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Abstract

This paper tests whether information derived from 144 economic variables (represen-
ted by only a few constructed factors) can be used for the forecasting of consumer prices in
Croatia. The results obtained show that the use of one factor enhances the precision of the
benchmark model’s ability to forecast inflation. The methodology used is sufficiently ge-
neral to be able to be applied directly for the forecasting of other economic variables.
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1 Introduction

1.1 Motivation

In this paper we test whether some elements of factor analysis and a related math-
ematical method - Principal Component Analysis (PCA), can be used in the forecasting
and better understanding of economic processes in Croatia.

The idea that the correlation structure of a large number (hundreds or thousands) of
variables is accurately approximated by using only a handful (often only five or six) of the
variables, or factors, is found in research conducted in the area of both natural and social
disciplines. Roots of factor analysis can be found in psychology, where, at the beginning
of the last century, Charles Spearman (Spearman, 1904) conducted the extraction of fac-
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tors in the context of the measurement of intelligence on the basis of examination results
in mathematics, foreign languages, and so on. As well as by psychologists, factor analysis
is also often used by chemists — chemometricians and experimental physicists.

Standard econometric models, such as VAR models or simultaneous equation sys-
tems, due to the short time spans of available data sets, can be used for simultaneously
modelling the interaction of only a handful of variables - usually fewer than ten. There-
fore, in the last few years intensive research has been conducted on the possibility of
the compression of economic and financial data. In the context of forecasting key mac-
roeconomic variables, US economists James H. Stock and Mark W. Watson (Stock and
Watson 1998; 1999; 2002) in a series of papers have investigated the exploitability of
factor models. Given a large number of macroeconomic variables, they extracted a few
factors which (in a measurable quantity) summarise information of the entire US econ-
omy. In the second step the factors are used for forecasting industrial production, infla-
tion, and so on. The accuracy of their factor forecasts is at least comparable with the fore-
casts of standard econometric models - univariate regressions, autoregressions, VARs
and models based on leading indicators. This triggered further testing of the usefulness
of factor models (i.e. Matheson, 2006, Camacho and Sancho 2003, Camba - Méndez
and Kapetanios, 2005). These results are promising but should not be automatically ap-
plied to other economies without prior direct empirical evaluation and possible adjust-
ments. The uncritical appropriation of these results by young, open economies would
be deemed especially misleading, firstly due to the differences in quality and quantity of
available statistics and then to the nature of the functioning of the mechanisms of par-
ticular economies. Therefore, this analysis is conducted in order to examine the useful-
ness of a relatively new technique in modelling and forecasting economic processes in
Croatia. Furthermore, the contribution which such an analysis can offer in the context
of a general overview of forecasting performances of factor models, so far not stand-
ard, is also clear.

1.2 Applications of factor models in macroeconomic analysis

During the last decade, there has been a continuous increase in the number of papers
dealing with factor models in economics. A brief overview of recent papers determining
the key directions of the development of economic factor models from the aspects of both
methodology and empirical analysis is given below.

In addition to the work of Stock and Watson, two more papers should be mentioned in
the context of methodology development. Forni et al. (2000) provides a method for factor
forecasting based on elements of spectral analysis and as such, it is considered to be com-
plementary to the standard Stock-Watson methodology. Furthermore, Bai-Ng (2002) de-
fine the estimator of the number of unknown factors used in the forecasting model, which
is considered to be one of the basic decisions when designing factor models.

Moreover, Bernanke and Boivin (2003) test results of factor analysis in the con-
text of needs of the US Central Bank and give an interesting critique of empirical anal-
ysis of monetary policy, which usually presumes that decisions of central bankers are
grounded on only a few macro variables, such as inflation or GDP, while in practice
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the number of variables analysed is significantly larger. Along the same line, Bernan-
ke and Boivin estimate the reaction function of FED, determined by overall informa-
tion of a large number of relevant economic variables. This overall information is rep-
resented by only a few estimated factors, which are interpreted as the forces generating
the entire economy.

Factor models have shown to be very useful in a flash estimate of GDP. It is known
that official data for GDP are available only with a few months delay, but it is of interest
to know the current state of economic activity, which thus has to be estimated. In this con-
text, an important contribution has been made by the analysis conducted by Schumacher
and Breitung (2006) and Giannone et al. (2005).

Economic applications of factor models are mostly non theoretical in nature — they
are related to forecasting. One of the exceptions is a paper by Boivin and Giannoni (2005)
where information contained in a large number of variables is used for parameters esti-

mation of theoretical DSGE? models.

Analyses testing credibility of factors models constructed from relatively large number
of series but given a short time span are of special importance for this paper. In this con-
text we can refer to two analyses. Banerjee et al. (2006) examine the stability of factor
forecasts in a small sample environment with present structural breaks, where Slovenia is
considered a representative of the new EU member states. Furthermore, J. Boivin and S.
Ng (2005) using Monte Carlo simulations, question the sensitivity of the quality of fac-
tor forecast, given the length of time series available. This analysis encourages the im-
plementation of factor analysis even in the conditions of short time series such as those
obtaining in Croatia.

The EC analysis (Grenouilleau, 2006) and the economic indicator of the Chicago Fed
(Chicago Fed Letter, Number 151) could also be distinguished as important examples of
the implementation of the factor model in economics.

Finally, an overview of the results of factor forecasts of inflation and real activity

contained in a number of relevant papers (46) is given in a meta-analysis by Eickmeier
and Ziegler (20006).

1.3 Analysis structure

The structure of this paper is as follows. The next section contains the main mathe-
matical results necessary for our factor model; firstly, the elements of the Principal Com-
ponent Analysis and the construction of the principal component of variables from the
group of prices and exchange rates will be laid down.

In Section 3, Stock-Watson forecasting methodology will be applied to inflation in
Croatia, where factors and parameters will be estimated via principal components. Fur-
thermore, possibilities for future upgrading of the model will be elaborated as well.

A conclusion is given in Section 4.

2 Dynamic Stochastic General Equilibrium.
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2 Principal components

2.1 Definition

Let us assume that there are given observations for N variables X, K, X, the covari-
ance structure of which is of interest.? In our context, at any given moment, the economy
is approximated with the N - dimensional random vector.

In order fully to describe the covariance-variance structure of these variables, data
on all N variables are needed. However, it is often possible to describe a large part of data
variability by k& (< N) components - the principal components. Let us formalise this.

Let X = (X,, ..., X)) be a random vector with covariance matrix ) with eigenvalues
Ay 24, >... 2y >0 For arbitrary real vectors a;, i = 1, ..., N we can define linear combi-
nations:

Y=a'X=a,X, +a,X,+...+a,X,, i=1,...,N. (D

These linear combinations of variables X, ..., X,, are random variables with variance
and covariance:

VarY, =a/%a,, i=1,....N 2)
Cov(¥,Y)=a'2a, ik=1,.,N. 3)

The principle components are defined recursively as uncorrelated linear combina-
tions of ¥}, Y,, ..., ¥;; (1) having the maximal variance. In order to ensure uniqueness, in
the definition of principal components we additionally need the weight vectors ¢, to have

a unit norm, therefore a/a, =1:

» the first principal component PC1 is linear combination a; X with maximal vari-
ance, given condition a/a, =1,

« the second principal component PC2 is linear combination a; X with maximal var-

iance, given conditions a,a, =1 and Cov(a;X,a,X)=0,

« i-th principal component (for i < N) PCi is linear combination @, X with maximal

variance given conditions a;a, =1 and Cov(a; X,a;X)=0, forall k<i.

By the set definition, using available data we generate non-correlated components of
maximal variance. From a practical point of view, two questions arise. First, how can we

3 In factor analysis we examine variances and covariances of data, therefore only the second moment informa-
tion. Possible useful information of third or higher moments is ignored.
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efficiently construct the principal components, and second; which share in the total vari-
ance, that is, the share in the number ZIVarXi , 1s described by the first & principal com-
ponents. From this aspect we provide two central results, however, without proof (avail-
able in Johnson and Wichern, 1998).

Result 1. Let ) be the covariance matrix of vector X*= (X, ..., X)). Let 4, >1,>... >
Ay = 0 be eigenvalues and, a x,, ..., x,, the corresponding (unit norm) eigenvectors of ).
Then the i-th principal component is given by:

Y, =x'X, i=1,...,N. 4)
Furthermore:

VarY, =, i=1,...,N (5)

Cov(Y,,Y,)=0, i#k. (6)

Result 2. Let Y, = x/ X,...,Y, = xy X be the principal components (from the result 1).
Then, the following holds:

N N
SVarX, = A +...+ 4, = D Vary,. )

i=1 i=1

The first result says that the principal components are calculated as a product of the
vector X, and the corresponding covariance matrix eigenvectors and the second result en-
sures equality of the sum of the variances of the elements of the original vector X and of
constructed principal components. Furthermore, the share of the k-th principal compo-
nent’s variance in the total variance is equal to:

Ay
-, k=1,..,N 8
A+t A ®)

Consequently, the share of the first / components is:

A+t A

<

A+ + A LN ©

From the operational point of view, it is sufficient to calculate the sample covariance
data matrix and its eigenvectors and eigenvalues. Usually, when calculating eigenvalues
of high dimensional matrix, appropriate program support is deemed necessary. From the
numerical stability point of view, instead of direct calculation of eigenvalues and eigen-
vectors, it is better to conduct Singular Value Decomposition. Details of this process can
be found in some of the textbooks on (numerical) linear algebra. PCA is more useful as
the expression (9) is closer to the unit for relatively small /, that is, if we can capture most
of variability of the data using only a few components. Which / is small enough, and how
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close to unity is indeed close enough, depends on the nature of the problem and the dis-
cretionary decision of the individual, although there are certain formal procedures which
help in solving this question.

In application, we usually have T realisation of vector X observed as matrix X (N xT).
Let Y (K*T) be the matrix of the first K principal components. If for some K a significant
share of the total data variance is explained by the first K components (K<N), then the N-
dimensional vector of the original data X*= (X,, ..., X)) may be represented by K-dimen-
sional vector Y*=(Y,, ..., ¥}). Such compressed data can be used in further statistical anal-
ysis. Therefore, with the reduction of the dimension we ignore a certain quantity of infor-
mation in order to be able to use information of a potentially large number of time series
in modelling. Effectiveness of this trade-off is questioned from case to case. This is par-
ticularly useful in conditions of short time series where, for example, one can use regres-
sion analysis to measure the influence of a large number of variables (reduced to a small
number of constructed components) on key series. In this context, it is worth examining
the potential of PCA in economic research in Croatia.

2.2 First principal component of prices and exchange rates

With the aim of illustration, we will analyse the first principal component of the set of
32 prices and exchange rates series we consider to be relevant for the dynamics of Croatian
Consumer Price Index (CPI). The appendix includes a complete list of all series.

We will use monthly data, starting from January 1998 to September 2007.4 Prior to
the calculation of his covariance matrix, data are transformed as follows:

1 Program X12 - ARIMA is used to filter the data® and in further analysis only trend-
cycle components® are taken into consideration.

2 In the second step we consider log differences of the data.” These differences ap-
proximate monthly growth rates.

3 We standardise data in such a way that all series have zero expectation and a unit
standard deviation. In this way, regardless of the measurement unit, we are putting
them on the same scale. Notice that covariance matrix of standardised data is the
correlation matrix, and therefore the principal components analysis of standardised
data is in fact an analysis of the correlation structure of data.

Following this transformation, data are prepared for classical principal components
analysis. Firstly, we calculate the sample covariance (correlation) matrix and its eigen-
values and eigenvectors. Using these mathematical objects, following the previously de-

4 The Croatian Statistics Bureau started publishing CPI in February 2004 and the index starting from January
1998 was calculated afterwards.

5 This is an official SA program used by the US statistical office. Details on this method can be found on the
web site: http://www.census.gov/srd/www/x12a/

¢ Additive decomposition of the series ¥ = 7C + S + I, is assumed, where TC is trend-cycle component (T -
trend, possibly cycle of markedly low frequency, C is cycle, that is, medium term component), S is seasonal compo-
nent and I is the residual, that is, irregular component. The use of trend-cycle component, therefore disregard of both
the seasonal and irregular component is motivated by discussion in Camacho and Sancho (2003) in the context of
application of factor models on Spanish data.

7 Natural logarithm is used in this case

376



D. Kunovac: Factor Model Forecasting of Inflation in Croatia
Financial Theory and Practice 31 (4) 371-393 (2007)

scribed procedure, we calculate principal components and comment on the structure of the
first component with the aim of further insight of the correlation level between the vari-
ables in the group. Table 1 gives the basic results for the first few components.

Table 1 First six principal components of prices and exchange rates series
(PCi, i = 1,...,6, denotes i —th component)

Component PCl1 PC2 PC3 PC4 PC5 PC6
eigenvalue 8.49 5.46 4.07 2.62 1.82 1.58
variance proportion 0.28 0.18 0.14 0.09 0.06 0.05
cumulative variance proportion 0.28 0.47 0.60 0.69 0.75 0.80

Source: authors’ calculations

The first six components explain 80% of the total data variance while the first ten
components describe approximately 92% of the variance. By construction, the first com-
ponent captures the major share of the variance - in our case 28%. Due to better insight,
we would point out that the 10th component describes only 2% of data variance. Given
the calculated values it can be concluded that there is a relatively strong correlation be-
tween growth rates within the group of series. By definition, the first principal compo-
nent is a maximum variance linear combination of all series of the observed group and
therefore it could be considered an index constructed from 32 prices and exchange rates
time series. For the purpose of interpretation, corresponding weights of this index that is,
eigenvectors of correlation matrix, should be analysed. Let us notice that the sign of indi-
vidual ponders in that context does not help, due to the fact that principal components are
by definition identified only up to the sign. Following this, we should concentrate only
on weights’ absolute values.

Table 2 Weights in the first component and components correlation with four most
important series

IPC Goods Goods HRK/USD
(excl. energy)
weight 0.31 0.29 0.29 0.25
correlation with component 0.85 0.80 0.80 0.70

Source: authors’ calculations

Table 2 contains data for four series from the observed group of prices and exchange
rates which entered into constructed index (first principal component) with the highest
weights. In addition, correlation of these series with the calculated index is shown. Three
series with highest weights are price indexes - total index of consumer prices (0.31),
GOODS, excl. energy series (0.29) and GOODS (0.29). These results were expected since
a large part of observed group of variables consists of CPI sub indexes, which are, as such,
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correlated to CPI. By definition, out of all possible linear combinations of the given vari-
ables of prices and exchange rates, their first principal component optimally approximates
the total variance of the group. If there is a strong correlation between its elements, it is to
be expected that the principal component also follows this common dynamics. Interest-
ingly, the fourth variable® is the average monthly exchange rate HRK/USD. For the pur-
pose of illustration of the correlation of movement of consumer prices and kuna exchange
rate to US dollar, figure 1. shows standardised yoy growth rates of average monthly ex-
change rate of HRK/USD and the consumer price index. More details on relation of kuna
exchange rate and US dollar can be found in Jankov et al. (2007).

Figure 1 Standardised yoy growth rates of average monthly HRK/USD exchange
rate and CPI

T T T T T T T T T T T T ‘ T T T ‘ T T
2002 2003 2004 2005 2006 2007
inflation ~ -------- HRK/USD

1999 2000 2001

Source: authors’ calculations; HNB

Figure 2 shows the constructed first principal component of prices and exchange rates
series together with monthly growth rate of the trend-cycle component of the CPIL.

The principal component is by construction a linear combination of monthly growth
rates of trend-cycle series of the observed group. Therefore, this index, which encompass-
es, in addition to CPI components, a variety of other variables relevant for inflation move-
ment, explicitly and measurably takes into account their dynamics.

This example illustrates how the methods of compression of the information can be
used for index design, according to clear criteria that it should represent the optimal one-
dimensional representation of a group of variables. Indexes of this type are used for con-
struction of indicators of core inflation, level of economic activity and so on.

8 We can notice (table 2) that the same ordering as in the case of weights remains if we look at correlations, but
this is not always the case (see, for example, Johnson and Wichern, 1998).
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Figure2 First principal component and standardized monthly CPI inflation
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inflation ~ -------- first principal component

Source: authors’ calculations; HNB

3 Factor forecast of inflation

3.1 Introduction

In the introduction, we mentioned that in the course of forecasting the key variable in
central banks, a potentially huge number of economic variables are taken into considera-
tion. The central issue in this context is how to efficiently compress the information con-
tained in a large number of variables. A formal framework for such compression of in-
formation and its further application in statistical analysis has been proposed by, among
others, Stock and Watson (1998; 1999; 2002).

In this section, we firstly define a factor model and describe how factor analysis in
general can be used in the analysis of a large number of more or less related variables.
After that, the model is applied to Croatian data in an inflation forecasting exercise.

3.2 Definition and basic features

In the previous section, we put forward the basic facts of principal components anal-
ysis. Factor analysis is based on a different idea but under certain assumptions, the pa-
rameters can be estimated using principal components analysis.

Let us assume that 7N matrix X, contains the realisations of N variables X, ..., X},
during 7T time periods. Factor analysis is based on the assumption that there are » (<N)
variables - factors, f,, ..., f,, which are sufficient for modelling given N variables. Now,
let us assume linear dependence of original data contained in X on factors where matrix
A contains coefficients. Therefore, let us assume the following:
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X=FA" +¢, (10)

where X (TxN) is standardised matrix of original data, F"is (7"xr) matrix of factors, A Nxr
is factor loadings matrix and ¢ is the noise matrix. By elements we have:

X,=FA +¢e, t=1,..T, i=1,..N, (11)

where £, is r-dimensional vector of factors at time ¢, and 4, is vector of coefficients
which define dependence of the i-th variable on factors. This is a so-called static rep-
resentation of factor model where dependence of data on only contemporaneous fac-
tors is assumed.’

We see that the factor model assumes that each variable can be decomposed on linear
combination of factors and the error term. In this context, factors represent driving forces
governing the whole economy and therefore being common for all observed variables in
X. Specificities of individual variables are contained in error terms, containing both true
error and possibly factors specific for that particular variable.

In (11) a certain correlation between the components of ¢is allowed. Therefore, pre-
sented model is also called approximate factor model (Bai-Ng 2002).

In equations (10) and (11) all but data matrix X. are unknown. Therefore, in order to
estimate matrix A (VX7 parameters) and factors (77 parameters), it is necessary to im-
pose certain restrictions on parameters. Therefore let us assume!© that A"A = 1.

Parameters are estimated applying the least squares, where we look for the estimates
of F andi A which minimise the error (11) that is, for which Y’ le::]gf, is minimal, under
condition A*A = [. This is a classic problem of principal components!' which is solved by
choosing A as eigenvectors corresponding to first » maximal eigenvalues of matrix XX,
Then it holds that F= XA . The estimation details are given in the appendix, while more

information on the properties of this estimator can be found in Stock-Watson (1998).

The procedure of factor estimation using principal components method is straight-
forward; however a few issues arise in the course of the implementation. First of all, how
should one select a number of factors, that is how can one estimate » (Bai-Ng, 2002)? The
consistence of data with the assumed structure (10) is also not clear a priori. Furthermore,
there is a question of identification in (10), which is closely related to factor interpretation.
That is, for »xr, matrix O for which OO* = I, (10) can be also rewritted as:

X =(FO)O'A")+¢, (12)

9 Beside static factor models there are also dynamic factor models where it is assumed that elements from X in
addition to present factor values also depend on their lagged values. However, dynamic models have static represen-
tation of the type (10) (Stock and Watson 2002), therefore, here we consider static models only.

10 Alternatively, we can assume orthogonality of the factor — F7F = [ which leads to the same solution (appendix).

11 Besides the principal components method, parameters of factor models can be estimated from state space
representation using maximum likelihood. However, maximisation becomes very unreliable as N (the number of vari-
ables out of which we are extracting factors) grows. Therefore, it is used only when extracting factors given a smal-
ler number of variables.
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Now, new factors are given by FO and factor loadings by O*A*. However, this is not
a problem if factor analysis is used only in the preparation of data for a forecasting model
because each pair of FO and O*A* generates the same X. The problem occurs if we wish
to attribute structural interpretation to the factors because it is not a priori clear whether
represents true factors (forces generating the entire economy) or whether it is just a trans-
formation, which is very hard to interpret.

3.3 Forecasting model

Here, we apply the Stock-Watson forecasting model to Croatian economic series. The
aim is, to forecast the value of variable y at 7' + & using data available at time 7, that is, to
forecast y,.,, for a certain /. In our case, we are trying to answer the question of wheth-
er the information provided from 144 quarterly series today (see appendix), can help in
forecasting inflation / steps ahead?

The model is following:

X, = F;A'ir +é€, (13)
YVien =0 + ﬁ(L)E +Y(L)y, + & (14)

where a,, is a constant, B(L) and y(L) are finite-order polynomials in variable L, where L
is a standard lag (backward shift) operator. X, is the value of i-th variable at time # and F,
is r-dimensional factor vector at z. Therefore in (14) we assume that there is a linear de-
pendence between scalar variable y at time t + h and factors up to ¢. Additionally, we as-
sume that something on the future of the variable of interest can be said using informa-
tion form its own history, therefore, the term y(Z)y, also included.

We cannot start with the estimation of the parameters in (14), because not all the
predictors (factors F) are known. We cannot observe true values of factors, but we esti-
mate them from (13) according to the described procedure. Therefore we adopt the fol-
lowing strategy:

1 Factor estimation. From (13) we estimate time series of factors.

2 Forecasting. Up to the moment 7, data are known. Regression coefficients ¢, , S(L)
and 7(L) are estimated usmg data from time 1 to 7" (using least squares). Now, forecasts
are constructed as 3,,, =&, + ﬂ(L)F +7(L)y,. In order for this forecast to be the best in
the MSE sense, we assume that E(g,,, | 1,) =0, where /, is information available up to
the time ¢.

t+h

The forecasting step needs some explanation. Forecastmg is conducted with direct pro-
jection from data available up to the moment ¢, therefore, as 3,,, = &, + B(L)F +7(L)y,. This
is suitable because now it is not necessary to forecast factors (for example, using VARSs)
in order to find Y+ . It is not a priori clear which method yields better results, but the
procedure conducted here is simpler and, more importantly, requires the estimation of a
smaller number of parameters.
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Data set under consideration is divided in five groups (sectors) — Prices and exchange
rates (32 series), Labour market (24 series), External sector (28 series), Real sector (26 series)
and Money (34 series) which amounts to 144 series. For a list of all series see the appendix.

Analogously as in the calculation of principal components series are first transformed.
The theory requires that the series which enter the analysis are stationary. Under the as-
sumption that the original data are integrated of order one (therefore stationary after differ-
enced only once) with the conducted transformation, stationarity is approximated.'? Sea-
sonally adjustment is used to clean up the seasonal component, logarithms reduce possi-
ble heteroskedasticity, and differencing eliminates trends.

Forecasting the CPI inflation is of our primary interest. This index has a prominent
seasonal component, therefore, prior to the analysis, this series should be seasonally ad-
justed. Figure 3 shows monthly (mom) and annual rates (yoy) of original and SA CPI.

We see that monthly rates strongly depend on whether the series is seasonally ad-
justed, while in the case of annual rates this is less important as the seasonal component
is closer to some periodical function.!?

Figure 3 Growth rates for original series and seasonally adjusted series of consumer
prices index. The first figure shows monthly and the second annual rates

T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

—— MoM CPl inflation ~ ------ MoM CPI inflation (SA)

12 With the conducted transformations we really only approximate stationarity. Differencing is the most questi-
onable and it is very hard to determine how many times a single series needs to be differenced. All series which are
included in calculation (except exchange rates) exhibit clear rising or declining trends which suggests that they should
be differentiated at least once. Possible need for further differencing is hard to determine in a short time series envi-
ronment, having in mind the low power of unit - root tests.

13 Let us assume that the logarithm of a certain variable, recorded on a monthly frequency is decomposed
on seasonal component and (S) the leftover part (N): inY, =S, + N,. Annual growth rates are approximated with
Y, —InY,_,=S,+N,—(S,_,+N,_,)=8,-S,_, +(N,—N,_,), and,ifSis a periodical function of period 12, that is
S, =S,_,, , annual growth rates do not depend on seasonal component, so it is not important whether the series is sea-
sonally adjusted or not (figure 3).
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—— YoY CPlinflation ~  ------ YoY CPI inflation (SA)

Source: authors’ calculations; HNB

With the data available up to the time ¢, we are interested in finding the expected
growth rate for variable z, at ¢ + £, therefore, the expected value of
» 400

Z,
— 1 r+h 1 5
Yin h Z (15)

Rates defined in this way are annualised, and forecasts for various horizons /4 are di-
rectly comparable. Let us additionally define (annualised) quarterly rates for series of our

interest y, = 400 In=_. Let us notice that (15) gives accumulated quarterly rates for the
2

period from ¢ + 1 to ¢ + A.

Our final goal is factor forecasts of the consumer price index. In order to evaluate
their quality as accurately as possible, it is necessary to simulate real conditions of fore-
casting to the highest possible degree.

We use quarterly data, from the interval from the first quarter of 1998 to the second
quarter of 2007. For 4 steps ahead forecast, the interval from the first quarter of 1998 to (4
- h + 1)-th quarter 2003 is used only for estimation while the rest of the data is also used
for forecasting in the following recursive process:

1 Principal components methods is used to estimate factors (i.e. to calculate FA,).

2 Akaike’s information criterion is used to determine lag length both for factors and
dependant variable

3 Least squares are used to estimate parameters of regression
yth+h =a, +B(L)F, +y(L)y, + €., .
4 Forecast is constructed as 3., = &, + B(L)F, + 7(L)y,.

5 We add a new observation to the sample and go to 1 (except when the sample is ex-
hausted; in that case the procedure is over).
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In this manner, forecasts for arbitrary /4 are calculated for the period from first quar-
ter 2004 to second quarter 2007. The algorithm leaves the possibility of defining several
types of the model. Using our data we test the quality of the following two models:

Autoregressive model — AR. Let us assume that rates Vi depend exclusively on quar-

z
terly rates (and the lagged values) y, =400In—

. The lag length, from 0 to 4, is selected

by AIC. This model is used as benchmark. Discussion on the quality of forecasts given
by this model can be found in Kapetanios et al. (2007).

Autoregressive factor model — ARF. Let us assume that Vi depend on both current
and lagged values of factors and rates y,. The lag length is selected by AIC (from 0 to 4
for y and from 0 to 3 for factors). Let us define the model for & factors, k = 1,2, there-
fore two ARF models.

3.4 Forecasts evaluation

The quality of forecasts is measured by the standard measure - Mean Squared Error
(MSE) defined in the following way. Let x,, ..., x), be actual (observed) values, and
X, ..., X, forecasts of random variable x. Then:

MSE =1i(x,, -%) (16)

i=1

In table 3 we give MSE statistics for inflation forecasts for horizons from 1 to 4. Sta-
tistics are given as ratios to MSE of the autoregressive (AR) model. Therefore, when the
value is higher than unity, the model (in MSE - context) is worse than benchmark model.
However, the benchmark defined here is not trivially defined (for example, as a random
walk model etc) and cannot be beaten easily. Results suggest that factors extracted from
observed group of series have a certain potential in forecasting the dynamics of consumer
prices index. Adding a single factor (model ARF1) to a certain extent enhances forecasts
in relation to the benchmark. However, further adding factors did not improve forecasts.!'4
This result is in line with the results from Stock-Watson (2002) or Matheson (2006).

Table 3 Results of inflation forecasts of consumer prices index. MSE statistics
are shown as ratio to benchmark

Horizont 1 2 3 4
ARF1 0.91 0.81 0.72 0.92
ARF2 0.99 1.05 3.55 2.87

Source: authors’ calculations

14 Analysis is also conducted on data on a monthly frequency where forecasts are constructed on horizons up
to 12 months ahead. Results of this analysis suggest that factor forecasts with the use of two factors are better than
benchmarks on short horizons — up to 7 or 8 months. Although longer series of data are available with monthly fre-
quency, the aim of the analysis is the construction of inflation forecasts up to a year ahead. With the given scope of
available data, quarterly forecasts for up to four periods ahead seem to be more credible than monthly forecasts for
up to twelve periods ahead.

384



D. Kunovac: Factor Model Forecasting of Inflation in Croatia
Financial Theory and Practice 31 (4) 371-393 (2007)

Figure 4 Coefficients of determination from regressions between each of 144 series on
first, second, tenth and eleventh factor
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Note: Vertical lines separate series by sectors. Statistics (height of columns) for every factor show
the extent of variance for particular series which the particular factor explains. First two factors cumu-
latively explain approximately 45% of the overall variance of all series. For illustration, the tenth and
eleventh factors jointly explain only 4% of the variance.

Source: authors’ calculations

3.5 Further improvement of the model

Using a single factor increases the accuracy of the inflation forecast compared to
the benchmark. However, there are many possibilities for improvement of the factor
model implemented. We will outline only some of the segments of analysis that were
partially or entirely ignored. Therefore, with this outline we give recommendations for
future work.
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* Determining the number of factors to be included in the forecast model. Number
of factors should be determined using some of the information criteria devel-
oped for this purpose. In this respect the most reliable is the Bai-Ng estimator
(Bai-Ng, 2002). In this analysis we have tested models in which we have in-
cluded up to two factors. Cumulatively, they account for 45% of the total sam-
ple variance. Figure 4 illustrates a relatively strong correlation of the first two
factors and all series and a very low correlation of the tenth and eleventh with
the series. This partly justifies the ad hoc method of selection of the number
of factors.

* Treatment of missing values. In the analysis we have used 144 series having no miss-
ing values. Therefore, from the very beginning the selection of series was narrowed
to a significant extent. For the purpose of the imputation of missing values, the ex-
pectation maximization (EM) algorithm (Stock-Watson 2002) is standardly used.
This is especially useful in the so-called nowcasting of, for example, GDP (Schu-
macher and Breitung (2006) and Giannone et al. (2005)), where the data are avail-
able with a certain delay.

* Treatment of outliers. Considering the analysis concerns data correlation structure,
series values unusually far from expectations of the (stationary) analysed series,
should be excluded or somehow corrected. In this respect, series are scanned prior
to analysis and outliers are identified as missing values which are then treated as
described in the previous paragraph.

* Data with different frequencies. Sometimes it is useful to include both monthly or
quarterly data in the analysis. This is done using the EM algorithm.

* Seasonal adjustment. Although it was not necessary, we have seasonally adjusted
all series which were used for factors extraction. Furthermore, we have used only
trend-cycle components of series in the analysis — therefore, the procedure should
be also implemented on classic SA data. Finally, the analysis should be conducted
using various SA methods.

* Selection of series. Series which are to be used in the analysis could be selected more
rigorously, for example, on the basis of some sort of expert knowledge information.
Furthermore, the efficiency of the use of sectoral factors (extracted out of series of
hereby defined five groups of series- see appendix) in forecasting can be tested.

4 Conclusion

We have described the basic properties, goals and possibilities of methods for the
compression of a large number of data in just a handful of variables. Firstly, we have de-
fined the basics of the principal components analysis and represented it as a tool for the
analysis of the covariance structure of group of variables. Secondly, we have presented a
forecasting model of factor analysis which is, in the estimation phase, relies on the prin-
cipal components.

Furthermore, we have checked the efficiency of these methods on Croatian data. In the
first step, the (second moment) information of 144 variables relevant for Croatian econo-
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my were compressed into a handful of factors and tested for possible use in the forecast-
ing of CPI inflation on horizons up to four quarters ahead.

Using a single factor in the forecasting exercise increases the accuracy of inflation fore-
casts of the benchmark model, which encourages further research into factor models.

The conducted analysis is preliminary and its results cannot be considered final. There
is room for improvement of the implemented models, and key unresolved issues are ex-
plicitly enumerated and therefore the key directions for further analysis.

In this paper, factor models are tested on the problem of inflation forecasting where
it has been shown that information extracted from a large number of economic variables
can help in forecasting inflation. However, the methodology is described sufficiently gen-
erally and can be directly applied when forecasting other economic variables of interest
which are believed to be affected by the overall state in the economy (for example, indi-
cators of real activity or financial markets variables).
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Appendix
Appendix A
Parameters estimation using principal components

Let us consider the following factor model:

X,=FA +¢, t=1,..T,i=1,..,N, (17)

where F, is - dimensional vector of factors at time ¢ and 4, factor loadings coefficients.
In matrix notation we have:

X=FA" +¢, (18)

or analoguosly:
X" =AF"+€". (19)

Applaying the least squares method one needs to estimate £, and the matrix A, given
the fact that both the factors and the factor loadings are unobservable.

Given the data matrixX (having N xT elements) we need to estimate N X7 elements of
A and rxT elements of F, therefore overall number of parameters to be estimated is (N
+ T)xr. In order to estimate all of the parameters it is necessary to impose certain con-
straints. Two scenarios are to be distinguished: 7 >N and T’ <N. Depending on these re-
lations we adopt one of the two following estimation strategies.
Case I T> N

Assuming restriction A’A =/ we minimise the following function:

V(F,A) = iieﬁ = ii(xl, —AFET) =tr(X" = AFT)" (X" — AFY), (20)

i=1 t=1 i=1 t=1

where #r denotes the matrix trace operator's. We estimate factors from (19) applying (mul-
tivariate multiple) least squares:

F*=(A"A)'A"XT = (uvjet naA) = A°X°, 21

or:

1>

= XA. (22)

. . . . N T .
15 Matrix trace is defined as a sum of its diagonal elements. It can be shown that #r(A*A) =" > ai =Il Al is
squared Frobenius norm. So it is sufficient to minimise #(£°€).
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Substituting (22) in (20) and using the properties of # operator it follows:

Il X — AFT IR

= X" = AATXT I

= tr((X — XAAT)(XT — AATXT))

= tr(XX" — XAAXT — XAA'X" + XA(ATA)ATXT)

= IXIE —tr(A"XXA). (23)

V(E,A)

Norm I X I does not depend on A and therefore V(F, A) reachs the minimum for
A that minimises — (A" X" XA) or analoguosly that maximises (A" X" XA). Let us
notice that this is equivalent to the problem of finding maximum variance linear com-
binations of components of vector X (i.e. XA) under AA = I. Therefore it is a principal
component problem described in the second section. We mentioned that the problem is
solved by taking that A having as its columns the first few eigenvectors of X:X (N xN),
Now (22) yields factors:

F=XA. (24)

Case2 T<N

As in the first case, but using (18) and under restrictions F*F = [ eigenvectors of
XX (T*T) need to be calculated. Depending on the dimensions we choose between the
cases.
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Appendix B

List of series

Prices, exchange rates External Money

Crude Oil (average of Brent, WTI Original dana — Exports ~ Net Foreign Assets

and Dubai Fateh) (fo.b.) CBN Net Foreign Asets

CPI (Total) Original dana — Imports Banks Foreign Assets

Food and non-alcoholic beverages (fo.b.) Banks Foreign Liabilities

Alcoholic beverages and tobacco Original dana — Balance ~ Net Domestic Assets

Clothing and footwear Machinery and transport ~ Claims on central government and funds
Housing, water, electricity, gasand ~ equipment — Exports Claims on non banking sector

other fuels (fo.b.) Claims on enterpises

Furnishing, household eq. and rouitine Machinery and transport ~ Claims on households

m. of house

Health

Transport

Communications

Recreation and culture

Education

Catering and accommodation services
Miscellaneous goods and services
Goods

Services

Total excl. Energy

Total excl. Energy and Food
Goods excl. Energy

Food, beverages and tobacco
Core inflation

HWWA index (USD) — Total
HWWA index (USD) — Total excl.
energy

HWWA _ind. Raw. Materials
HWWA_Crude oil

PPI

HRK/EUR

HRK/USD

INEER

IREER CPI

IREER PPI

equipment — Imports
(cif)

Machinery and transport
equipment —

Balance

Other tansportation
equipment —

Import (fob)

Other tansportation
equipment —

Export (cif)

Road vehicles — Exports
(fo.b.)

Road vehicles — Imports
(cif)

Road vehicles — Balance
PPP — Exports (f.0.b.)
PPP — Imports (c.i.f.)
PPP — Balance

Oil - (Export)

Oil — (Import)

Export (total)

Export (energy)

Export (intermediate)
Export (capital)

Export (dur. goods)
Export (non-dur. goods)
Import (total)

Import (energy)

Import (intermediate)
Import (capital)

Import (dur. goods)
Import (non-dur. goods)

Other assets
Broadest money
Money supply
Currency outside banks
Deposits
Enterpises deposits
Households deposits
Quasi money
Kuna deposits
Households kuna deposits
Enterprises kuna deposits
Fc deposits
Fc enterprises deposits
Fc household deposits
Bonds and money market instruments
Broad money at fixed ER
Claims on other domestic sectors
at fixed ER
FC deposits at fixed ER
Credits to households
CNB international reserves
Net usable CNB international
reserves M0
Required reserve
Required reserve (in kuna)
Required reserve deposited with the
CNB (in kuna)
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Real Labour Market

Industrial production (total) Registered unemployment

Mining and quarrying Newly registerd

Manufacturing Employed from the register

Electricity, gas and water supply Deleted from the register for reasons other than
Eneregy employment

Intermediate goods Total persons in employement

Capital goods Persons in paid employment in legal entities
Durable consumer goods Persons in paid employment in legal entities in public
Non-durable consumer goods administration (LMN)

Total volume indicies of construction Persons in paid employment in legal entities in
Total volume indicies of construction — buildings industry (CDE)

Total volume indicies of construction — civil Persons in paid employment in craft and trades and
engeenering works free lances

Tourist arrivals Insured persons — private farmers

Tourist arrivals — domestic Active population (labour force)

Tourist arrivals — foreign Administrative unemployment rate

Tourist nights Nominal net wage

Tourist nights — domestic Real net wage

Trade Nominal gross wage

GDP Real gross wage

Investments Nomilan gross wage in public administration (LMN)
Consumption Nominal gross wage in industry (CDE)

Import Real gross wage in public administration (LMN)
Export Real goss wage in industry (CDE)

Nominal net wage in public administration (LMN)
Nominal net wage in industry (CDE)

Real net wage in public administration (LMN)
Real net wage in industry (CDE)
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