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1 Introduction
According to the statistics, the total greenhouse gas (GHG) 
emissions associated with aviation will be 400 to 600 % 
higher in 2050 than in 2010.1 In addition, it is impera-
tive to reduce carbon dioxide (CO2) emissions given their 
harmful impact on the environment. Over the last 10 to 20 
years, these environmental concerns have led to the inten-
sification of studies inherent to the search for alternatives 
to conventional fuels.2

Among the developed alternatives that have significantly 
lower greenhouse gas emissions than conventional fuel, 
biofuels are presented as an attractive renewable energy 
source that is environmentally friendly.3 The raw materials 
used for the production of biofuels are of biological origin 
and are therefore renewable. Non-edible oilseed crops are 
the main resources available.3

Specifications and limits on physical properties of fuels are es-
tablished in America by the American Society for Testing and 
Materials (ASTM specifications) and in Europe by the Euro-
pean Committee for Standardization (EN European Norm).4

Density and viscosity of biofuel are two important physical 
properties that define the quality of fuels.5 The density of 
a substance is defined as its mass per unit volume. It is 
a physical property that is used for the design of storage 

tanks and pipes, and that calculates the precise volume of 
fuel needed to provide the adequate combustion. Viscos-
ity is the physical property of a substance characterizing 
its resistance to flow. Viscosity influences the lubrication 
properties as well as the combustion properties of the fuel. 

Low viscosities lead to poor lubrication, which can cause 
excessive wear and leakage. Higher viscosities can cause 
an obstruction of the hoses or poor atomization of the fluid 
leading to poor combustion and an increase in exhaust gas 
emissions.4

Physical and chemical properties of some compounds can-
not be obtained directly or immediately from experiments 
due to experimental safety and efficiency.6 The develop-
ment of prediction methods are of great value in estimating 
properties of biofuel. Therefore, much research has been 
directed towards the design of models for the prediction 
of physical properties of different types and different sys-
tems of biofuel. For example, Baroutian et al.7 proposed 
the empirical correlations to estimate viscosity and density 
of binary and ternary blends of palm oil + palm biodies-
el + diesel fuel at different temperatures. Chavarria-Her-
nandez et al.8 designed three complementary correlations 
to accurately predict the kinematic viscosity of FAMEs and 
biodiesel for a wide temperature range (263.15–373.15 K), 
and for a wide range of hydrocarbon chain length  
(C6 : 0–C24 : 0, including unsaturated FAMEs). 

Few predictive studies of biofuel properties using artificial 
neural network models have been reported in the litera-
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ture. For example, Rocabruno-Valdés et al.9 predicted the 
density, dynamic viscosity, and cetane number of biodiesel 
using artificial neural networks. The authors used an array 
of 16 : 1 : 1 for the density of biodiesel, sixteen entries for 
the temperature, and the composition of each fatty acid 
methyl ester, C8 : 0 to C24 : 0 in biodiesel, 16 : 1 : 1 for the 
dynamic viscosity of biodiesel, 16 : 2 : 2 for the density–vis-
cosity of biodiesel, 16 : 6 : 1 for the cetane number of bio-
diesel. More recently, various neural networks, including 
single layer neural network (SLNN), deep neural network 
(DNN) with multi-layers, and convolution neural network 
(CNN) have been developed by Houet et al.6 to predict 
multiple molecular properties simultaneously. 

For the prediction of all 15 molecular properties at a time, 
DNN with 3-layers network exhibits the best results. They 
concluded that the number of layers in DNN play a key 
role in the prediction of multiple molecular properties si-
multaneously.

Given the importance of viscosity and density prediction 
models, the main objective of this work was to develop a 
mathematical model using artificial neural network to esti-
mate the density and kinematic viscosity of different types 
and different systems of biofuels and their blends with die-
sel fuel. The details of the calculation method, numerical 
validation, statistical analysis, and comparative analysis are 
fully described in this work.

2 Experimental
2.1 Density and viscosity

The general empirical correlations in the literature for the 
density and viscosity in function of temperature and vol-
ume fraction can be given by:

y = exp(a0 + a1Xv + a2Xv/T + a3/T + a4/T2
 + a5Xv/T2

 + 
a6T + a7XvT) + a8T 3 + a9T² + a10T + b0Xv + a11,

(1)

where y is a kinematic viscosity (µ) in mm2 s−1 or a density 
(ρ) in g cm−3, b0, a0, a1, a2, …a11 are constants, T is a tem-
perature in K, and Xv is a volume fraction.

The values of (b0, a0, a1, a2,… a11) for different systems in 
the literature are summarized in the Table 1.

2.2 Artificial neural networks

Neural network is a widely distributed parallel processor 
consisting of simple processing units (nodes) that perform 
certain mathematical functions, usually non-linear. This 
type of arithmetic calculated by the system is similar to 
the human brain structure. The great advantage of these 
models is their ability to learn, circulate, or extract rules au-
tomatically from the complex data.13 In ANN applications, 
three stages are considered: (a) training, (b) validation, and 
(c) testing.14

In such ANN, a neuron in a hidden or an output layer has 
two tasks:15 to sum the weighted inputs from several con-
nections plus a bias value, and then to apply the transfer 
function to the sum (Fig. 1):

 

; j = 1, 2, …, m. (2)

The output Sk:

 

; k = 1, 2, …, l. (3)

Table 1 – Values of (b0, a0, a1, a2 … a11) for different systems in the literature

Constants
Kinematic viscosity Density

Ref. 10 Ref. 11 Ref. 12 Ref. 10 Ref. 11 Ref. 12

Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (6) Eq. (7) Eq. (8) Eq. (9) Eq. (10) Eq. (11) Eq. (12) Eq. (13)
b0 0 0 0 0 0 0 0 0 0 0 0 b0

a0 0 0 a0 a0 a0 a0 a0 a0 0 0 0 0
a1 0 0 0 0 a1 a1 a1 a1 0 0 0 0
a2 0 0 0 a2 0 0 0 a2 0 0 0 0
a3 0 a3 a3 a3 a3 a3 0 a3 0 0 0 0
a4 0 0 a4 0 0 0 0 0 0 0 0 0
a5 0 0 0 0 a5 0 0 0 0 0 0 0
a6 a6 a6 0 0 0 0 a6 0 0 0 0 0
a7 0 0 0 0 0 0 a7 0 0 0 0 0
a8 0 0 0 0 0 0 0 0 a8 0 0 0
a9 0 0 0 0 0 0 0 0 a9 0 0 0
a10 0 0 0 0 0 0 0 0 a10 a10 a10 a10

a11 0 a11 0 0 0 0 0 0 a11 a11 a11 a11
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Combining Eqs. 2 and 3, the relation between the output 
(Sk) and the inputs Ei of the ANN is:

 

; k = 1, 2, …, l. (4)

The output is computed by means of a transfer function 
(activation function). The typical activation functions which 
fulfil these requirements are:15

hyperbolic tangent transfer function:

 
, (5)

identity transfer function:

f(x) = x. (6)
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Fig. 1 – Schematic of a three-layer feedforward neural network, 
where Ei is the input of neuron i; wi,j is the synaptic 
weight of the connection from neuron i of the input layer 
to neuron j in the hidden layer; vk,j represents the weight 
of synaptic connection the neuron j of the hidden layer 
to neuron k of the output layer; bj and bk represent the 
means of neuron j in the hidden and the neuron k of the 
output layer; Sk is the output of neuron k.

2.3 Data acquisition and analysis

Databases of this study have been formed from the results 
reported in the literature. A total of 1025 data points were 
obtained from various scientific publications10–12,16–24 to es-
timate the density and kinematic viscosity of different sys-
tems of biofuels and their blends with diesel fuel.

In this case, the database was divided randomly into three 
groups of 70 % for training, 15 % for testing, and 15 % 
for validating. Temperature, volume fraction, μ (at 20 °C), 
and ρ (at 20 °C) were considered as input variables of the 
artificial neural network. 

The minimum (min) and maximum (max) values are pre-
sented in Table 2 and a general representation of an ANN 
with “six” number of inputs is shown in Fig. 2. 

The list of pure, binary, and ternary systems, and the ex-
perimental data points for the density and kinematic vis-
cosity of both systems that have been used in this study 
is presented in Table 3. In this work, the STATISTICA pro-
gram was used for the application of the artificial neural 
network.

Table 2 – Limit values for the input and output variables on the 
ANN models

Min Max Units
Input values

temperature ⁄ T −10 200 °C

volume fractions ⁄ X1, X2, X3 0 1 volume 
fraction

density at 20 °C ⁄ ρ 0.7560 0.9188 g cm−3

kinematic viscosity at 20 °C ⁄ µ 0.67 74.19 mm2 s−1

output values
density ⁄ ρ 0.7180 0.9259 g cm−3

kinematic viscosity ⁄ µ 0.58 119.48 mm2 s−1

wi,j
T(°C)

X1

X2

X3

μ 

μ 
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Fig. 2 – ANN architecture used for estimation in the present 
work

2.4 Selection of optimal configuration

The performance of a trained network can be measured 
to some extent by the errors on the training, validation, 
and test data sets. Regression analysis has been applied to 
assess the network capability for density and kinematic vis-
cosity predictions. 

The coefficient of determination, R2 (see Eq.  (7)),25,26 has 
been used as a measure to evaluate how the trained net-
work estimation is correlated to the experimental data. Also, 
different neural network topologies have been compared 
using root mean square error (RMSE) (see Eq. (8)).25,26 The 
RMSE and R2 are calculated using the following equations:
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, (7)

 
, (8)

where n is the number of observations; k is the number of 
variables; yexp and ypred are the observed and the calculat-
ed values, respectively; and  and  are the averaged 
values for the observed and the calculated values, respec-
tively.

2.5 Internal and external validation

For the validation of the predictive power of the ANN mod-
el, two basic principles (internal validation and external val-
idation) are available. In this study, the internal validation 
was used to evaluate the internal predictive ability of the 
developed models, and its result was defined as Q2

LOO (see 
Eq. (9))27 and the external validation to determine both the 
generalizability and the true predictive ability of the ANN 
models for new chemicals, by splitting the available dataset 
into a training set and an external prediction set, and its 
result was defined as Q2

ext (see Eq. (10)).27

The Q2
LOO and Q2

ext are calculated using the following 
equations:

 
, (9)

where , , and  are the experimental, predicted, 
and average of the experimental values for the training set, 
respectively. For Q2

LOO > 0.5 is considered satisfactory, and 
for Q2

LOO > 0.9 is excellent.28

 

, (10)

where  and  are the experimental and predicted 
values for the prediction set, respectively, and  is the 
mean experimental of the experimental values for the 
training set.

3 Results and discussion
A range of one to six neurons in the hidden layer was ob-
tained in the ANN models to predict the properties of dif-

Table 3 – List of pure, binary, and ternary systems used in the development of the model

N Pure system A Exp. data points Refs.

1
2
3
4
5
6
7
8
9

10

Soybean oil, sunflower oil, rapeseed oil, grapeseed oil 
Corn oil
BD*(n-peanut-sunflower)
Soybean FAME
BD*(rapeseed oil)
BE* 
BD* (sunflower waste-frying oil), Jojoba oil
Castor oil 
Soybean FAEE
Jatropha FAME, Jatropha FAEE

308

21

19,21

12

11,20,23

17

17,10

24

22

23

16

N Binary system A–B Refs.
11
12
13
14
15
16
17

18

BE*-PD
PD-BD*(n-peanut-sunflower)
PD-Soybean FAME
Soybean oil-PD, Soybean FAME-PD
PD-Soybean oil
BD*-Jojoba oil, PD-BD*, PD-Jojoba oil
PD-Soybean FAME, Methanol-Soybean FAME, 
PD-Soybean FAEE, Ethanol-Soybean FAEE
Jatropha FAME-Jatropha FAEE

489

10

12

11

20

18

24

23

16

N Ternary system A–B–C Refs.
19
20
21
22

PD-Methanol-Soybean FAME, PD-Ethanol-Soybean FAEE
PD-BD* (rapeseed oil)-Ethanol
Soybean FAME-Soybean oil-PD
Jatropha FAME-Jatropha FAEE-PD

342

23

17

20

16

* BD: biodiesel; BE: bioethanol; PD: petrodiesel; FAME: fatty acid methyl ester; FAEE: fatty acid ethyl ester
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ferent systems. The topology of the neural network was 
determined by the following: the number of layers and 
neurons in each layer, and the nature of the transfer func-
tions. The next section presents the most effective models 
that were found in this work. The STATISTICA program was 
used for the application of the artificial neural network. 
The best neural network configuration had one hidden lay-
er with twenty-six (26) neurons (Table 4). Fig. 3 illustrates 
the correlation between the simulation results of the devel-
oped neural network and the experimental data points for 
the density and kinematic viscosity. The perfect fit (output 
equal to targets) is indicated by the solid line. The close 
proximity of the best linear fit to the perfect fit, as observed 

in Fig. 3, shows a good correlation among the network pre-
dictions and the experimental data (R2 = 0.9965 for the 
density and R2 = 0.9938 for the kinematic viscosity).

3.1 Mathematical expressions optimised neural models

From the optimised ANN, represented in Fig. 4, the den-
sity and kinematic viscosity of different systems can be 
expressed by a mathematical model that incorporates all 
inputs Ei (T, X1, X2, X3, ρ (at 20 °C), µ (at 20 °C)) within it, 
as follows: 

Table 4 – Selected parameters of the optimal multi-layer perceptron

Parameters  studied

RMSE
(minimum value)

R2

(maximum value)
Selected parameters

density kinematic 
viscosity density kinematic 

viscosity
The database distribution
(80 %) training, (10 %) test, (10 % ) validation
(70 %) training, (15 %) test, (15 %) validation
(60 %) training, (20 %) test, (20 %) validation

0.0090
0.0029
0.0087

2.47
0.89
1.99

0.9530
0.9955
0.9630

0.9640
0.9930
0.9650

(70 %) training,
(15 %) test, and
(15 %) validation

Activation functions (hidden layer–output layer)
Logistic–Logistic
Logistic–Identity
Logistic–Tanh
Tanh–Logistic
Tanh–Identity
Tanh–Tanh
Identity–Logistic
Identity–Identity
Identity–Tanh

0.0050
0.0052
0.0051
0.0052
0.0020
0.0054
0.0078
0.0071
0.0097

1.49
1.39
1.59
1.42
0.86
1.66
4.45
8.93
8.97

0.9830
0.9810
0.9820
0.9810
0.9965
0.9800
0.9580
0.9650
0.9360

0.9860
0.9880
0.9850
0.9870
0.9938
0.9830
0.8830
0.5050
0.5050

Tanh–Identity

Number of neurons in the hidden layer 1–40 0.0020 0.86 0.9965 0.9938 26 Neurons

Learning algorithms
Quasi–Newton back propagation (BFGS)
Scaled conjugate gradient (SCG)
Conjugate gradient descent (CGD)

0.0020
0.0070
0.0087

0.86
4.12
4.44

0.9965
0.9660
0.9520

0.9938
0.8970
0.8870

Quasi–Newton back 
propagation (BFGS)

0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96

Train-Validation-Test
y = 0.9939*x + 0.0051

R2 = 0.9965

Train-Validation-Test
y = 0.9998*x + 0.0310

R2 = 0.9938
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Fig. 3 – Comparison between experimental and calculated values of (a) the density, and (b) the kinematic viscosity of global system 
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The instance outputs zj of the hidden layer:

 
;

j = 1, 2,…,26.

(11)

The output ρ, µ:

 
, (12)

 
. (13)

The combination of Eqs. 11 and 12 leads to the mathemat-
ical formula for density taking into account all the inputs Ei 
(T, X1, X2, X3, ρ(20 °C), µ(20 °C)):

(14)

The combination of Eqs. 11 and 13 leads to the mathemat-
ical formula for kinematic viscosity taking into account all 
the inputs Ei (T, X1, X2, X3, ρ(20 °C), µ(20 °C)):

 

, (15)

where wi,j represents the synaptic weight of the connection 
from neuron i of the input layer to neuron j in the hidden 
layer; vk,j represents the weight of synaptic connection the 
neuron j of the hidden layer to neuron k of the output lay-
er; bj and bk represent the means of neuron j in the hidden 
and the neuron k of the output layer. 

3.2 Statistical analysis on the ANN models for systems

The experimental and simulated values were compared 
using a linear regression model with a good agreement. 
Table 5 indicates the statistical analysis for the comparison 
between experimental and simulated values for the density 
and kinematic viscosity of different systems.

Table 5 – Statistical analysis for the comparison between experi-
mental and simulated values

α β R2 RMSE Q2
LOO Q2

ext

ρ ⁄ g cm−3 0.9939 0.0051 0.9965 0.0020 0.9960 0.9966

µ ⁄ mm2 s−1 0.9998 0.031 0.9938 0.86 0.9924 0.9960

Linear equation: y = α*x + β, with α = splote, β = y-intercept 

3.3 Interpolation and extrapolation performances

To check the accuracy of the two ANN models previously 
developed and optimised, one type of interpolation and 
extrapolation databases were used. The interpolation da-
tabase contains a set of intermediate points between the 
experimental points of kinematic viscosity and density of 
soybean oil.21 The extrapolation database contains a set 
of points outside the experimental points of kinematic vis-
cosity and density of soybean oil.21 The quality of fit of the 
interpolation data set and the extrapolation data set are 
depicted in Fig. 5 for the density and the kinematic viscos-
ity. An excellent fit to the experimental values density and 
kinematic viscosity of soybean oil can be noted:

yexp(at 140 °C) < ypred (at 130 °C) < yexp(at 120 °C)< ... 
< ypred(at 15 °C) < yexp(at 10 °C). 

So, a good interpolation database for the density and the 
kinematic viscosity. 

ypred(at 150 °C) < yexp(at 140 °C) and
yexp(at 10 °C) < ypred (at 5 °C). 

So, a good extrapolation database for the density and the 
kinematic viscosity, where yexp and ypred are the experimen-
tal and predicted values for the density and the kinematic 
viscosity. 

3.4 Prediction performances

Prediction performance is a method to check the accuracy 
of the two ANN models previously developed and opti-
mised. A 238 database experimental of 4 systems (2 pure 
systems, 1 binary system, and 1 ternary system) was used 
for the prediction. This database was obtained from the 
scientific publication.16 The results of prediction perfor-
mances in terms of root mean squared error (RMSE) for 
density and kinematic viscosity of new systems are summa-

Ei  j  i
wi,j

vkj

bj
bk

f(x) = xf(x) = 2
1 + e−2x

(μ; ρ) 
 j  i

Fig. 4 – Schematic representation of the optimised NN
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rised in Table 6. The quality of fit of the prediction data set 
is depicted in Fig. 6 for the density and kinematic viscosity. 
An excellent fit between the experimental values and the 
results obtained from the ANN model of density and kine-
matic viscosity of new systems (R2 = 0.9980 for the density 
and R2 = 0.9653 for the kinematic viscosity).

3.5 Comparison with unstructured kinetic models

To have a comparison between the neural networks mod-
els developed in this work with others’ correlations, the 
diffusivity of two pure systems, a binary system, and a ter-
nary system was estimated. Therefore, the network devel-
oped, as well as eight correlations of the different systems 
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Fig. 5 – Simulation results of the interpolation and extrapolation database for (a) the density, and (b) the kinematic viscosity of soybean oil

Table 6 – Prediction results in terms of root mean squared error (RMSE)

Ref. Systems Data point
kinematic viscosity ⁄ mm2 s−1

RMSE
density ⁄ g cm−3

16

pure palm FAEE, palm FAME 28 0.08 0.0002
binary PalmFAME-PalmFAEE 40 0.06 0.0005
ternary palm FAME-palm FAEE-PD 168 0.11 0.0002
total 238 0.14 0.0005
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Fig. 6 – Simulation results of the prediction database for (a) the density, and (b) the kinematic viscosity of new systems 
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proposed by Baroutian et al.16 for the density and the kin-
ematic viscosity, were used (Table 7).

Table  8 indicates the results of this comparison and the 
RMS error of pure, binary, ternary, and global system for 
the density and the kinematic viscosity of each method 
separately.

Fig. 7 shows the RMS error of the proposed ANN model 
and processes proposed by Baroutianet et al.16 used for the 
prediction of the density and the kinematic viscosity for all 
points of the test data for the three systems. As can be seen 
from the figure, the proposed neural network model is bet-
ter than the other method for the density and kinematic 
viscosity, despite the proposed ANN model formed by a 
large database of 1025 experimental points with several 
pure, binary, and ternary systems, plus it proposed ANN 
model to estimate the density and the kinematic viscosity 
at the same time. The RMS error of the ANN method for 
all test data of the density is 0.0007 g cm−3, however, in the 
method of Baroutian et al.16 it is 0.0034 g cm−3. 

The RMS error of the ANN method for all test data of the 
kinematic viscosity is 0.22 mm2 s−1, however in the meth-
od of Baroutian et al.16 it is 0.39 mm2 s−1.

RM
SE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 0.39

0.22

0.0034

Ref. 16 Ref. 16 ANNANN

0.0007

kinematic viscosity ⁄ mm2 s−1

density ⁄ g cm−3

Fig. 7 – Root mean square error (RMSE) of the developed ANN 
model and other method used for prediction of densi-
ty and kinematic viscosity in comparison to the experi-
mental test data

Table 7 – Correlations of the comparison

Ref. Systems 
Equations
Density Viscosity

16

Jatropha FAME ρ = 1.095 − 0.000744T (Eq. 28) η = 27.535 − 0.0732T (Eq. 32)
Jatropha FAEE ρ = 1.093 − 0.000747T (Eq. 39) η = 27.724 − 0.0733T (Eq. 33)
Jatropha FAME + 
Jatropha FAEE ρ = 1.0915 − 0.0007T + 0.0027X1 (Eq. 30) η = 27.7706 − 0.0734T − 0.1786X1 (Eq . 34)

Jatropha FAME +
Jatropha FAEE +
Petro-diesel

ρ = 1.027 − 0.0007T + 0.0666X1 + 0.0390X2 
(Eq. 31)

η = 20.2430 − 0.0540T + 1.283X1 + 0.910X2 
(Eq. 35)

21 –  (Eq. 36)

T = temperature (K), η = dynamic viscosity (mPa.s), ρ = density (g cm−3), µ = kinematic viscosity (mm2 s−1), FAME = fatty acid 
methyl ester, FAEE= fatty acid ethyl ester

Table 8 – Comparison of the proposed ANN model with the experimental data and other correlations of pure, binary, and ternary 
system for test data set

Ref.
systems RMSE

kinematic viscosity ⁄ mm2 s−1 density ⁄ g cm−3

ANN 16 ANN 16

16

pure Jatropha FAEE, Jatropha FAME 0.32 0.48 0.0015 0.0002
binary Jatropha FAME + Jatropha FAEE 0.20 0.47 0.0015 0.0135
ternary Jatropha FAME+Jatropha FAEE + Petro-diesel 0.21 0.35 0.0004 0.0014
global 0.22 0.39 0.0007 0.0034
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4 Conclusions 
New models of one artificial neural network were devel-
oped to predict the density (ρ) and kinematic viscosity (µ) 
of different systems of biofuels and their blends with diesel 
fuel from the volume fractions (X1, X2, and X3) of the com-
ponents, temperature (T). For difference between these 
systems, we used ρ (at 20  °C) and µ (at 20  °C). A set of 
1025 points of experimental data for the density and the 
kinematic viscosity of 34 systems was used for network 
training. The back propagation of the neural network was 
done by transfer functions like tangent hyperbolic and 
identity for hidden layer and output layer, respectively. 
The BFGS algorithm was used for optimisation of the neu-
ral network. A range of one to twenty-six neurons in the 
hidden layer of models were obtained. In the validation 
stage, the results of comparison between experimental and 
simulated values in terms of the root mean squared er-
ror, the internal validation and the external validation for 
the density and the kinematic viscosity were, respectively: 
RMSE = 0.0020 g cm−3, Q2

LOO = 0.9960, Q2
ext = 0.9966, 

and RMSE = 0.86 mm2 s−1, Q2
LOO = 0.9924, Q2

ext = 0.9960. 

The results of applying the neural network model formed 
for the density and the kinematic viscosity of systems indi-
cate that the method has very good interpolation and ex-
trapolation capabilities with the respect to the temperature. 
The results of applying the neural network model formed to 
predict the density and kinematic viscosity of new systems 
(prediction) indicate that the method has good prediction 
for 238 new databases experimental of four systems. The 
results of prediction performances in terms of the root mean 
squared error were: RMSE = 0.0005 g cm−3 for density and 
RMSE = 0.14 mm2 s−1 for kinematic viscosity. Furthermore, 
the comparison of validation results with those correlations 
proposed by Baroutian et al. indicated that the ANN pre-
dicted the density and kinematic viscosity more accurately 
than those correlations proposed by Baroutian et al.

List of abbreviations and symbols

ANN – artificial neural network
T – temperature, °C
RMSE – root mean squared error
R – correlation coefficient
FAEE – fatty acid ethyl ester
FAME – fatty acid methyl ester
PD – petro-diesel
BE – bioethanol
BD – biodiesel
BFGS – Brogden-Fletcher-Goldfarb-Shanno
SCG – Scaled-Conjugate-Gradient
CGD – Conjugate gradient descent
GHG – greenhouse gas
CO2 – carbon dioxide
ASTM – American Society for testing and materials
EN – European norm

SLNN – single layer neural network
DNN – deep neural network
CNN – convolution neural network
exp – experimental
pred – predicted
tanh – tangent hyperbolic
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SAŽETAK
Modeli umjetne neuronske mreže za predviđanje gustoće i kinematičke 
viskoznosti različitih sustava biogoriva i njihovih mješavina s dizelskim 

gorivom. Usporedna analiza
Souad Belmadani,a* Salah Hanini,b Maamar Laidi,b Cherif Si-Moussa,b and Mabrouk Hamadache b

U ovom članku dva modela zasnovana na metodologiji umjetne neuronske mreže (ANN) optimi-
zirana su za predviđanje gustoće (ρ) i kinematičke viskoznosti (μ) različitih sustava biogoriva i nji-
hovih mješavina s dizelskim gorivom. Za razvoj tih modela upotrijebljena je eksperimentalna baza 
podataka od 1025 točaka, uključujući 34 sustava (15 čistih sustava, 14 binarnih sustava i 5 ternar-
nih sustava). Ti modeli koriste šest ulaza: temperatura (T) u rasponu od −10 do 200 °C, volumni 
udjeli (X1, X2, X3) u rasponu 0 – 1, a za razlikovanje tih sustava korištena je kinematička viskoznost 
pri 20 °C u rasponu 0,67 – 74,19 mm2 s−1 i gustoća pri 20 °C u rasponu 0,7560 – 0,9188 g cm−3. 
Najbolji rezultati dobiveni su arhitekturom {6-26-2: 6 neurona u ulaznom sloju – 26 neurona u 
skrivenom sloju – 2 neurona u izlaznom sloju}. Rezultati usporedbe eksperimentalnih i simuliranih 
vrijednosti u smislu korelacijskih koeficijenata bili su: R2 = 0,9965 za gustoću i R2 = 0,9938 za 
kinematičku viskoznost. Za provjeru točnosti dva prethodno razvijena modela ANN upotrijeblje-
no je 238 novih eksperimentalnih baza podataka s 4 sustava (2 čista sustava, 1 binarni sustav i 1 
ternarni sustav). Rezultati performansi predviđanja s obzirom na korelacijske koeficijente bili su: 
R2 = 0,9980 za gustoću i R2 = 0,9653 za kinematičku viskoznost. Usporedba rezultata validacije 
s rezultatima drugih studija pokazuje da su modeli neuronske mreže dali znatno bolje rezultate.

Ključne riječi 
Modeliranje, neuronska mreža, kinematička viskoznost, gustoća, biogoriva
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