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Abstract
Every sport organisation strives to evaluate its performance: its weaknesses and strengths. Measuring 
efficiency and sports are two interrelated concepts and it is not surprising that most of the research 
on sports is focused on analysing the efficiency of teams according to player techniques, attack and 
defence efficiency. However, there are very few studies based on the analysis of financial factors such 
as teams’ revenue and costs. In this paper two Data Envelopment Analysis (DEA) models were used 
to evaluate 16 young cadet volleyball teams in Primorsko-Goranska County based on two economic 
inputs. The paper aims to explain the importance of teams’ financial resources in achieving sports 
efficiency. To analyse the relative efficiency of teams, two frequently used models are employed, the 
Banker Charnes Cooper (BCC) and the Charnes Cooper Rhodes (CCR) model. In the end, a super 
efficiency analysis was conducted to make a distinction in efficiency scores between efficient units. 
Analyses showed that financial factors are not crucial factors for efficiency score and gave possibility 
to use obtained results and improve the performance of inefficient volleyball teams. The study was 
conducted on a sample of 16 teams through 4 inputs and 1 output collected during 2017/2018 season.  
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1.	 INTRODUCTION

Efficiency and sports are two closely related concepts. Most of the research analyzing efficiency in 
sports investigates the effectiveness of one or a few sport segments such as player techniques or 
attack and defense performance, but rarely does it analyze the dependence of sports results on the 
revenues and costs of respective teams. A few decades ago, efficiency in sports was measured using 
simple methods. For example, in volleyball, they measured how many points athletes achieved 
with the same amount of tries and then they calculated the arithmetic mean for each athlete. 
Besides arithmetic means, they also calculated efficiency by observing the average relationship 
between two or more variables interrelated in some manner. For example, González-Silva et al. 
(2016), used multinomial logistic regression to calculate the efficiency of young male and female 
volleyball players. The main objective of that study was to analyze the variables that predicted 
setting efficiency in these categories. The study observed almost 6,000 game actions performed by 
teams that participated in the Under-16 Spanish Championship. 

Volleyball is one of the most widely spread played sports in the world (Olympic Programme 
Commission Report, 2005). This is not that strange considering that almost every second little girl 
in the world has tried to play volleyball. Some of these girls continued playing professionally and 
some as a form of recreation. This may probably be the reason why volleyball has been called a 
“female” sport. The percentage of female athletes in volleyball also lies in the possibility of higher 
dispersion of male athletes into other team sports. Volleyball is a famous sport in Croatia. There are 
many teams trying to survive with the limited financial help offered by the Croatian government, 
especially in Primorsko - Goranska County (PGC).  In PGC there are sixteen registered younger 
cadet teams. The actual number of teams is not known, as they probably do not have enough 
money to pay the registration fee in order to become a part of an official league. Namely, Croatian 
volleyball teams especially those involving children are mostly financed through membership fees, 
minor sponsors and donations.

In 2017, the Opatija Initiative, an initiative for sustainable financing of sports has been initiated. 
This initiative targets only the five top sports in PGC: football, basketball, volleyball, water-polo 
and handball. It has been recognized as a very creative concept, even revolutionary, with regard to 
financing sports and its role in the overall development of Croatian society. The initiative envisages 
new models of financing team sports from the sale of TV rights, sojourn taxes, betting agencies, 
municipal taxes and the introduction of tax breaks for sports. The trigger for this initiative lies in the 
fact that a large number of teams are on the edge of existence. Many are being shut down, and in 
the long run, the children will simply lose the opportunity to get involved in sports activities at low 
cost. Today there are more than 200,000 registered athletes in Croatia, and even more important, 
100,000 of them are under the age of 18. The Croatian government, on an annual basis, is obliged 
to allocate fairly the budget means aimed for the financial support of volleyball teams. As this 
research aims to investigate whether the amount of funds at a team’s disposal, generated through 
various means i.e. membership fees, sponsors, the government etc. is related to the team’s sporting 
success, the research findings may serve as a guideline in the allocation of financial support in 
volleyball. The success of the teams was measured by their results within the season 2017/2018. 
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In the past, the DEA approach was used for measuring efficiency in other contexts such as 
financial services (Fiordelisi, Molyneux, 2004), banking (Hauner, 2005), industry (Price, Weyman-
Jones, 1996), hospitals (Dervaux et al., 2004) and electricity (Bagdadioglu et al, 1996). In the past 
10 to 15 years, it has also been recognized as a common methodology for measuring efficiency 
in sports, such as football, handball, volleyball, etc. In 2018, Ali Emrouznejad and Guo Liang Yang 
published an invited paper A survey and analysis of the first 40 years of scholarly literature in DEA: 
1978–2016 in which they provided for a list of all publications related to theory and application 
of DEA from 1978 to 2016. In their study they followed the expansion of DEA use in 3 stages and 
found that about 1000 papers per year were published in the last period. The five fields with the 
greatest number of studies using DEA include Agriculture, Banking, Supply Chain, Transportation 
and Public policy. In a total of 10,300 listed papers, sports papers and relating journals account only 
for 30 entries. 

One of the DEA founders, William W. Cooper, and his coauthors Ramón, Ruiz, and Sirvent 
(2011) applied DEA to rank basketball players using cross-efficiency evaluation. They applied the 
output-oriented CCR model with a constant input and the following outputs: adjusted field goal 
(AFG), adjusted free throw (AFT), rebounds (REB), assists (AST), steals (STE), inverse of turnovers 
(ITURN), non-made fouls own (NFO) and fouls opposite (FOPP). Ramón, Ruiz, and Sirvent (2012) 
ranked tennis players through a common set of weights obtained as summaries of DEA profile 
weights. They used the CCR output-oriented model with the following outputs: percentage of 
1st serve, percentage of 1st serve points won, percentage of 2nd serve points won, percentage 
of service games won, percentage of break points saved, percentage of points won returning 
1st serve, percentage of points won returning 2nd serve, percentage of break points converted 
and percentage of return games won. As no input was considered, they introduced a nominal 
input with value equal 1 for all players. Alcaraz, Ramón and Ruiz (2013) also did a cross-efficiency 
evaluation which was carried out without the need to make any choice of DEA weights. 

Lozano et al. (2002), performed a relative efficiency assessment of nations participating in the 
previous five Summer Olympic Games using DEA models to investigate the relation between 
GNP and a country’s population and the number of gold, silver and bronze medals won. Three 
output variables were considered: the total number of gold, the total number of silver and the 
total number of bronze medals won in the Olympics. As for the input variables, they opted to 
include just two: Gross National Product (GNP) and population. They assumed that the economic 
power and the demographic power capture the most important factors affecting the expected 
performance of a nation. They used one linear programming (LP) for each DMU.

De Carlos, Alén and Pérez-González (2017) did a research using the latter study in order to analyze 
the relative efficiency of the Spanish Olympic Sports Federations in the Olympic cycle 2010-2012 
by employing a relational DEA model. In their analysis the data was grouped under 17 variables (4 
inputs, 10 intermediate inputs and 3 outputs) which allowed them to simultaneously calculate 
the efficiency of the system and its different stages and show the impact of public and private 
financing on sport results. 
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Finally, it is also important to mention studies correlating financial resources and efficiency scores, 
and financial resources and the effectiveness and productivity of sport federations. Ghotnian et 
al. (2018) used data such as amount of resources, facilities, goals and strategies to calculate the 
efficiency of thirty-nine sport federations. Meza et al. (2015) evaluate the efficiency of Brazilian 
Olympic Confederations based on the financial resources received and their conversion into results, 
e.g. medals. They employed two different models, the BCC model and the DEA non-radial model, 
which is very similar to the BCC model. The DEA non-radial model was formulated using two 
inputs and three outputs. The first input is represented by the funds coming from the Agnelo/Piva 
Law that were transferred to each Olympic Confederation by the Brazilian Olympic Committee in 
2011. This input measures the amount of money available for each sport investment. The second 
one is the number of gold medals offered for each sport in the 2011 Guadalajara Pan American 
Games, as a proxy for difficulty measure in winning a medal. This second input represents the non-
controllable variable of the problem. The outputs are the number of gold, silver and bronze medals 
won by each sport during the same sporting event.

The above mentioned studies justify the option to use the DEA approach in the analysis of the 
efficiency of 16 young cadet volleyball teams. The goal of the analysis is to investigate whether and 
to what extent a team’s financial resources impact the team’s sports results i.e. its efficiency with 
respect to selected inputs and output. Moreover, a strong hold for this analysis lies in the work of 
Guzmán and Morrow (2007); Gutiérrez and Lozano (2014); Moreno and Lozano (2015) whose 
implementation of DEA in sports using financial inputs/ outputs was very successful

2.	 METHODOLOGY

Data Envelopment Analysis (DEA) was first defined by Charnes, Cooper and Rhodes in 1978, who 
defined it as a methodology that measures relative efficiency of decision-making units (DMUs) 
by converting multiple inputs into multiple outputs. DEA is a linear programming method that 
compares the input and output levels of a decision making unit with the levels of other DMUs 
from its peer group. Namely, the ratio of outputs to inputs shows the relative efficiency of each 
DMUo (within DMUj) which is then evaluated relatively according to the ratios of all DMUj for j 
= 1,2,…,n. 

As previously mentioned, DEA has numerous applications because it was developed for analysing 
relative efficiency of non-profit DMUs with heterogeneous inputs and outputs.

2. 1 	 BASIC CCR AND BCC MODEL

The first model to be used in the analysis is the Charnes Cooper Rhodes model (CCR-model). 
This model can be interpreted as the transformation of a multiple output/input ratio into a single 
virtual input and a single virtual output that represent a measure of a particular DMU’s efficiency. 
Using the obtained data, the efficiency of each DMU will be measured once, which means that n 
optimization need to be performed, one for each DMUj .  Let the DMUj be evaluated based on the 
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any trial  for o  = 1,…, n.  Fractional  linear programming should be solved to obtain input 

weight values for iv  ( mi ,...,1= ) and output weight values marked as ru  ( sr ,...,1= ) variables.

In the mathematical form of fractional programming. this reads as (Cooper, Seiford and Tone, 
2006):
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Variables ur, vi, yr and xi represent the output weights, input weights, output and input values of the 
observed DMUo respectively. The constraint ensures that the ratio of virtual output vs virtual input 
for every DMU, including DMUo , will be less than or equal to unity. Namely, mathematically, the 
nonnegativity constraint is not sufficient for the fractional terms to have a positive value. 

The second model used in the analysis is the Banker Charnes Cooper model (BCC model). The BCC 
model differs from the CCR model because it includes the convexity condition in its constraint. 
This additional constraint reflects graphically on the shape of the efficiency frontier. The efficiency 
frontier is spanned by efficient DMUs. The CCR model has thus a linear efficiency frontier while the 
BCC mode, a piecewise linear efficiency frontier. The BBC model’s piecewise linear shape is a result 
of variable returns to scale (See Figure 1).

Figure 1. The graphical representation of CCR and BCC productivity frontiers

Source: Authors  according to the Cooper, W., Seiford, L., Tone K.: Introduction to Data Envelopment Analysis and Its 
Uses, Springer , 2006.

Data Envelopment Analysis models can be output or input oriented. Orientation is chosen 
according to the nature of the problem or the researcher’s perspective. In an input orientation, the 
DEA minimizes the input for a given level of output; in other words, it indicates how much a DMU 
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can decrease its input for a given level of output. In an output orientation, the DEA maximizes the 
output for a given level of input; in other words, it indicates how much a DMU can increase its 
output for a given level of input

However, DEA has some drawbacks. One of the main traps of the Data Envelopment Analysis is 
that efficiency scores are sensitive to the number of included inputs and outputs. Namely, the DEA 
methodology has limitations regarding the number of inputs and outputs because the efficiency 
scores can be overestimated in cases when the number of inputs and outputs is too high in regard 
to the number of variables i.e. observations. According to the studied literature, overestimation 
can be prevented if the number of inputs and outputs is tied to the number of DMUs (number of 
observations/ volleyball teams) in the following way (Dyson et al., 2001); n (number of observations) 
> 2ms, where m and s represent the number of inputs and outputs respectively. Another relevant 
solution in determining the adequate number of inputs/outputs, according to Raab and Lichty 
(2002), is given either by the relation n > 3(m + s) or according to Despotis (2002), where n ≥ max 
{m*s; 3(m + s)}. 

2. 2 	 SUPEREFFICIENCY MODEL

As previously stated, all efficient DMUs, according to data envelopment analysis, are ranked 
equally in terms of performance. The standard DEA models have a large number of applications 
and modifications. One of the most important extensions of the DEA model is the formulation 
of super-efficiency models used for ranking DMUs with an efficiency unity score. The most well- 
known super efficiency model is that established by Anderson and Petersen in 1993. This model 
involves executing standard DEA models (constant return to scale and variable return to scale) 
under the assumption that the evaluated DMUs are excluded from the reference set. 

The super efficiency model is given by (Petersen, Anderson 1993):
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where jX  represents the m-dimensional vector of input,  jY  the s-dimensional output vector, 

jE  the scalar defining the share of the input vector necessary for producing the jY DMU’s 

output vector within the frames of referent technology, Z the vector of intensity  where kz  
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represents the intensity of the k-unit,δ the non-Archimedean infinitesimal, and e′  the unity 
vector of appropriate dimension.

Peterson and Anderson explained the consequence of excluding an evaluated unit from the 
reference set using a graphical example (more in Anderson, Peterson, 1993) Their model was used 
as a base for further super-efficiency model development (Tone, 2002).

3.	 DATA AND ANALYSIS 

The data on the 16 analysed young cadet volleyball teams was obtained through questionnaires 
and interviews with individuals involved in managing the respective teams i.e. club management 
officials and coaches. The data covered the 2017 – 2018 season.

As only 16 DMUs are observed, we opted to take five inputs and a single output into analysis. 
Namely, in accordance with the above mentioned theoretical prepositions, the optimal number of 
observations should be greater than 10 (k >2∙5∙1) if we consider Dyson, or should be greater than 
18 (3 ∙ (5+1)) if we follow Raab and Lichty.  

The inputs used are as follows: the number of players (girls) registered, the number of coaches, the 
number of games played and total revenue and total costs. The number of won games is taken as 
the output as it is seen as a measure of a team’s success. The revenue of a team aggregates donations 
and monthly membership fees while total costs include sums paid out to coaches, monthly rent for 
the gym, costs of medical examinations, transportation costs, registration fees and money paid out 
for referees. The inputs and outputs were defined in consultation with the coaches/management 
of young cadet volleyball teams. The number of players is taken as one of the input values because 
the number of players affects the number of winnings because a greater number of players enables 
better team management on court; moreover, it also generates more revenue from membership 
fees. Revenue also contributes to better practice conditions, employment of better coaches with 
greater experience etc. The number of coaches is the second input as their number enables more 
efficient work. More coaches provide for the opportunity to have target trainings with individual 
groups of players, regular training sessions in cases of coach absence etc.  Total revenue is the third 
input used in the analysis because revenue levels determine the number of coaches, the number of 
away games, the purchase of new equipment which usually motivates players, and better balanced 
meals before or after away games. All these factors depend on revenue, and according to the 
interviewed coaches affects sport results.  The same, but opposite, can be said for total costs, which 
is the fourth input. Table 1 shows the values of selected inputs and output.
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Table 1. Table representation of inputs and outputs

DMU/clubs
(I1) No of 

players
(I2)No of 
coaches

(I3)Total revenue 
in HRK

(I4)Total costs 
in HRK

(I5)No of 
games

(O1)No of 
winnings

Rječina 11 2 78,800 41,150 29 29

Rijeka 15 2 302,961 28,050 29 24

Sv. Matej 14 1 69,000 11,710 29 23

Drenova 8 1 194,201 21,950 29 14

Škurinje 10 1 15,000 17,775 32 16

Crikvenica 15 1 134,490 89,525 32 11

Matulji 11 1 158,506 43,075 32 15

Kastav 15 1 88,500 14,775 32 15

Lošinj 18 1 77,090 48,875 36 24

Turnić 15 1 43,029 20,625 36 21

Opatija 16 1 140,975 25,143 36 19

G. Vežica 15 1 54,263 24,375 36 18

Kozala 15 1 42,884 22,875 36 19

Kostrena 18 1 147,000 55,275 35 7

Rab 15 2 20,500 31,275 35 4

Zamet 11 1 22,000 24,525 36 5
Source: Authors’

The initial analysis included 5 inputs. However, one of them, the number of games played, 
was negatively correlated with the output as well as two other inputs and was, according to 
Sarkis, (2007), excluded from the further analysis (grey column in Table 1). According to the 
DEA correlation matrix, all other inputs correlate positively among themselves and with the 
output, except for the fourth input (total costs) which negatively correlates with the output. 
The second analysis showed that this exclusion did not cause any changes in efficiency scores. 
Since we wanted to determine whether and how inefficient units can improve their output, 
having the same level of inputs, output oriented models are used. The DEA SolverPRO Version 
11 was used to calculate the  efficiency scores  the above mentioned data.
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Table 2. Compared ranking of CCR and BCC model results

CCR results BCC results

No. DMU Score Rank No. DMU Score Rank

1 Rječina 1 1 1 Rječina 1 1

3 Sv. Matej 1 1 3 Sv. Matej 1 1

5 Škurinje 1 1 4 Drenova 1 1

9 Lošinj 1 1 5 Škurinje 1 1

10 Turnić 1 1 9 Lošinj 1 1

13 Kozala 0.9059 6 10 Turnić 1 1

4 Drenova 0.8235 7 2 Rijeka 0.9115 7

12 G. Vežica 0.8218 8 13 Kozala 0.9059 8

11 Opatija 0.8133 9 12 G. Vežica 0.8218 9

2 Rijeka 0.8014 10 11 Opatija 0.8133 10

7 Matulji 0.75 11 7 Matulji 0.8108 11

8 Kastav 0.6498 12 8 Kastav 0.6498 12

6 Crikvenica 0.4731 13 6 Crikvenica 0.4731 13

16 Zamet 0.2918 14 16 Zamet 0.2918 14

14 Kostrena 0.2917 15 14 Kostrena 0.2917 15

15 Rab 0.1829 16 15 Rab 0.2336 16
Source: Authors’ calculation

If we compare the results obtained by using the CCR and BCC models, we can notice that 
according to the BCC model (Table 2) one additional DMU was estimated as efficient. The initial 
results showed that 31.25% of units (teams) are efficient according to the CCR model and 37.5% 
according to the BCC model. As this difference is not significant and since only one unit more is 
estimated as efficient by the BCC model, there is no variable return to scale and the analysis can 
be continued using just the CCR model. It can be also concluded that 69% of units are estimated 
above average according to both models (Table 3).

Table 3. Summary results according to CCR and BCC model

MODEL

DATA
CCR BCC

NUMBER OF DMUs 16 16

No. of relatively efficient DMUs 5 6

Average 0, 7378 0,7627

Max value 1 1

Min value 0,1829 0,2336
Source: Authors’ calculation
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4.	 RESULTS AND DISCUSSION

Continuing the analysis with the CCR model, the reference sets were calculated as well as the 
following projections. The calculated reference sets for inefficient units are presented in Table 4. 

Table 4. Inefficient units and their reference sets

No. DMU Score Rank Reference(Lambda)

1 Rab 0.1829 16 Škurinje 1.367

2 Kostrena 0.2917 15 Lošinj 1

3 Zamet 0.2918 14 Sv. Matej 0.044 Škurinje 0.791 Turnić 0.165

4 Crikvenica 0.4731 13 Sv. Matej 0.75 Lošinj 0.25

5 Kastav 0.6498 12 Sv. Matej 0.918 Lošinj 0.082

6 Matulji 0.75 11 Rječina 0.176 Sv. Matej 0.647

7 Rijeka 0.8014 10 Rječina 0.485 Sv. Matej 0.69

8 Opatija 0.8133 9 Sv. Matej 0.639 Lošinj 0.361

9 G. Vežica 0.8218 8 Sv. Matej 0.301 Lošinj 0.1 Turnić 0.599

10 Drenova 0.8235 7 Rječina 0.353 Sv. Matej 0.294

11 Kozala 0.9059 6 Škurinje 0.005 Turnić 0.995
Source: Authors’ calculation

The frequency of appearance of a particular DMU in the reference sets confirms its ranking as an 
efficient unit. Namely, since  all  efficient  units  are  rated  with  the  maximum  value  of  1,  the 
re-occurrence of a DMU in reference sets can tell us just how “strong” that evaluation really is. For 
instance, the DMU Sveti Matej has the highest frequency of appearing in different reference sets, i.e. 
Sveti Matej showed up as a referent unit in eight of the eleven cases. 

A reference set also gives us information which volleyball team from the reference set can be used 
as a role model for others, the non-efficient volleyball teams, because all teams belonging to a 
reference set have very similar level of inputs but only the role model team(s) managed to achieve 
higher efficiency score(s).

As one of the advantages of DEA lies in the possibility to calculate projections, which may serve 
as benchmarks for improving efficiency, we calculated the projections for every inefficient unit 
in our sample. For example, the projections for DMU Rijeka, calculated with respect to the liner 
combination of two relatively efficient teams from the reference set (Rječina and Sveti Matej), 
show that Rijeka can improve its performance by as much as 25%. Namely, if we observe the data 
presented in Table 5, it can be seen that DMU Rijeka can reach the efficiency frontier and increase 
the number of winnings for approximately 25% (5 more wins) according to the selected inputs 
because they have an additional coach and more financial resources than other teams. Looking 
from the input oriented perspective, it can be said that even with decreasing inputs, i.e. less financial 
resources and less coach engagement their performance can remain at the same level (Table 5).
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Table 5. Example of projections for DMU Rijeka

Inputs/output

 DMU data No of coaches

DMU Score Rank Data Projection Diff.(%)

Rijeka 0,8 10 2 1.6607 -16.97

Total revenue Number of winnings

Data Projection Diff.(%) Data Projection Diff.(%)

302961 85858.9 -71.66 24 29.95 24.78
Source: Authors’ calculation

As mentioned earlier, efficient units were all rated with a maximum value of 1. However, the 
frequency of their re-occurrence in calculated reference sets indicates that there are differences 
in terms of efficiency among them. In order to rank them, a super-efficiency model was used. 
The one we opted for was the Slack based Model (SBM – CCR model) with output orientation 
developed by Kaoru Tone (2001), as it minimizes weighted l1 distance from an efficient DMU to 
the production possibility set, excluding the evaluated unit from the set. The results of the super-
efficiency analysis of observed teams are shown in Table 6. 

Table 6. Super-efficiency score

DMU Score Rank

Škurinje 2.1856 1

Sv. Matej 1.929059 2

Rječina 1.592743 3

Turnić 1.069606 4

Lošinj 1.043478 5
Source: Authors’ calculation

According to the obtained results, the volleyball team Škurinje was estimated as the relatively most 
efficient DMU. Even though its output score is not the highest, it was ranked as the most efficient 
DMU because its ratio of inputs to output is higher than those of other DMUs. Namely, its scores 
are ranked fourth, but its inputs are significantly lower than those of Rijeka, Rječina and Sveti Matej. 
However, it should be noted that the reference set results indicated that Sveti Matej is the most 
efficient team (8 out of 11 appearances) which is somewhat confirmed by its ranking according to 
super-efficiency scores.

5.	 CONCLUSION

The intention of this paper was to include financial factors as inputs and to investigate whether 
these factors impact the relative efficiency sports results of young cadet volleyball teams using the 
non-parametric DEA approach on a sample of 16 volleyball teams in Primorsko-Goranska County 
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with respect to 4 inputs and 1 output. The basic DEA analysis showed that 31.25% of units (teams) 
are efficient according to the CCR model and 37.5% according to the BCC model, 5 and 6 relatively 
efficient DMUs respectively. The analysis also showed that financial factors are important, but not 
crucial, for the efficiency score. The Data Envelopment Analysis enabled us to determine that on 
one hand, smaller clubs, with smaller financial support, like Škurinje, Sveti Matej and Rječina can be 
efficient and that on the other hand, clubs with higher revenues, like Rijeka, do not always yield 
success. Moreover, it may be said that revenue is the main pillar in ensuring the basic conditions 
for efficient work, but our analysis shows that the number of winnings depends also on the quality 
of their work and the capacity of players to overcome inequalities in financial inputs. This capacity 
may result from the team’s enthusiasm, motivation and hard work, factors which have not been 
included in this analysis but that could surely provide answers to why teams with less financial 
means achieve better results in relative efficiency scores.  

Generally, it can also be concluded that DEA represents a powerful tool in measuring sports 
efficiency which enables benchmarking between homogeneous units that works in similar 
conditions. It also enables the creation of reference sets based on which projections can be 
calculated. Furthermore, it helps club managers to detect the weaknesses and strengths of their 
teams in order to improve their efficiency or it can help them to find sources of inefficiency. 

Most importantly, the results of this study may serve as a guideline for a fairer allocation of state 
funds and the introduction of new models of sustainable financing of team sports, such as the one 
proposed by the Opatija Initiative. Namely, the survival of sport clubs, especially those involving 
children and teenagers are of extreme importance for the development of any society. 

In order to obtain more plausible results, the research should be extended to include a larger 
sample, timeframe (window analysis) and more detailed analysis of financial inputs.

* This paper has been financially supported by the University of Rijeka, project ZP UNIRI 2/19
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Sažetak
Svaka sportska organizacija ulaže značajan trud u evaluaciju svoje učinkovitosti, svojih slabosti i 
snaga. Mjerenje efikasnosti i sport su međusobno isprepleteni pojmovi i nije iznenađujuće da je većina 
istraživanja u području sporta usredotočena na analize efikasnosti sportskih momčadi vezano uz 
tehniku igrača, efikasnost napada i obrane, a rijetko bazirano na financijskim čimbenicima poput 
prihoda i troškova momčadi. U ovom radu su promatrajući ekonomske inpute upotrjebljena dva 
modela metode omeđivanja podataka (DEA) za ocjenu šesnaest mlađih kadetskih odbojkaških 
momčadi u Primorsko-goranskoj županiji. Analizom se pokušalo utvrditi značajnost financijskih 
sredstava koje timovi imaju na raspolaganju u postizanju efikasnosti sportskih rezultata. Za analizu 
relativne efikasnost momčadi, upotrijebilo se dva učestalo korištena modela Banker Chames Cooperov 
(BCC) i  Chames Cooper Rhodesov  (CCR) model. Na kraju je izvršena analiza superefikasnosti  kako 
bi se moglo razlučiti rezultate efikasnosti između efikasnih jedinica. Analiza je izvršena na uzorku od 
16 momčadi uz pomoć 4 inputa i jednog outputa u sezoni 2017-2018. 

Ključne riječi: relativna efikasnost, analiza omeđivanja podataka, odbojka, sportski timovi, ekonomski 
čimbenici

Creative Commons Attribution – 
NonCommercial 4.0 International License


