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ABSTRACT
The precise anti-synchronization control of uncertain chaotic systems has always remained an
interesting problem. The anti-synchronization control of multiple different orders uncertain
chaotic systems increases the complexity and enhances the security of the information signal in
secure communications. Hence, it confines the hacking in digital communication systems. This
paper proposes a novel adaptive control technique and studies the double combination anti-
synchronization of multiple different orders uncertain chaotic systems. The proposed adaptive
feedback control technique consists of three fundamental nonlinear components. Each com-
ponent accomplishes a different objective; (i) stability of the closed-loop, (ii) smooth and fast
convergence behaviour of the anti-synchronization error, and (iii) disturbance rejection. The
theoretical analysis in (i) to (iii) uses the Lyapunov stability theory. This paper also provides
parameters adaptation laws that stabilize theuncertainparameters to someconstants. Thepaper
discusses the simulation results of two representative examples of four different orders uncer-
tain chaotic systems. These examples demonstrate anti-synchronization among hyperchaotic
Lü, uncertain chaotic Shimizu Morioka, uncertain second-order nonlinear duffing, and uncertain
parametrically excited second-order nonlinear pendulum systems. The computer-based simula-
tion results certify the efficiency and performance of the proposed anti-synchronization control
approach and compare them with peer works.
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1. Introduction

Abbreviations. The following abbreviations will be
used in this paper (Table 1).

In chaos theory, the synchronization phenomenon
refers to a strong relationship between coupled chaotic
systems. Synchronization behaviour is realized when
the difference of output of state variables of the coupled
chaotic systems in the master-slave (drive-response)
system arrangement tends to zero after a transient time,
that is, lim

t→∞ e(t) = lim
t→∞ y(t)− x(t) = 0, where x(t)

and y(t) are the state vectors of themaster and slave sys-
tems, respectively [1]. The synchronization of chaotic
systems has been actively investigated in various areas
of applied sciences. These include information process
[2], reactions-diffusion systems [3], DC/AC inverter
[4], neural networks [5], mechanical systems [6],
secure communications [7], and power systems [8],
etc. After the seminal work of [1], different types of
synchronization have been reported in the relevant
literature, including complete synchronization, gener-
alized synchronization, phase synchronization, anti-
phase-synchronization (or anti-synchronization (AS)),
fuzzy synchronization and lag synchronization [7–10],
among others. Chaos AS constitutes an important type

of synchronization, which is a classical feature of non-
linear dynamical systems collaborating through repul-
sive coupling [9]. By definition, AS is a process wherein
the sum of the output of state variables vanishes and
advances as symmetrical oscillators in a transient time,
i.e. lim

t→∞ e(t) = lim
t→∞ y(t)+ x(t) = 0. This notion of

chaos AS phenomenon was first presented in [10]. In
recent decades, AS of chaotic systems has received
increasing interest and has been observed both the-
oretically and experimentally. Chaotic AS has shown
important applications, especially in improving the per-
formance of semiconductor chaotic lasers [11], secure
encryptions [12], electronic circuits [13], and dynam-
ical networks [14], and so forth. As compared to the
chaos synchronization, the AS scheme for encryption
and decryption of data in secrete communication sys-
tems is more reliable, secure, and provides the faster
transformation of the digital message signal [12]. It has
been investigated that the AS is more significant than
synchronization in chaotic laser oscillators with nega-
tive couplings [11]. The repulsive interactions between
the nodes have been realized in various natural net-
works [9]. The human brain is an example of a com-
plex network having both in-phase (synchronization)
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Table 1. Abbreviations.

Words Abbreviation

anti-synchronization AS
combination anti-synchronization CAS
uncertain chaotic UC
anti-synchronization control ASC
Lyapunov stability theory LST
adaptive sliding mode control ASMC
compound combination anti-synchronization CCAS
feedback linearization FL
state-dependent SD
time-dependent TD
robust adaptive anti-synchronization control RAASC
double combination anti-synchronization DCAS
Shimizu Morioka SM
second-order nonlinear duffing SOND
parametrically excited second-order nonlinear

pendulum
PESNP

master-slave system MSS
Tangent hyperbolic and Secant hyperbolic tan h and sec h

and anti-phase (anti-synchronization) oscillations [12].
Similarly, ecological webs have both positive and neg-
ative connections between their components [11]. A
recent study of the chaos AS suggests that it could be
utilized as a method to study the properties of a chaotic
satellite system evolving in a circular orbit [15].

1.1. Literature review

Fundamentally, research in the chaos theory reports
two types of AS schemes; full order anti-
synchronization (FOAS) and reduced-order/increasing
order anti-synchronization (ROAS/IOAS) in the
master-slave system arrangement. FOAS is the realiza-
tion of the AS among the similar orders chaotic sys-
tems. The ROAS/IOAS discusses the AS among the
different orders chaotic systems. ROAS methodologies
anti-synchronize a higher-order master system with a
lower order slave system by comparing the states of the
slave system with partial states of the master system.
The main advantage of the ROAS is the reduced-order
model in which all states of the slave system share
information with some partial states of the response
system. This attribute strengthens the security of the
data in the transmission channel, eases extra commu-
nication loads, and simplifies the additional stability
analysis.

Several effective control techniques have been devel-
oped to address the FOAS and ROAS. These feedback
control techniques have been utilized to accomplish
either the AS between two coupled hyper(chaotic) sys-
tems (one-to-one system mode) or AS among multiple
hyper(chaotic) system (one-to-many or many-to-one
or many-to-many system configuration). The configu-
ration in the latter case is termed as the CAS. In the
one-to-one system model, the AS is studied between
two coupled hyper(chaotic) systems, whereas in the
CAS, the master and slave systems arrangement con-
sists of more than two systems. In this line, researchers
have proposed different control strategies to address

the FOAS and ROAS. [16] investigates the AS of two
identical hyperchaotic systems with known and uncer-
tain parameters. Using the adaptive and active control
strategies, the scheme in [17] realizes the AS between
twonon-identical chaotic systems. [18] proposes a non-
linear control technique to discuss the AS of two differ-
ent hyperchaotic systems. Using the aggregation tech-
nique, [19] investigates the AS of two non-identical
chaotic systems. The AS of different orders uncer-
tain chaotic systems with parameters identification is
an enhancement of the ASC strategy. To tackle the
effect of uncertainties, the scheme [20] synthesizes a
robust adaptive control approach to investigate the AS
of two non-identical hyperchaotic systems. Based on
the LST, [21] designs an ASMC technique that estab-
lishes the AS of uncertain chaotic systems. The pro-
posed scheme in [22] investigates the adaptive lag pro-
jective AS of UC systems with bounded nonlinear-
ity. [23] accomplishes the ASC of two dynamical net-
works with both equivalent and different topological
structures. Using the adaptive feedback control strat-
egy, [24] studies the dynamics, control, synchroniza-
tion, and AS of a novel hyperchaotic systemwith circuit
realization. The paper [25] investigates the chaos syn-
chronization and AS of two identical fractional-order
chaotic systems using the active control technique. [26]
studies the synchronization and AS of two indistin-
guishable chaotic complex nonlinear frameworks. The
works in [18–27] investigate the one-to-one system AS.
The results in [28] are an improvement of the one-
to-one system AS scheme to the CCAS of five chaotic
systems with known parameters. The multi-switching
CCAS of eight chaotic systems is another develop-
ment of the CCAS [29]. Similar work can be seen in
the AS scheme proposed in [30]. Most recently, [31]
has proposed an AS scheme to study the compound
difference AS of integer and fractional orders chaotic
systems.

1.2. Motivations

In the past couple of decades, researchers have
developed state-of-the-art ASC methodologies, how-
ever, technological advances emphasized the need
for more secure communication systems. This need
has initiated the requirement of complex ASC tech-
niques. The design of such complex ASC methodolo-
gies is required to resolve the following challenging
issues.

Items M(i)− M(v) present the motivations for this
work.

M(i) The reported ASC approaches [15–31]
(among others) confine to the specific assumption
that the required error information between the
coupled hyper(chaotic) systems is known. These
ASC techniques use the FL concept to develop
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feedback controllers for the AS. The FL approaches
assume that nonlinear relationships of the AS
errors between the coupled chaotic systems are
known, and the controllers cancel these nonlinear
terms of the system and form a closed-loop, which
exhibits linear dynamic behaviour. This assump-
tion compromises the complexity of ASC in prac-
tical applications
M(ii) A key factor that affects the AS performance
is the existence of uncertainties in chaotic systems.
For instance, aging of apparatus, sudden variations
in the system’s dynamics due to faults and changes
in the operating conditions, etc. The effect of these
disturbances may shatter the ASC stability. The
ASC approaches [15–31] either do not consider the
effects of unknown SD and TD disturbances in the
closed-loop or bounds of these disturbances are
known in prior, which is hard to be determined in
practice
M(iii) The ASC scheme [20] (among others), use
the signum 10650 function to tackle the effects of
unknown SD and TD disturbances and to achieve
the fast AS behaviour. The robust ASC approach
[20] synthesis a large control effort that results
in smaller tracking error and shorter transient
response time. The switching behaviour of the sgn
function leads to create unwanted large oscillations
in the error and control input signals. However,
this attribute causes drive system malfunctioning
and actuator failure gives rise to aliasing prob-
lems and causes further degradation in the AS
behaviour
M(iv) The multi-systems ASC approaches [28–31]
consider known systems. The AS of UC sys-
tems offers theoretical complications in design-
ing the feedback controllers. Such ASC schemes
[28–31] produce large oscillations in the closed-
loop, which further become prominent in uncer-
tain systems [32]
M(v) The rates of convergence in the AS schemes
[15–31] are slow, which affects the performance
of such ASC methods in practical applications, for
example, cellular radio systems, multi-agent sys-
tems, and wireless networks, etc

In light of the above discussion, it is impor-
tant to investigate the double combination anti-
synchronization (DCAS) of multiple different orders
UC systems that increase the complexity and improves
the security of the digital message signal in secure com-
munication systems. It is also essential to design anASC
strategy that should (i) be able to converge the AS error
signals to the origin in a shorter time, (ii) be robust
against unknown SD and TD disturbances, and (iii)
suppress the undesirable oscillations in the AS error
and control input signals.

1.3. Contributions

This paper introduces a new RAASC technique and
studies the DCAS of UC systems. The chaotic sys-
tems under consideration have different orders, struc-
tures, and uncertain parameters. The bounds of the
SD and TD disturbances are unknown. This AS struc-
ture significantly increases the complexity of the infor-
mation signals in secure communication systems. The
paper establishes the analytical expression of the pro-
posedASC scheme and adaptive laws for the adaptation
of uncertain parameters. This work uses LST [32] to
prove the asymptotic robust stability of the closed-loop.
Computer-based simulations of two numerical exam-
ples are illustrated to evaluate the performance of AS
among the uncertain hyperchaotic Lü [33], uncertain
chaotic SM [34], uncertain SOND [35], and uncertain
PESNP [36] systems. The simulation results endorse
the theoretical findings. Comparative simulation stud-
ies provide evidence of better AS performance of the
proposed RAASC technique.

Items C(i)-C(iv) describe the main contributions of
this paper.

C(i) Studies a new AS scheme, which is composed
of different order multiple uncertain chaotic sys-
tems. The proposed DCAS is realized in consid-
ering two different uncertain chaotic systems as
the master system (transmitter) and two differ-
ent uncertain chaotic systems as the slave system
(receiver) in the presence of unknown SD and TD
disturbances. The two master systems have differ-
ent orders, whereas the slave systems have similar
orders. The parameters of the master and slave
systems are different and uncertain. These sys-
tems exhibit different chaotic behaviour and topo-
logical properties. Similarly, the traces changes of
all systems are different. The dynamic behaviour
of the proposed mixed AS scheme is more com-
plex and unpredictable, whichwill further enhance
the security of the information signal in digital
communication systems. Therefore, using the pro-
posed AS methodology, it would be difficult for an
intruder to hack the information signal during the
communication process
C(ii) Design of a novel RAASC technique. The
proposed control algorithm
• Increases the speed of AS and convergence rates
• Reduces the transient oscillations in the AS

error vectors and suppresses chattering in the
control input signals

C(iii) The computer-based simulation results are
performed to validate the theoretical findings
C(iv) This article also compares the performance
of the proposed RAASC algorithm with different
types of feedback controller approaches reported
in [21,24,28] regarding the AS transient speed,
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Table 2. Notations and symbols.

T Transpose of a matrix (or vector)
Rn The n−dimensional Euclidean space
i ∈ Z+ A positive integer for subscript
m, n, p, r ∈ Z+ Used as superscripts
M1 andM2 The first and second master UC systems
S1 and S2 The first and second slave UC systems
n, m, p n represents the order of M1, m denotes the order of M2 and p

represents the order of S1 and S2, respectively where n > m > p
x(t) = (x1(t), x2(t), . . . , xn(t))T ⊆ Ω1 ∈ Rn×1 The state vector ofM1
y(t) = (y1(t), y2(t), . . . , ym(t))T ⊆ Ω2 ∈ Rm×1 The state vector ofM2
z(t) = (z1(t), z2(t), . . . , zp(t))T ⊆ Ω3 ∈ Rp×1 The state vector of S1
w(t) = (w1(t), w2(t), . . . , wp(t))T ⊆ Ω4 ∈ Rp×1 The state vectors of S2
θ ∈ Rn×n Uncertain parameter vector ofM1
θi An ith row of the matrix θ ∈ Rn×n

ψ ∈ Rm×m Uncertain parameter vector ofM2
ψi An ith row of the matrixψ ∈ Rm×m

φ ∈ Rp×p Uncertain parameter vector of S1
φi An ith row of the matrix φ ∈ Rp×p

η ∈ Rp×p Uncertain parameter vector of S2
ηi An ith row of the matrix η ∈ Rp×p

F ∈ Rn×1,G ∈ Rm×1, H ∈ Rp×1 and J ∈ Rp×1 Continuous nonlinear vector functions in M1, M2, S1, and S2 (1–4),
respectively

Fi , Gi , Hi , and Ji ith elements of the vectors F ∈ Rn×1, G ∈ Rm×1, H ∈ Rp×1, and J ∈
Rp×1, respectively

f (x(t)) ∈ Rn×1, g(y(t)) ∈ Rm×1, h(z(t)) ∈ Rp×1,and j(w(t)) ∈ Rp×1 The unknown SD disturbances acting on M1,M2, S1, and S2 (1–4),
respectively

fi(x(t)), gi(y(t)), hi(z(t)), and ji(w(t)) ith elements of f (x(t)), g(y(t)), h(z(t)), and j(w(t)), respectively
DM1 (t) ∈ Rn×1, DM2 (t) ∈ Rm×1, DS1 (t) ∈ Rp×1, DS2 (t) ∈ Rp×1 The unknown TD disturbances acting on M1,M2, S1, and S2 (1–4),

respectively
DM1
i (t),D

M2
i (t),D

S1
i (t),D

S2
i (t) ith elements of DM1 (t), DM2 (t), DS1 (t), and DS2 (t), respectively.

uS1 (t) = (uS11 (t), u
S1
2 (t), . . . , u

S1
p (t) )T ∈ Rp×1 The control input in S1

uS2 (t) = (uS21 (t), u
S2
2 (t), . . . , u

S2
p (t) )T ∈ Rp×1 The control input in S2

e(t) ∈ Rp The DCAS error matrix
ei(t) ∈ R An ith element of e(t)
s ∈ R,ν ∈ Rn×1 s and ν are any scalar and vector values, respectively
|s| Absolute of s
|ν| = [|ν1|, |ν2|, . . . , |νn|] Absolute of ν, where νi (i = 1, 2, . . . , n) are the elements of ν

ν =
n∑
1

|νi| Norm-1 of ν

ν22 ν22 = v21 + v22 + . . .+ v2n

convergence rates, and the amplitude of the error
and control input signals oscillations

The remaining article is organized as follows: In Sec.
2, this work presents a model of the proposed DCAS
scheme and designs RAASC strategy. Sec. 3 demon-
strates two numerical examples and simulation results
with a comparative study. The paper ends with the
conclusions in Sec. 4.

Notations and symbols. This article uses the follow-
ing symbols and notations (Table 2).

2. Robust adaptive double combination
anti-synchronization control scheme

This section is divided into two subsections. Subsec-
tion 2.1 presents the proposed model for the ROAS
of four different orders UC systems, while subsection
2.2 designs the proposed RAASC technique and pro-
vides the proof of global asymptotic stability of the
closed-loop.

2.1. Problem formulation

The proposed DCAS model considers four differ-
ent orders UC systems. The master system M is
a combination of two different orders UC systems
denoted by M1 and M2 (1–2). The slave system S con-
sists of two same orders UC systems represented by S1
and S2 (3–4). Equations (1–4) describe the master and
slave systems configuration.

M :

⎧⎪⎪⎨
⎪⎪⎩
M1 : ẋ(t) = θx(t)+ F(x(t))

+f (x(t))+ DM1(t)
M2 : ẏ(t) = ψy(t)+ G(y(t))

+g(y(t))+ DM2(t),

(1) & (2)

S :

⎧⎪⎪⎨
⎪⎪⎩
S1 : ż(t) = φz(t)+ H(z(t))+ h(z(t))

+DS1(t)+ uS1(t)
S2 : ẇ(t) = ηw(t)+ J(w(t))

+j(w(t))+ DS2(t)+ uS2(t).

(3) & (4)

However, it is useful to recognize that the master sys-
tem has two sub-systems, known as the projection and
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the remainder. In the project part (1a-2a), the ROAS
problem plays the role of the master system, while the
remaining part (1b-2b) becomes idle in the ROAS.

The projection part:

Mp :

⎧⎪⎪⎨
⎪⎪⎩
Mp

1 : ẋp(t) = θpxp(t)+ Fp(xp(t))
+f p(xp(t))+ DpM1(t)

Mp
2 : ẏp(t) = ψpyp(t)+ Gp(yp(t))
+gp(yp(t))+ DpM2(t),

(1a) & (2a)
where xp(t), yp(t) ∈ Rp×1, θp ∈ Rp×p, ψp ∈ Rp×p , Fp
∈ Rp×1, and Gp ∈ Rp×1.

The rest of the systems (1–2) are written as follows:

Mr :

⎧⎪⎪⎨
⎪⎪⎩
Mr

1 : ẋ
r(t) = θ rxr(t)+ Fr(xr(t))

+f r(xr(t))+ DrM1(t)
Mr

2 : ẏ
r(t) = ψ ryr(t)+ Gr(yr(t))

+gr(yr(t))+ DrM2(t),

(1b) & (2b)

where xr(t), yr(t) ∈ Rr×1, θ r ∈ Rr×r, ψ r ∈ Rr×r, Fr ∈
Rr×1, and Gr ∈ Rr×1. The orders p < n and r < n are
chosen such that p + r = n.

Therefore, the master and slave systems configu-
ration for the proposed DCAS reduces to the ROAS
between theMp (1a-2a) and S (3–4).

Definition 2.1: Assume xy(t) = xp(t)+ yp(t) and
zw(t) = z(t)+ w(t), then define that

e(t) = (xy(t)+ zw(t)) ∈ Rp, (5a)

be a DCAS error system. The elements of e(t) are
described as follows:

ei(t) = xypi (t)+ zwi(t), i ∈ (1, 2, . . . , p). (5b)

Now, (6) represents the error dynamical system of
ROAS betweenMp (1a-2a) and S (3–4).

ėi(t) = ẋypi (t)+ ˙zwi(t) i ∈ (1, 2, . . . , p), (6)

where,

ẋypi (t) = θ
p
i x

p(t)+ ψ
p
i y

p(t)+ Fpi (x
p(t))+ Gp

i (y
p(t))

+f pi (x
p(t))+gpi (y

p(t))+DpM1
i (t)+ DpM2

i (t),
(7a)

and

˙zwi(t) = φiz(t)+ ηiw(t)+ Hi(z(t))+ Ji(w(t))

+ hi(z(t))+ ji(w(t))+ DS1
i (t)

+ DS2
i (t)+ ui(t). (7b)

According to the reported strategies [28–30], the
proposed multi-systems ASC schemes [28–30] can-
cel the nonlinear terms Fpi (x

p(t))+ Gp
i (y

p(t)) Hi(z(t))
Gp
i (y

p(t)) Hi(z(t))G
p
i (y

p(t)) Hi(z(t)),+Ji(w(t)) in (6),
which reduce the complexity of the closed-loop sys-
tem. Hence, the designed model-based ASC structures

[28–30] are difficult to obtain in practice. To overcome
such issues, let us consider the following restructur-
ing of the nonlinear terms in the error dynamics (6)
to facilitate the partial cancellation of the nonlinear
terms by the proposed AS controller and to keep some
complexity attributes in the closed-loop system.

Fpi (x
p(t))+ Gp

i (y
p(t))+ Hi(z(t))+ Ji(w(t))

=
{
qii(xy

p
i (t), zwi(t))ei(t)

+li(xy
p
i (t), zwi(t)),

(8)

where qii(xy
p
i (t),zwi(t)) is an element of the diagonal

matrix Q(xp(t), yp(t), z(t),w(t)) ∈ Rp×p and li(xy
p
i (t),

zwi(t)) is an element of the matrix L(xyp(t), zw(t)) ∈
Rp×1. The diagonal elements of Q(xyp(t), zw(t)) are
associatedwith ei(t), whereas thematrixL(xyp(t), zw(t))
contains some linear and nonlinear residual terms.
Therefore, using (8), the closed-loop (6) can be re-
formed as:

ėi(t) = θ
p
i x

p(t)+ ψ
p
i y

p(t)+ φiz(t)+ ηiw(t)

+ qii(xy
p
i (t), zwi(t))ei(t)

+ li(xy
p
i (t), zwi(t))+ ℵpM1pM2S1S2

i (t)

+ DpM1pM2S1S2
i (t)+ ui(t), ∀i ∈ (1, 2, . . . , p)

(9)

where ui(t) = uS1i (t)+ uS2i (t), DpM1pM2S1S2
i (t)

= DpM1
i (t)+ DpM2

i (t)+ DS1
i (t)+ DS2

i (t), and

ℵpM1pM2S1S2
i (t) = f pi (x

p(t))+ gpi (y
p(t))

+ hi(z(t))+ ji(w(t)).

Objective 2.1: The error dynamical system (9) is global
asymptotic stable at the origin if:

lim
t→∞ ||ei(t)|| = 0

2.2. The proposed RAASC technique and the
asymptotic stability analysis

Theorem 2.1: If the following RAASC function is
designed as:

ui(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−αii ·�ii(t) ·	ii(t) · ei(t)− βii tanhμei(t)
−(σ̃i(t)+ ρ̃i(t)) tanhμei(t)

−li(xy
p
i (t), zwi(t))−θ̃pi (t)xp(t)−ψ̃p

i (t)y
p(t)

−φ̃i(t)z(t)− η̃i(t)w(t),
i ∈ (1, 2, . . . , p),

(10)
where μ, ε > 0 are real constants and μ determines
the steepness of the tanh function. Further, seche(t) =
Ξ(t) ∈ Rp×p, whereΞ(t)= diag[�ii(t), i = 1, 2, . . . , p],
and 0 < seche(t) ≤ 1, |tanh e(t)| + ε = �(t) ∈ Rp×p,
and�(t) = diag[Φii(t), i = 1, 2, . . . , p], |tanh e(t)| ≤
1, for e(t) ∈ R, Λ(t) = diag[	ii(t), i = 1, 2, . . . , p] ∈
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Rp×p, where 	ii(t) = 1/Φii(t), and ε = diag[εii = ε,
i = 1, 2, . . . , p] ∈ Rp×p. Γ ∈ Rp×p, and � ∈ Rp×p are
diagonal matrices and the diagonals are σT

i and ρTi ,
respectively.
α = diag[αii, i = 1, 2, . . . , p] ∈ Rp×p and β =

diag[ βii, i = 1, 2, . . . , p] ∈ Rp×p are matrices of the
feedback gains.

Equation (11) gives the design of the parameters adap-
tation laws.⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

˙̃
θ
p
i (t) = δxp(t)ei(t), ˙̃

ψ
p
i (t) = δyp(t)ei(t), ˙̃

φi(t)
= δz(t)ei(t), ˙̃ηi(t) = δw(t)ei(t),

˙̃σi(t) = δ|ei(t)|, ˙̃ρi(t) = δ|ei(t)|, θ̃
p
i (0) = θ̃

p
i0 > 0,

ψ̃
p
i (0) = ψ̃

p
i0 > 0,

φ̃i(0) = φ̃i0 > 0, η̃i(0) = η̃i0 > 0, σ̃i(0) = σ̃i0 > 0,
ρ̃i(0) = ρ̃i0 > 0, i ∈ (1, 2, . . . , p),

(11)
where θ̃pi (t), ψ̃

p
i (t), φ̃i(t), η̃i(t), σ̃i(t), and ρ̃i(t) are the

adaptation parameters, alternativelywith θ̂pi (t) = θ̃
p
i (t)−

θi, ψ̂
p
i (t) = ψ̃

p
i (t)− ψi, φ̂i(t) = φ̃i(t)− φi, η̂i(t) =

η̃i(t)− ηi, σ̂i(t) = σ̃i(t)− σi, and ρ̂i(t) = ρ̃i(t)− ρi.
The constants θ̃pi0, ψ̃

p
i0, φ̃i0, η̃i0, σ̃i0, and ρ̃i0 are the ini-

tial values of θ̃pi (t), ψ̃
p
i (t), φ̃i(t), η̃i(t), σ̃i(t), and ρ̃i(t),

alternatively and δ > 0 is a real constant. Then, theMMS
arrangement (1a-2a, 3–4) realizes the asymptotic DCAS.

For the proof of the above theorem, the following
assumptions, and lemmas are necessary.

Assumption 2.1: [37]. Since the chaotic attractor
evolves in a bounded region, therefore the trajectories
of hyper(chaotic) systems are also bounded. Hence, it
is assumed that unknown SD disturbances f pi (x

p(t)),
gpi (y

p(t)), hi(z(t)), and ji(w(t)) are bounded. i.e.,

|f pi (xp(t))| ≤ σ
M1
i , |gpi (yp(t))|

≤ σ
M2
i , |hi(z(t))| ≤ σ

S1
i , |ji(w(t))| ≤ σ

S2
i ,

i ∈ (1, 2, . . . , p). (12a)

Consequently,

|f pi (xp(t))+ gpi (y
p(t))+ hi(z(t))+ ji(w(t))| ≤ σi,

(12b)
where σM1

i , σM2
i , σ S1

i , σ S2
i , and σi are unknown positive

real constants such that:

σ
M1
i + σ

M2
i + σ

S1
i + σ

S2
i ≤ σi, i ∈ (1, 2, . . . , p).

(12c)

Assumption 2.2: [38]. In general, it is assumed that
the unknown TD disturbances are norm bounded in
C1. There exist unknown real constants ρM1

i > 0, ρM2
i >

0, ρS1i > 0, ρS2i > 0, and ρi > 0 such that:

|DpM1
i (t)| ≤ ρ

M1
i , |DpM2

i (t)| ≤ ρ
M2
i , |DS1

i (t)| ≤ ρ
S1
i ,

|DS2
i (t)| ≤ ρ

S2
i , i ∈ (1, 2, . . . , p) (13a)

Thus,

|DpM1
i (t)+ DpM2

i (t)+ DS1
i (t)+ DS2

i (t)| ≤ ρ
M1
i

+ ρ
M2
i + ρ

S1
i + ρ

S2
i ≤ ρi, i ∈ (1, 2, . . . , p),

(13b)

where σi and ρi are upper bounds of unknown SD and
TD disturbances in (12c), and (13b), respectively. There-
fore, without loss of generality, it is assumed that σi =
ρi.

Lemma 2.1: For the given positive numbers μ, ε, and a
scalar ∅, the following inequalities hold:

(i). ∅ tanhμ∅ = |∅ · tanhμ∅| = |∅||tanhμ∅| ≥ 0,

ifμ > 1,

(ii). ∅ tanhμ∅ ≤ |∅|, if 0 < μ ≤ 1,

(iii). |tanhμ∅| ≤ 1, and sech∅ ≤ 1,

(iv).
1

|tanh∅| + ε
≥ 0. (14)

Proof: (i) From the definition of tanh(·) function, we
have:

∅ tanhμ∅ = 2∅
eμ∅ + e−μ∅ . (14a)

Multiply right-hand side of (14a) by eμ∅
eμ∅ yields:

∅ tanhμ∅ = ∅(e2μ∅ − 1)
1 + e2μ∅ . (14b)

Now, if; {
(e2μ∅ − 1) ≥ 0, if ∅ ≥ 0,
(e2μ∅ − 1) < 0, if ∅ < 0, (14c)

then, the following inequality is obtained:

(e2μ∅ − 1) ≤ 0. (14d)

Since,
(

1
1+e2μ∅

)
> 0, and using (14d), we have:

∅ tanhμ∅ = ∅(e2μ∅ − 1)
1 + e2μ∅ ≥ 0. (14e)

Thus, for all scalar ∅ and positive μ, if μ∅ ≥ 0, then
μ∅ = |μ∅| = |μ||∅| ≥ 0 is true. Consequently, it can
be concluded that:

∅ tanhμ∅ = |∅ tanhμ∅| = |∅||tanh(μ∅)| ≥ 0. (14f)

�

Remark 2.2: The proof of Lemma 2.1(ii)-(iv) can be
deduced from (i).

Lemma 2.2 (Barbalat’s lemma): [39]. If for t ≥ 0,
there exists a uniformly continuous function ϕ : R → R
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and the limit of the integral lim
t→∞

∫ t

0
ϕ(∂)d∂ , exists and

finite, then;

lim
t→∞ϕ(t) = 0. (15)

Proof of Theorem 2.1. Let us define the following contin-
uous differentiable and positive definite function as:

V(t)=
p∑
1

⎛
⎜⎝
δ
2 e

2
i (t)+ 1

2 (θ̂
p
i (t)(θ̂

p
i (t))

T + ψ̂
p
i (t)(ψ̂

p
i (t))

T

+φ̂i(t)(φ̂i(t))T)
+η̂i(t)(η̂i(t))T + σ̂ 2

i (t)+ ρ̂2i (t)

⎞
⎟⎠≥0.

(16)
The time derivative of (16) gives:

V̇(t)=
p∑
1

⎛
⎜⎝δei(t)ėi(t)+ θ̂

p
i (t)

˙̃
θ
p
i (t)+ ψ̂

p
i (t)

˙̃
ψ

p
i (t)

+φ̂i(t) ˙̃φi(t)
+η̂i(t) ˙̃ηi(t)+ σ̂i(t) ˙̃σ i(t)+ ρ̂i(t) ˙̃ρi(t)

⎞
⎟⎠ .

(17)
Using (9) to (17) yields :

V̇(t) =
p∑
1
δei(t)

×

⎛
⎜⎜⎜⎝
θ
p
i x

p(t)+ ψ
p
i y

p(t)+ φiz(t)
+ηiw(t)+ qii(xy

p
i (t), zwi(t))ei(t)

+liqi(xy
p
i (t), zwi(t))+ ℵpM1pM2S1S2

i (t)
+DpM1pM2S1S2

i (t)+ ui(t)

⎞
⎟⎟⎟⎠

+
p∑
1

(
θ̂
p
i (t)

˙̃
θ
p
i (t)+ ψ̂

p
i (t)

˙̃
ψ

p
i (t)+ φ̂i(t) ˙̃φi(t)

+η̂i(t) ˙̃ηi(t)+ σ̂i(t) ˙̃σ i(t)+ ρ̂i(t) ˙̃ρi
(t)

)
.

(18)

Apply the control input signal (10) to (18) implies:

V̇(t) =
p∑
1
δei(t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−αii ·�ii(t) ·	ii(t) · ei(t)
+qii(xy

p
i (t), zwi(t))ei(t)

−βii tanhμei(t)+ θ
p
i x

p(t)
−θ̃pi (t)xp(t)+ ψ

p
i y

p(t)
−ψ̃p

i (t)y
p(t)+ φiz(t)− φ̃i(t)z(t)

+ηiw(t)− η̃i(t)z(t)
+ℵpM1pM2S1S2

i (t)+ DpM1pM2S1S2
i (t)

−(σ̃i(t)+ ρ̃i(t)) tanhμei(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
p∑
1

(
θ̂
p
i (t)

˙̃
θ
p
i (t)+ ψ̂

p
i (t)

˙̃
ψ

p
i (t)+ φ̂i(t) ˙̃φi(t)

+η̂i(t) ˙̃ηi(t)+ σ̂i(t) ˙̃σ i(t)+ ρ̂i(t) ˙̃ρi
(t)

)

=
p∑
1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ(αii ·�ii(t) ·	ii(t)− qii(xy
p
i (t), zwi(t)))

e2i (t)− δβiiei(t) tanhμei(t)
−δ(θ̃pi (t)− θ

p
i )x

p(t)ei(t)− δ(ψ̃
p
i (t)− ψ

p
i )y

p(t)
ei(t)− δ(φ̃i(t)− φi)z(t)ei(t)
−δ(η̃i(t)− ηi)z(t)ei(t)+ δℵpM1pM2S1S2

i (t)ei(t)
+δDpM1pM2S1S2

i (t)ei(t)
−δ(σ̃i(t)+ ρ̃i(t))ei(t) tanhμei(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
p∑
1

(
θ̂
p
i (t)

˙̃
θ
p
i (t)+ ψ̂

p
i (t)

˙̃
ψ

p
i (t)+ φ̂i(t) ˙̃φi(t)

+η̂i(t) ˙̃ηi(t)+ σ̂i(t) ˙̃σ i(t)+ ρ̂i(t) ˙̃ρi
(t)

)

≤
p∑
1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ(αii ·�ii(t) ·	ii(t)− |qii(xypi (t), zwi(t))|)
e2i (t)− δβiiei(t) tanhμei(t)
−δθ̂pi (t)xp(t)ei(t)+ θ̂

p
i (t)

˙̃
θ
p
i (t)

−δψ̂p
i (t)y

p(t)ei(t)+ ψ̂
p
i (t)

˙̃
ψ

p
i (t)

−δφ̂i(t)z(t)ei(t)+ φ̂i(t) ˙̃φi(t)
−δη̂i(t)w(t)ei(t)+ η̂i(t) ˙̃ηi(t)
−δ(σ̃i(t)+ ρ̃i(t))ei(t) tanhμei(t)
+σ̂i(t) ˙̃σi(t)+ ρ̂i(t) ˙̃ρi(t)
+δ|ℵpM1pM2S1S2

i (t)||ei(t)|
+δ|DpM1pM2S1S2

i (t)||ei(t)|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤
p∑
1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ(αii ·�ii(t) ·	ii(t)− |qii(xypi (t), zwi(t))|)
e2i (t)− δβiiei(t) tanhμei(t)
+θ̂pi (t)

( ˙̃
θ
p
i (t)− δxp(t)ei(t)

)
+ψ̂p

i (t)
( ˙̃
ψ

p
i (t)− δyp(t)ei(t)

)
+φ̂i(t)

( ˙̃
φi(t)− δz(t)ei(t)

)
+η̂i(t)

( ˙̃ηi(t)− δw(t)ei(t)
)

+δ|ℵpM1pM2S1S2
i (t)||ei(t)|

+δ|DpM1pM2S1S2
i (t)||ei(t)|

−δ(σ̃i(t)+ ρ̃i(t))|ei(t)| + σ̂i(t) ˙̃σi(t)
+ρ̂i(t) ˙̃ρi(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

Using Assumptions 2.1 and 2.2 to (19) drives that:

V̇(t) ≤
p∑
1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ(αii ·�ii(t) ·	ii(t)
−|qii(xypi (t), zwi(t))|)e2i (t)
−δβiiei(t) tanhμei(t)+ θ̂

p
i (t)

×
( ˙̃
θ
p
i (t)− δxp(t)ei(t)

)
+ψ̂p

i (t)
( ˙̃
ψ

p
i (t)− δyp(t)ei(t)

)
+φ̂i(t)

( ˙̃
φi(t)− δz(t)ei(t)

)
+η̂i(t)

( ˙̃ηi(t)− δw(t)ei(t)
)

+δσi(t)|ei(t)| − δσ̃i(t)|ei(t)|
+σ̂i(t) ˙̃σi(t)+ δρi(t)|ei(t)|
−δρ̃i(t)|ei(t)| + ρ̂i(t) ˙̃ρi(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤
p∑
1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ(αii ·�ii(t) ·	ii(t)
−|qii(xypi (t), zwi(t))|)e2i (t)
−δβiiei(t) tanhμei(t)
+θ̂pi (t)

( ˙̃
θ
p
i (t)− δxp(t)ei(t)

)
+ψ̂p

i (t)
( ˙̃
ψ

p
i (t)− δyp(t)ei(t)

)
+φ̂i(t)

( ˙̃
φi(t)− δz(t)ei(t)

)
+η̂i(t)

( ˙̃ηi(t)− δw(t)ei(t)
)

+σ̂i(t)
( ˙̃σ i(t)− δ|ei(t)|

)
+ρ̂i(t)

( ˙̃ρi(t)− δ|ei(t)|
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

Using Lemma 2.1 and the parameters adaptation laws
(11) to (20) yields:

V̇(t) ≤ −
p∑
1
δ(αii ·	ii(t)− |qii(xypi (t), zwi(t))|)e2i (t)

−
p∑
1
δβii|ei(t)| (21a)
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≤ −
p∑
1
δ(αii ·	ii(t)− |qii(xypi (t), zwi(t))|)︸ ︷︷ ︸

ϑ

e2i (t)

= −ϑe2i (t) = −ϕ(t). (21b)

Let us choose αii ≥ Φii(t)|qii(xypi (t), zwi(t))|and βii ≥
0, then ϑ is positive definite and;

V̇(t) ≤ −ϕ(t) ≤ 0. (22)

Integrating (22) gives:

V(0) ≥ V(t)+
∫ t

0
ϕ(∂)d∂

=> V(0)− V(t) ≥
∫ t

0
ϕ(∂)d∂ .

(23)

Since V̇(t) ≤ 0 and V(0)− V(t) ≥ 0 is positive def-

inite, then lim
t→∞

∫ t

0
ϕ(∂)d∂ = V(0)− V(t) ≥ 0 exists

and finite. Hence, by Lemma 2.2;

lim
t→∞ϕ(t) = lim

t→∞ϑe2i (t) = 0.

Remark 2.1: To suppress the undesirable oscillations
in the control input and error signals, the proposed
RAASC technique (10) replaces the discontinuous sgn
function by the smooth continuous sech and tanh func-
tions that reduce the transient oscillations in the errors
and suppresses chattering in the control input signals.
The proposed RAASC technique (10) not only erad-
icates the adverse effect induces by the unknown SD
and TD disturbances but also enforces the AS error
signals to the origin in a shorter transient response
time.

Remark 2.2: Based on (21a), the controller parame-
ters αii,βii, and ε, and the constantδ provide complete
control over the convergence rates. Larger values of
αii,βii, δ and smaller value of ε provide faster AS con-
vergence. Errors convergence behaviours in Figure 3(a-
d) and control input signals in Figure 4(a-d) illustrate
this finding in the computer simulation results.

Remark 2.3: For the algorithm of the proposed
RAASC method, please refer to Appendix A.

3. Numerical examples

3.1. Example 1. Anti-synchronization of uncertain
hyperchaotic Lü, chaotic SM, chaotic SOND and
chaotic PESNP systems

This subsection presents a numerical example deal-
ing with the DCAS of different uncertain hyperchaotic
Lü, chaotic SM, chaotic SOND, and chaotic PESNP

systems. These chaotic systems have different orders
and structures. The initial conditions and parame-
ter values of these systems are different and uncer-
tain. These systems exhibit different chaotic behaviour
and topological properties. Similarly, the trace changes
of the state variables of the considered systems are
different as shown in Figure 1(a-d). Therefore, the
secure communication system based on such an
AS scheme enriches the security of the information
signal.

The combination of the uncertain hyperchaotic Lü
and chaotic SM systems represents the master system
whereas the chaotic SOND and PESNP systems form
the slave system. Equations (24–27) describe the mas-
ter and slave systems arrangement, where x(t) and y(t)
are the state vectors of M1 and M2 (24–25), while z(t)
and w(t) are the state vectors of S1 and S2 (26–27),
respectively.

(Master system)

M :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1(Lu) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = θ1(x2(t)− x1(t))+ f1(x1(t))
+DM1

1 (t)
ẋ2(t) = θ3x2(t)− x1(t)x3(t)
+f2(x2(t))+ DM1

2 (t)
ẋ3(t) = −θ2x3(t)+ x1(t)x2(t)
+f3(x3(t))+ DM1

3 (t)
ẋ4(t) = x3(t)− x4(t)+ f4(x4(t))
+DM1

4 (t)

M2(SM) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẏ1(t) = y2(t)+ g1(y1(t))+ DM2
1 (t)

ẏ2(t) = y1(t)−ψ1y2(t)− y1(t)y3(t)
+g2(y2(t))+ DM2

2 (t)
ẏ3(t) = −ψ2y3(t)+ y21(t)
+g3(y3(t))+ DM2

3 (t)
(24) & (25)

(Slave system)

S :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1(SOND) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż1(t) = z2(t)+ h1(z1(t))
+DS1

1 (t)+ uS11 (t)
ż2(t) = z1(t)− φ1z2(t)
+φ2 cos 1.4t − z31(t)
+h2(z2(t))+ DS1

2 (t)+ uS12 (t)

S2(PESNP) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẇ1(t) = w2(t)+ j1(w1(t))
+DS2

1 (t)+ uS21 (t)
ẇ2(t) = −η1w2(t)
−(1 + η2 cos 2t) sinw1(t)
+j2(w2(t))
+DS2

2 (t)+ uS22 (t).
(26) & (27)

According to the proposed ROAS strategy, let us
divide the master system M (24–25) into two sub-
systems known as the projection subsystem described
in (24a-25b) and the remaining given in
(24b-25b).
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Figure 1. 2-Dimensional phase portraits.

(Projection master system)

Mp :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mp
1(Lu) :

⎧⎪⎪⎨
⎪⎪⎩

ẋ2(t) = θ3x2(t)− x1(t)x3(t)
+f2(x2(t))+ DM1

2 (t)
ẋ3(t) = −θ2x3(t)+ x1(t)x2(t)

+f3(x3(t))+ DM1
3 (t)

Mp
2(SM) :

⎧⎪⎪⎨
⎪⎪⎩

ẏ2(t) = y1(t)+ ψ1y2(t)
−y1(t)y3(t)+ g2(y2(t))+ DM2

2 (t)
ẏ3(t) = −ψ2y3(t)+ y21(t)
+g3(y3(t))+ DM2

3 (t),
(24a) & (25a))

and
(Remaining subsystems)

Mr :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Mr

1(Lu) :

⎧⎪⎪⎨
⎪⎪⎩
ẋ1(t) = θ1(x2(t)− x1(t))
+f1(x1(t))+ DM1

1 (t)
ẋ4(t) = x3(t)− x4(t)
+f4(x4(t))+ DM1

4 (t)
Mr

2(SM) : {ẏ1(t) = y2(t)+ g1(y1(t))+ DM2
1 (t)

(24b) & (25b))
Systems (24a, 25a, 26, 27) use AS between (Mp

1 + Mp
2)

and (S1 + S2). Therefore, the AS errors are defined as
follows:

ė1(t) = (ẋ2(t)+ ẏ2(t))+ (ż1(t)+ ẇ1(t)), and

ė2(t) = (ẋ3(t)+ ẏ3(t))+ (ż2(t)+ ẇ2(t)). (28)

Hence, using (28), the closed-loop system for the mas-
ter and slave systems (24a, 25a, 26, 27) is obtained
in (29).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1(t) = e2(t)+ θ3x2(t)− ψ1y2(t)− x3(t)+ x4(t)

+ y1(t)− y3(t)+ w2(t)

− x1(t)x3(t)− y1(t)y3(t)+ f2(x2(t))

+ g2(y2(t))+ h1(z1(t))

+ j1(w1(t))+ DM1
2 (t)+ DM2

2 (t)+ DS1
1 (t)

+ DS2
1 (t)+ u1(t)

ė2(t) = x1e1(t)− θ2x3(t)− ψ2y3(t)− φ1z2(t)

+ φ2 cos 1.4t − η1w2(t)

− η2 cos 2t · sinw1(t)+ z1(t)− x1(t)y2(t)

− x1(t)z1(t)+ y21(t)

− x1(t)w1(t)− z31(t)− sinw1(t)

+ f3(x3(t))+ g3(y3(t))+ h2(z2(t))

+ j2(w2(t))+ DM1
3 (t)+ DM2

3 (t)+ DS1
2 (t)

+ DS2
2 (t)+ u2(t).

(29)
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According to Theorem 2.1, the RAASC functions are
designed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) = −α11e1(t) seche1(t)
|tanh e1(t)| + ε

− β11 · tanhμe1(t)
− (σ̃1(t)+ ρ̃1(t)) tanhμe1(t)

− θ̃3x2(t)+ ψ̃1y2(t)+ x3(t)− x4(t)

− y1(t)+ y3(t)+ x1(t)x3(t)− w2(t)

+ y1(t)y3(t)

u2(t) = −α22e2(t) seche2(t)
|tanh e2(t)| + ε

− β22 · tanhμe2(t)− (σ̃2(t)

+ ρ̃2(t)) tanhμe2(t)

+ θ̃2(t)x3(t)+ ψ̃2(t)y3(t)

+ φ̃1(t)z2(t)− φ̃2(t) cos 1.4t + η̃1(t)w2(t)

+ η̃2(t) cos 2t · sinw1(t)− z1(t)

+ x1(t)y2(t)+ x1(t)z1(t)− y21(t)

+ x1(t)w1(t)+ z31(t)+ sinw1(t)
(30)

The uncertain parameters are updated according to the
following adaptation laws:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃
θ2(t) = δx3(t)e2(t), ˙̃

θ3(t) = −δx2(t)e1(t), ˙̃
ψ1(t)

= δy2(t)e1(t), ˙̃
ψ2(t) = δy3(t)e2(t),

˙̃
φ1(t) = δz2(t)e2(t), ˙̃

2φ(t) = −δe2(t)cos 1.4t, ˙̃η1(t)
= δw2(t)e2(t),

˙̃η2(t) = δe2(t) cos 2t · sinw1(t), ˙̃σi(t)
= δ|ei(t)|, ˙̃ρi(t) = δ|ei(t)|, i ∈ (1, 2).

(31)
In numerical simulations, the arbitrary initial condi-
tions for the M1M2S1S2 (24–27) are taken as x1(0) =
1, x2(0) = 1, x3(0) = −1, x4(0) = −2, y1(0) = −0.5,
y2(0) = 0.5, y3(0) = −0.5, z1(0) = 0.1, z2(0) = 0.2,
w1(0) = 025, and w2(0) = 0.1, alternatively. The
parameters for the hyperchaotic Lü, chaotic SM, SOND
and PESNP systems are set as θ1 = 15, θ2 = 5, θ3 =
10, ψ1 = 0.75, ψ2 = 0.45, φ1 = 0.15, φ2 = 0.3, η1 =
0.1 and η2 = 0.4, alternatively. These parameters are
uncertain to theM1M2S1S2 (24–27). In (30), the design
parameters are set as αii = 1, βii = 1, μ = 0.9, ε = 0.5,
and δ = 10, for i = 1, 2. In numerical simulations, the
following SD and TD disturbances are applied to the
M1M2S1S2 (24–27), respectively.

(a)                              Time (s)                                                    (b)                               Time (s) 
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Figure 2. Time series of the (a) hyperchaotic Lü, (b) chaotic SM, (c) chaotic SOND, and (d) chaotic PESNP systems.
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(SD disturbance signals)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1(t)) = 0.1 sin 5x1(t), f2(x2(t))

= −0.2 sin 2x2(t), f3(x3(t))

= 0.1 sin 3x3(t),

f4(x4(t)) = 0.1 cos x4(t), g1(y1(t))

= 0.2 sin 2y1(t), g2(y2(t))

= 0.25 sin 2y2(t),

g3(y3(t)) = 0.2 cos 3y3(t), h1(z1(t))

= 0.2 cos z1(t), h2(z2(t))

= −0.2 sin 2z2(t),

j1(w1(t)) = 0.1 cos 3w1(t), j2(w2(t))

= 0.25 sin 5w2(t),

(32)

and
(TD disturbance signals)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DM1
1 (t) = 0.3 sin 2t,DM1

2 (t) = −0.2 cos t,DM1
3 (t)

= 0.1 sin 3t,

DM1
4 (t) = 0.1 cos 5t,DM2

1 (t) = −0.2 cos 3t,DM2
2 (t)

= −0.1 sin 5t,

DM2
3 (t) = −0.25 sin 2t,DS1

1 (t) = 0.1 sin t,DS1
2 (t)

= 0.2 cos 3t

DS2
1 (t) = 0.1 sin 3t,DS2

2 (t) = −0.2 cos 5t
(33)

Figure 1(a-d) illustrate the 2-dimensional phase por-
traits of the hyperchaotic Lü, chaotic SM, chaotic
SOND, and chaotic PESNP systems. Figure 2(a-d) illus-
trate the time series of the state trajectories of the hyper-
chaotic Lü, chaotic SM, chaotic SOND, and chaotic
PESNP systems. From Figure 1(a-d) and Figure 2(a-d),
it can be observed that these systems exhibit different
chaotic behaviour, and the traces changes of all systems
are different.

Figure 3(a-b) depict the transient behaviour of the
state variables of the AS among the uncertain hyper-
chaotic Lü, chaotic SM, SOND and PESNP systems
(24–27) under the feedback control technique (30).
From these figures, it is evident that the projection
part of the master system (24a-25a) is completely anti-
synchronized with the slave system (26–27).

Figure 4(a-d) and Figure 5(a-d) illustrate the conver-
gence behaviour of theAS error vectors (29) and control
input signals (30), respectively under the effects of the
controller parameters αii,βii, δ, and ε. From Figure 4(a-
d), it can be seen that the AS time is shorter for larger
values of the three coefficients αii,βii, δ, and a smaller
value of ε. Figure 5(a-d) compare the activeness in the
control signals for different values of αii,βii, δ, and ε.
Figure 4(e) and 5(e) demonstrate the AS error vectors
and control input signals when the sech and tanh func-
tions are replaced with the sgn function in the RAASC

approach (30), respectively. Activeness increases in the
error signals using the large values of the designed
parameters as shown in Figure 4(b-c). In Figure 4(a)
and 4(e), the convergence time of the error vectors is
almost the same. But, it can be observed that the control
inputs (30) with sec h and tan h functions (Figure 5(a-
d)) have lesser active than the control input (30) with
the sgn function (Figure 5(e)). Further, the control
input signals (30) with sgn function produce chatter-
ing (Figure 5(e)). Thus, the proposed RAASC strategy
is successful in synthesizing chattering free control sig-
nals for reducing the AS errors transient oscillations
and convergence time.

3.2. Comparative study

3.2.1. Example 2
This subsection discusses and compares the perfor-
mance and efficiency of the RAASC technique (30) on
the AS behaviour and feedback control strategies with
the peer works [21,24,28]. The control signals u1(t) and
u2(t) are synthesized by A(i) ASMC technique [21],
A(ii) adaptive feedback control strategy [24], andA(iii)
adaptive control approach [28] described in (34), (35),
and (36), alternatively. Then, these control signals in
the error system (29) establish the AS. The initial con-
ditions, controller parameters, unknown SD and TD
disturbances are set the same for the ASC schemes
reported in [21,24,28] for the benchmarking.

A(i) The ASMC technique [21]:

u1(t) = −α11
(

s
|s| + ε

)
−�11s1(t)

− θ̃3(t)x2(t)+ ψ̃1(t)y2(t)+ x3(t)

− x4(t)− y1(t)+ y3(t)+ x1(t)x3(t)

+ y1(t)y3(t)− w2(t)

u2(t) = −α22
(

s
|s| + ε

)
−�22s2(t)

+ θ̃2(t)x3(t)+ ψ̃2(t)y3(t)+ φ̃1(t)z2(t)

− φ̃2(t) cos 1.4t + η̃1(t)w2(t)

+ η̃2(t) cos 2t · sinw1(t)+ x1(t)w1(t)

+ x1(t)y2(t)− z1(t)+ x1(t)z1(t)

− y21(t)+ z31(t)+ sinw1(t), (34)

where s = kii(e1(t)+ e2(t)), si(t) = kiiei(t), i =
1, 2, 0 < ε < 1 is any real constant and σii + ρii ≤
�ii and� = diag[�ii, i ∈ 1, 2].

A(ii) The adaptive feedback control strategy [24]:

u1(t) = −α11e1(t)−�11e1(t)− θ̃3(t)x2(t)

+ ψ̃1(t)y2(t)+ x3(t)

− x4(t)− y1(t)+ y3(t)+ x1(t)x3(t)

+ y1(t)y3(t)− w2(t)
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Figure 3. Convergence behaviour of the AS variables under the proposed RAASC strategy (30), (a) (x2(t)+ y2(t))& (z1(t)+ w1(t)),
and (b) (x3(t)+ y3(t)) & (z2(t)+ w2(t)), (αii = βii = 1, δ = 10, ε = 0.5,μ = 0.9).
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Figure 4. Convergence behaviour of the AS error signals (29) under the proposed RAASC scheme (30), when (a) αii = βii =
1, δ = 10, ε = 0.5,μ = 0.9, (b) αii = βii = 10, δ = 10, ε = 0.5,μ = 0.9, (c) αii = βii = 1, δ = 100, ε = 0.5,μ = 0.9, (d) αii =
βii = 1, δ = 10, ε = 0.01,μ = 0.9, and (e)when the sechandtanh functions are replaced with sgn function in the proposed RAASC
approach (30) (αii = βii = 1, δ = 10, ε = 0.5,μ = 0.9).
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Figure 5. Transient behaviour of the control input signals (30) to compare the activeness when (a) αii = βii = 1, δ = 10, ε =
0.5,μ = 0.9, (b) αii = βii = 10, δ = 10, ε = 0.5,μ = 0.9, (c) αii = βii = 1, δ = 100, ε = 0.5,μ = 0.9, (d) αii = βii = 1, δ =
10, ε = 0.01,μ = 0.9, and (e) when the sechandtanh functions are replaced with sgn function in the proposed RAASC approach
(30), (αii = βii = 1, δ = 10, ε = 0.5,μ = 0.9).

u2(t) = −α22e2(t)−�22e2(t)+ θ̃2(t)x3(t)

+ ψ̃2(t)y3(t)+ φ̃1(t)z2(t)

− φ̃2(t) cos 1.4t + η̃1(t)w2(t)

+ η̃2(t) cos 2t · sinw1(t)+ x1(t)w1(t)

+ x1(t)y2(t)− z1(t)+ x1(t)z1(t)

− y21(t)+ z31(t)+ sinw1(t) (35)

A(iii) The adaptive control scheme [28]:

u1(t) = −(α11 +�11) sgn(e1(t))− θ̃3(t)x2(t)

+ ψ̃1(t)y2(t)+ x3(t)

− x4(t)− y1(t)+ y3(t)+ x1(t)x3(t)

+ y1(t)y3(t)− w2(t)

u2(t) = −(α22 +�22) sgn(e2(t))+ θ̃2(t)x3(t)

+ ψ̃2(t)y3(t)+ φ̃1(t)z2(t)

− φ̃2(t) cos 1.4t + η̃1(t)w2(t)

+ η̃2(t) cos 2t · sinw1(t)+ x1(t)w1(t)

+ x1(t)y2(t)− z1(t)+ x1(t)z1(t)

− y21(t)+ z31(t)+ sinw1(t) (36)

According to [21,28], �ii is the bound of unknown
SD and TD disturbances, which is known in advance.
In the original algorithms A(i) and A(ii), the con-
stant�ii does not appear. The parameter�ii represents
the least upper bound of the unknown SD and TD
disturbances. The introduction of �ii creates a uni-
form framework that facilitates an environment for the
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Figure 6. Convergence behaviour of the AS error signals (29) in the (a) present work, (b) ASMC strategy [21], (c) Adaptive feedback
control approach [24], and (d) ASC technique [28], (αii = βii = 1, δ = 10, ε = 0.5,μ = 0.9).

Figure 7. Magnifying view of the transient behaviour of the control input signals in the range of [−1, 1] in the
(a) present work, (b) ASMC strategy [21], (c) Adaptive feedback control approach [24], and (d) ASC technique [28],
(αii = βii = 1, δ = 10, ε = 0.5,μ = 0.9).

comparative study of the proposed control algorithm
(30) in the presence of the disturbances with A(i) and
A(ii).

A comparison of the corresponding AS perfor-
mance using the proposed RAASC strategy (30) with
reported works [21,24,28] is illustrated in Tables 3–5
and Figures 6–8. Items S(i), andS(ii) provide an

analysis of the results in Figure 6(a-d), and Figure 7(a-
d), respectively,while S(iii) demonstrates a compar-
ison of the absolute value of the error (IAE), the
integral of the time multiplied by the absolute value
of the error (ITAE), and the integral of the square
value (ISV) [40]. S(iv) discusses the AS rate of
convergence.
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Table 3. Comparison of the adaptive feedback controllers on AS errors converge to zero.

Adaptive control
strategy ASC inputs Controller parameters

AS error
convergence time

Error signals
oscillation range

Control input signals
oscillation range

Present work Eq. (30) αii = βii = 1, δ = 10,ε = 0.5,μ = 0.9,(i = 1, 2) t = 0.5s [−0.015, 0.015] [−0.12, 0.12]
Ref. [21] Eq. (34) αii = 1,�ii = 0.8, ε = 0.5, δ = 10(i = 1, 2) t = 10s [−0.7, 0.7] [−0.7, 0.2]
Ref. [24] Eq. (35) αii = 1,�ii = 0.8, δ = 10(i = 1, 2) t = 6s [−0.2, 0.2] [−0.5, 0.9]
Ref. [28] Eq. (36) αii = 1,�ii = 0.8, δ = 10, ε = 0.5, (i = 1, 2) t = 4s [−0.2, 0.3] [−0.8, 0.8]

Table 4. Comparison of IAE, ITAE and ISV.

IAE ITAE ISV

Method / error e1(t) e2(t) e1(t) e2(t) e1(t) e2(t)

Proposed (30) 0.7486 0.246 0.2945 0.09765 14222 8825
Ref. [21] 1.051 0.6146 0.4533 0.2501 14984 11143
Ref. [24] 0.9785 0.5669 0.433 0.2245 14735 10650
Ref. [28] 0.9942 0.5854 0.3782 0.2336 14988 11001

Table 5. Comparison of the AS convergence rates.

Adaptive control strategy AS control signals V̇(t) = Rate of convergence of the energy function V(t)

Present work Eq. (30) V̇(t) ≤ − δ

[
e1(t)
e2(t)

]T ⎡⎢⎣ α11	11(t) − (1 + |x1(t)|)
2

− (1 + |x1(t)|)
2

α22	22(t)

⎤
⎥⎦

[
e1(t)
e2(t)

]
− δ

2∑
1

βii|ei(t)|

Ref. [21] Eq. (34) V̇(t) ≤ − s2

|s| + ε

Ref. [24] Eq. (35) V̇(t) ≤ −
[
e1(t)
e2(t)

]T [
α11 0
0 α22

] [
e1(t)
e2(t)

]

Ref. [28] Eq. (36) V̇(t) ≤ −δ
[
e1(t)
e2(t)

]T [
α11 0
0 α22

] [
e1(t)
e2(t)

]

      (a)                                 Time (s)                                                    (b)                                Time (s) 

      (c)                                  Time (s)                                                    (d)                                  Time (s)                                                       
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Figure 8. Comparison of V̇(t) in the (a) present work, (b) ASMC strategy [21], (c) Adaptive feedback control approach [24], and (d)
ASC technique [28] (αii = βii = 1, δ = 10, ε = 0.5,μ = 0.9).
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S(i) Figure 6(a) illustrates that the AS errors converge to
the origin by the proposed algorithm (30), while
Figure 6(b-d) demonstrate the AS errors conver-
gence by the reported schemes [21], [24], and [28],
alternatively. In this work, the AS is accomplished
in t = 0.5seconds, while by (34), (35) and (36),
the AS error vectors converge to zero after t =
10seconds, t = 6seconds, and t = 5seconds, alter-
natively. As compared to the control approaches
proposed in [21], [24], and [28], the AS time in the
present work is shorter. The short time AS error
convergence is crucial in practical applications.
Furthermore, in the proposed AS approach, the
transient phase has a lower amplitude and dies
quickly.

S(ii) Figure 7(a-d) depict the transient behaviour
of the feedback terms in ASC strategies (30),
(34), (35), and (37), alternatively. From these
figures, one can observe that the control input
signals in the proposed RAASC technique (30)
are chattering free and yield lesser active than
[21,24,28].

S(iii) Table 4 summarizes the comparative analysis
of the proposed method in the sense of IAE,
ITAE, and ISV of Example 2. Table 4 verifies that
the proposed ASC approach (30) has lower IAE,
ITAE, and ISV than those of other ASC methods
[21,24,28]. ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

IAE =
∫ t

0
|e(t)|dt

ITAE =
∫ t

0
|e(t)| · tdt

ISV =
∫ t

0
u2(t)dt

(37)

S(iv) From Table 5, we may write the following
inequality.

− δ

[
e1(t)
e2(t)

]T ⎡⎢⎣ α11	11(t) − (1 + |x1(t)|)
2

− (1 + |x1(t)|)
2

α22	22(t)

⎤
⎥⎦

×
[
e1(t)
e2(t)

]
− δ

2∑
1
βii|ei(t)|

(a)                        Time (s)                                                         (b)                                 Time (s) 

(c)                                  Time (s)                                                     (d)                                 Time (s) 

(e)                                   Time (s)                                                 (f)                                   Time (s) 
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Figure 9. Convergence of the adaptation parameters (a) θ̃2(t), θ̃3(t), (b)ψ̃1(t), ψ̃2(t), (c)φ̃1(t), φ̃2(t), (d)η̃1(t), η̃2(t),
(e)σ̃1(t), σ̃2(t), and (f )ρ̃1(t), ρ̃2(t), (αii = βii = 1, δ = 10, ε = 0.5,μ = 0.9).
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≤ −δ
[
e1(t)
e2(t)

]T [
α11 0
0 α22

] [
e1(t)
e2(t)

]

≤ −δ s2

|s| + ε

≤ −
[
e1(t)
e2(t)

]T [
α11 0
0 α22

] [
e1(t)
e2(t)

]
, (38)

where V̇(t) determines the rate of convergence.
Computer-based simulation results depicted in
Figure 8(a-c) illustrate the time series of V̇(t)
in the present work and by the ASC approaches
[21,24,28]. From Figure 8(a-d) and Table 5, it
is demonstrated that |V̇(t)| in the present work
is greater than [21,24,28]. This attribute con-
firms that the rate of convergence in the pro-
posed RAASC control scheme is faster. Further, in
the vicinity of the zero errors, V̇(t) also globally
approaches to zero that assures the smoothness
and oscillation free steady-state errors.The con-
vergence of the adaptation parameters is illus-
trated in Figure 9(a-f). It is demonstrated that the
adaptation parameters θ̃2(t), θ̃3(t), ψ̃1(t), ψ̃2(t),
φ̃1(t), φ̃2(t), η̃1(t), η̃2(t), σ̃1(t), σ̃2(t), ρ̃1(t), and
ρ̃2(t) with initial values θ̃2(0) = 2, θ̃3(0) = 2,
ψ̃1(0) = 2, ψ̃2(0) = 2, φ̃1(0) = 2, φ̃2(0) = 2, η̃1
(0) = 2, η̃2(0) = 2, σ̃1(0) = 0.2, σ̃2(0) = 0.2, ρ̃1
(0) = 0.3, and ρ̃2(0) = 0.3, respectively converge
to some constants under the adaptation laws (31).
It is also to be noted that all the parameters can be
updated with any arbitrary initial condition.

3.2.2. Future research direction
Extension of this work is summarized as follows:

(i) The model considered in this work is general
and the theoretical results are encouraging. The
proposed AS scheme can be used for encryption
and decryption of an image in the secrete com-
munication systems.The speed of the transporta-
tion of the information signal can be increased
by selecting high feedback gains, but this attribute
may give birth to signal saturation and the AS
may lose its stability and the message signal may
be interrupted during the communication pro-
cess.The above issues might be tackled by the fea-
ture selection (FC) method [41,42]. The speed of
AS could be further increased by reducing the
dimensionality of the transmitted data using an
FC method. The FC decreases computation cost,
speeds up the classification process, and enhances
the performance, modelling, and prediction.
(ii) The proposed ROAS will be further enhanced

for the finite-time anti-synchronization of
uncertain chaotic systems with time-delay.

4. Conclusions

This article proposes a new robust adaptive control
technique and studies the double combination anti-
synchronization of multiple different orders uncertain
chaotic systems in the presence of unknown state-
dependent and time-dependent disturbances. This con-
troller accomplishes quick convergence. The rate of
convergence decreases in the vicinity of the origin that
causes the suppression of undesirable transient oscil-
lations in the error signals and control inputs. Analy-
sis based on the Lyapunov stability theory assures the
convergence properties. The design of suitable adap-
tive laws converges the uncertain parameters to some
constants. Computer-based simulation results confirm
the performance and efficiency of the presented robust
adaptive anti-synchronization control strategy. In com-
parison with reported anti-synchronization control
strategies in the relevant literature, the proposed con-
trol technique shows better anti-synchronization per-
formance.
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Appendix A: Algorithm of the proposed
method

          START                  

, , 

Form                            Synthesis 

       Generates 
 system

            END 
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