medical segmentation models. So, we used
these models in the performance analysis. Cheng et al.

[17] has provided brain tumor dataset (BTDS) having
3064 T1-weighted MR images and is publicly avail-
able [18]. BTDS is enriched with magnetic resonance
images of 233 patients with three types of tumours:
meningioma, glioma and pituitary. Thus, we used this
dataset for the evaluation of models. The proposed
optimized U-Net and adaptive thresholding (OUAT)
along with its competitive models have been simulated
using Python. However, Resnet code has been adapted
from Keras segmentation models. Experiments have
been conducted on Intel Xeon-based systemwith 13GB
RAM. In our experiments, we use 50% of dataset as
train data and 50% of dataset as test data.

Performance analysis

We have considered four most significant metrics,
namely, accuracy, precision, recall and dice similarity.
The first three metrics concentrate on pixel classifica-
tion rate. On the other hand, dice similarity focuses on
the amount of overlap between predicted images and
ground truth images. In general, binary images of pre-
dicted and ground truth images are considered for the
comparison of brain tumour segmentation. There are
four possible labels for each pixel while comparing the
predicted image with ground truth image as follows.

(1) True Positive (TP): if the ground truth image and
predicted images have pixel value as 1.

(2) False Negative (FN): if the ground truth image has
pixel value as 1 and corresponding pixel value in a
predicted image is 0.

Figure 6. Block diagram of the proposed OUAT.



358 B. V. ISUNURI AND J. KAKARLA

Figure 7. Comparison of performance metrics.

(3) False Positive (FP): if the ground truth image has
pixel value as 0 and corresponding pixel value in a
predicted image is 1.

(4) True Negative (TN): if the ground truth image and
predicted images have pixel value as 0.

Accuracy is the sum of true-positive and true-
negative pixels divided by the total number of pixels.
It can be computed using Equation (2). Precision is a
fraction of relevant pixels among the retrieved pixels of
segmentation results. Recallmeasures the proportion of
positive voxels that are correctly segmented. Precision
and recall can be computed using Equations (3) and (4),
respectively.

Accuracy = TP + TN
TP + TN + FP + FN

(2)

Precision = TP
TP + FP

(3)

Recall = TP
TP + FN

(4)

Dice similarity mainly focuses on the amount of
overlap between the predicted segment image and
ground truth image. It is an important metric to com-
pare overall segmentation scores and Equation (5) is
used to compute dice similarity.

Dice similarity = 2 ∗ TP
2 ∗ TP + FP + FN

(5)

In our experiments, we have trained themodels with
5, 10, 20 and 50 epochs. Comparison of accuracy, pre-
cision, recall and dice similarity values is depicted in
Figure 7(a–d), respectively. Figure 7(a) shows that the
proposed model and its competitive models achieve an
accuracy of 98% with 10 and more epochs.

Resnet34 outperforms our proposed model in preci-
sion and can be observed from Figure 7(b). The pro-
posed model uses an adaptive threshold value which
includes non-tumour pixels that mimic as tumour pix-
els. It causes a decrease in precision of the proposed
model. However, the proposed OUAT model outper-
forms competitive models in recall which can be visu-
alized from Figure 7(c). Our proposed model takes
advantage of adaptive thresholding to retain maximum
tumour pixels to achieve recall. Figure 7(c) depicts
comparison of dice similarity. Our proposed model
exhibits superior performance to its competitive mod-
els in dice similarity. Table 2 depicts visual comparison
of brain tumour segmentation results of three brainMR
images of meningioma, glioma and pituitary. The first
column and second columns show original and ground
truth images of brain MR images, respectively. Rest of
the column visualizes segmentation results of U-Net,
Resnet18, Resnet34 and the proposed OUAT, respec-
tively. It can be observed that our proposed model
predicts the location of tumour accurately like other
models.
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Table 2. Comparison of segmentation results.

Table 3. Tumour-wise dice similarity.

Model Meningioma Glioma Pituitary

U-Net 0.7989 0.6086 0.7502
Resnet18 0.7982 0.6291 0.7973
Resnet34 0.7649 0.6219 0.7416
OUAT 0.8243 0.6077 0.7847

Table 4. Comparison of mean performance.

Model Accuracy Precision Recall Dice Similarity

U-Net 0.9903 0.6468 0.6637 0.6145
Resnet18 0.9908 0.7024 0.5928 0.6028
Resnet34 0.9910 0.7026 0.5788 0.5957
OUAT 0.9907 0.6378 0.6883 0.6239

Table 5. Comparison of time complexity.

Model No. of conv. layers Approx. time complexity

U-Net 19 19 ∗ O(m2 ∗ a2)
Resnet18 18 18 ∗ O(m2 ∗ a2)
Resnet34 34 34 ∗ O(m2 ∗ a2)
OU-Net 10 10 ∗ O(m2 ∗ a2)

The proposed model acquires accurate tumour
shape and size when compared to other models in the
case of meningioma and pituitary tumours. None of
the models performs well in glioma tumour due to
its diverse characteristics. However, Resnet34 performs
well in the case of glioma tumour and listed in Table 3.

To compare overall performance, we have computed
mean of the key metrics including accuracy, precision,
recall and dice similarity. Eachmodel has been executed
ten times with 20 epochs and computed the mean of
metrics. Table 4 lists themean values of accuracy, preci-
sion, recall and dice similarity. Resnet34 performs well
in both accuracy and precision. However, our proposed
model outperforms the existing models in recall and
dice similarity.

Table 6. Comparison of training time.

Training time (sec.)

Method CPU GPU

U-Net 467 33
Resnet18 1163 76
Resnet34 1799 120
OUAT 288 30

Computational complexity

Convolution layers play a major role in contributing
to the computational cost of convolutional neural net-
works. The cost of a convolution layer depends on a
number of multiplication operations. Single convolu-
tion operation cost is TS = O(a2) when the kernel size
is (a, a). The total computation cost of a convolution
layer depends on the size of a convoluted image and cost
of a single convolution (TS). Thus, the total cost of a sin-
gle convolution layer is TC = O(m2 ∗ a2), if the size of
the convoluted image is (m, m).

Table 5 compares the number of layers and aver-
age time complexity of the proposed model and its
competitive models. It proves that the proposed OU-
Net outperforms the existing models with fewer num-
bers of convolution layers. Similarly, Table 6 lists the
comparison of training time on CPU and GPU sys-
tems. Our proposed model takes 179 sec., 875 sec. and
1511 sec. lesser training time thanU-Net, Resnet18 and
Resnet34, respectively on CPU. Similarly on GPU, it
takes 3 sec., 46 sec. and 90 sec. lesser training time than
U-Net, Resnet18 and Resnet34, respectively.

Conclusions

A deep neural network is a contemporary tool to
address brain tumour segmentation. It is recommended
to optimize the number of layers to reduce computa-
tional cost. However, the decrease of layers incurs a loss
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of accuracy. This work presented an optimized U-Net
model with adaptive thresholding as a post-processing
operation. Adaptive threshold represents the mean
threshold of train dataset which retains tumour pix-
els. The proposed model starts with a training phase
to achieve weights for optimized U-Net model and an
adaptive threshold value from the train dataset. In the
testing phase, the given test image is convoluted with
optimizedU-Netmodel and then final tumour segment
is produced with adaptive thresholding.

A brain tumour dataset of 3064 images having three
types of tumours is used for the evaluation of results.
To exhibit the performance of the proposed model, we
adopted four keymetrics including accuracy, precision,
recall and dice similarity. Our proposed model exhibits
superior results than its competitive models in recall
and dice similarity. The proposed model shows com-
petitive performance with Resnet34 in precision and
accuracy. Moreover, our model outperforms the exist-
ing models in terms of training time. Our future work
focuses on improving precision for more accurate brain
tumour segmentation.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

ORCID

Bala Venkateswarlu Isunuri http://orcid.org/0000-0002-
7671-8831

References

[1] Facts & figures 2019: US cancer death rate has dropped
27% in 25 Years. [cited 2019 Jun 17]. Available from:
www.cancer.org/latest-news/facts-and-figures-2019.
html.

[2] Dora L, Agrawal S, Panda R, et al. State-of-the-artmeth-
ods for brain tissue segmentation: a review. IEEE Rev
Biomed Eng. 2017;10:235–249.

[3] Sallemi L, Njeh I, Lehericy S. Towards a com-
puter aided prognosis for brain glioblastomas tumor
growth estimation. IEEE Trans Nanobiosci. 2015;14(7):
727–733.

[4] Demirhan A, Toru M, Guler I. Segmentation of tumor
and edema along with healthy tissues of brain using
wavelets and neural net-works. IEEE J Biomed Health
Inform. 2015;19(4):1451–1458.

[5] Su H, Xing F, Yang L. Robust cell detection of
histopathological brain tumor images using sparse
reconstruction and adaptive dictionary selection. IEEE
Trans Med Imag. 2016;35(6):1575–1586.

[6] Havaei M, Davy A, Warde-Farley D, et al. Brain tumor
segmentation with deep neural networks. Med Image
Anal. 2017;35:18–31.

[7] Mesejo P, Valsecchi A, Marrakchi-Kacem L, et al.
Biomedical image segmentation using geometric defor
mable models and metaheuristics. Comput Med Imag
Graph. 2015;43:167–178.

[8] Akkus Z, Galimzianova A,Hoogi A, et al. Deep learning
for brain MRI segmentation: state of the art and future
directions. J Digit Imag. 2017;30:449–459.

[9] Ronneberger O, Fischer P, Brox T. U-Net: convolu-
tional networks for biomedical image segmentation.
Lect Notes Comput Sci. 2015;9351:234–241.

[10] Kermi A, Andjouh K, Zidane F. Fully automated brain
tumour segmentation system in 3d-mri using symme-
try analysis of brain and level sets. IET Image Proc.
2018;12(11):1964–1971.

[11] Chen H, Dou Q, Yu L, et al. Voxresnet: deep voxelwise
residual networks for brain segmentation from 3d MR
images. NeuroImage. 2018;170:446–455.

[12] Wu G, Chen Y, Wang Y, et al. Sparse representation-
based radiomics for the diagnosis of brain tumors. IEEE
Trans Med Imag. 2018;37(4):893–905.

[13] Chen C, Liu X, DingM, et al. 3D dilatedmulti-fiber net-
work for real-time brain tumor segmentation in MRI.
Lect Notes Comput Sci. 2019;11766:184–192.

[14] He K, Sun J. Convolutional neural networks at con-
strained time cost. Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, p.
5353–5360.

[15] Yuster R, Zwick U. Fast sparse matrix multiplication.
ACM Trans Algorithms. 2005;1(1):41306.

[16] He K, Zhang X, Ren S. Deep residual learning for
image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016, p.
770–778.

[17] Cheng J, Yang W, Huang M, et al. Retrieval of brain
tumors by adaptive spatial pooling and fisher vector
representation. PLoS One. 2016;11(6):e0157112.

[18] Brain tumor dataset. [cited 2019 Jun 17]. Available from:
https://figshare.com/articles/brain_tumor_dataset/
1512427.

http://orcid.org/0000-0002-7671-8831
http://orcid.org/0000-0002-7671-8831
http://www.cancer.org/latest-news/facts-and-figures-2019.html
https://figshare.com/articles/brain_tumor_dataset/1512427

	Introduction
	Literature review
	Proposed optimized U-Net architecture
	Proposed optimized U-Net and adaptive thresholding
	Training phase
	Testing phase

	Results and discussion
	Performance analysis
	Computational complexity

	Conclusions
	Disclosure statement
	ORCID
	References

