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Abstract: Many engineering projects and interventions have negative effects on the environment. Rock excavation in civil 

engineering, either in mining or in construction, often is unthinkable without the use of explosive. However, blasting can have 

extensive adverse environmental impacts, like vibrations, noise, dust and chemical contamination. Therefore, it is better to 

avoid blasting activities near urban areas, protected animal habitats, sensitive historic buildings, water protection zones, 

pipelines, etc. While mechanical excavation is often longer lasting and more expensive, in some cases it may adequately replace 

blasting, where the applicability of mechanical excavation methods greatly dependent on the rock mass characteristics which 

should excavate. This paper provides practical examples of using existing methods for the assessment of the applicability of 

excavation technologies. In order to minimize the project impact on the environment, mechanical excavation was applied in 

some cases. In one case, the blasting could not be avoided, but controlled careful blasting techniques were applied. 

Keywords: adverse blasting effects, environment, excavation assessment methods, mechanical excavation, careful blasting. 

 
Received: 17.01.2020. / Accepted: 03.02.2020. 

Published online: 10.07.2020. 

       
Original scientific paper 

https://doi.org/10.37023/ee.7.1.4 
 

 

1. INTRODUCTION  
 

During rock blasting, a chemical reaction takes place, which converts the chemical energy of the explosive 

into the shock energy and gas energy (Dhekne 2015). Most of the released energy is useful for fragmentation, 

displacement and movement of broken rock. Wasteful part of energy causes many adverse impacts such as 

ground vibrations, airblast, fly-rock and dust. Ground vibrations, in other words seismic waves, creates cracks 

in the surrounding rocks near the blast site and travels at different rates through soil , rocks and water until the 

energy of the vibration is dissipated. Along their way, blast vibration waves (Figure 1) shake humans, animals, 

plants and any man-made and other natural’s installations. The ground vibration parameters, crucial for the 

safety of constructions, have a significant correlation with charge weight and distance of blasting. The 

properties of the vibration medium also impact on the value of vibration parameters (Tomberg & Toomik 1999). 

The environmental effects air blast or noise and dust vary depending on the size and location of the blast 

field, but also on atmospheric conditions such as wind and humidity. Dust generated by blasting and  suspended 

into the atmosphere greatly affects air quality. The noise is the result of air-overpressure. Changes in air 

pressure can physically damage glasses on buildings, trees in the surrounding forests and blasting noises can 

also impair quality of life for humans and animals (Mesec et al. 2018). The fly-rock or particular rock that flies 

beyond the blast site, causing damage to property, injuries to people and can lead to the fatalities.  

The last factor is most important for the safety of aquifers in the vicinity of blasting area. If commercials 

explosives are spilt on the ground or left undetonated at a blast site, ammonium and nitrate can reach into 

ground, surface and groundwater. 

An appropriate blast design can help in reducing the environmental impacts of blasting, but in some cases 

it is better to apply mechanical excavation, which includes the following methods: a) digging when easy/very 

easy excavation conditions exist, b) ripping for moderate to difficult excavation conditions, and c) breaking 

when the main purpose of the excavation work is to break rock into smaller fragments by using a hydraulic 

hammer. Digging is very acceptable in construction and mining, especially hydraulic shovel excavators, which 

are very versatile machines. Solid rock can be excavated by ripping, but the blasting method is more widely 

used because ripping is often more expensive. The effects of vibration, noise and dust when using digging and 

ripping technologies are minimal, and there is no danger to human lives, property and slope stability.  The 

operation of the hydraulic hammer has the adverse effects of vibration and noise, but the level of adverse 

effects is far below the level of blasting effects. 

For the assessment appropriate excavatability method, previous studies proposed different classifications. 

However, there is no generally accepted method, so many different methods are often combined in researches. 

In this research, some of the most commonly used are tested on several studied sites. 
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2. METHODS FOR EXCAVATION ASSESSMENT 
 

The methods that are available to predict the rock mass excavatability can be categorised into three classes 

of methods: an assessment based on seismic velocity, graphical method and grading method. Franklin et al. 

(1971) presented one of the first graphic methods, based on the correlation between the uniaxial compressive 

strength of intact rock and the spacing of discontinuities in the rock mass. Weaver (1975) designed the first 

grading system, taking into account the following features of the rock mass: seismic P-waves velocity, 

hardness, weathering and spacing, persistence, orientation and separation of discontinuities. However, one of 

the first developed models for excavation assessment was proposed by Caterpillar Inc. in the late 1950s 

(Church 1981). This model predicts rock mass ripability primarily based on a seismic velocity of longitudinal 

P-waves in the rock mass for different rock types, and the assessment procedure was later updated along with 

the company’s latest bulldozers (Caterpillar 2015). There are in the mining profession highly recognized 

methods for the excavation assessment. For ease of use, three methods were selected. 

 

 
 

Figure 1. Types of blast vibration waves (Ainalis et al. 2017)  

 

2.1. Pettifer & Fokes Method 
 

One of the most recent assessments on rock mass excavatability was proposed by Pettifer & Fookes (1994). 

The chart for excavation assessing (Figure 2) is based on discontinuity spacing and Point load test index (PLTi). 

Various problems arise when attempting to describe block size in terms of a single dimension, but this is necessary 

in order to represent average discontinuity spacing simply. The fracture spacing index (If), which expresses 

discontinuity spacing, can be customarily determined from measurements along two orthogonal or randomly 

orientated scanlines, or along a section of drill core. PLTi is the result of Point Load Test (PLT), also known as 

the Franklin test (Broch & Franklin 1972). 

 

2.2. Hoek & Karzulovic Method 
 

Hoek and Karzulovic (2000) proposed GSI value ranges for different excavation methods. Figure 3 presents a 

plot of 23 case histories of excavation by digging, ripping and blasting published by Abdullatif & Cruden (1983). 

Geological Strength Index (GSI), proposed by Hoek et al. (1998), is an easy qualitative tool for the quick 

assessment of rock mass properties. So, Hoek and Karzulovic concluded that rock mass can be dug by an excavator 

if the GSI <40 and rock mass strength (σcm) is less than 1 MPa, and that ripping is possible in rock masses with 

the GSI value in the range of 40 to 60 and σcm strength of up to 10 MPa. However, if the rock mass has a value of 

GSI >60 and the strength >15 MPa, the only applicable excavation method is blasting. 

 

2.3. Tsiambos & Saroglou Method 
 

Tsiambaos & Saroglou (2010) proposed a rock mass classification method with respect to the ease of 

excavation, based on GSI and PLTi normalized for cylindrical specimens that are 50 mm in diameter (Is50). As a 

result of their research, two classification GSI diagrams were proposed, the first for rock masses with Is50 values 

below 3 MPa (Figure 4) and the second for rock masses with Is50 ≥ 3 MPa (Figure 5). It was found that blasting 

is required when GSI values are greater than 60. Successful ripping is generally achieved for rock masses with 
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GSI values between 20 and 45. In the transitional zone between the ripping and blasting areas of the GSI charts, 

excavation with hydraulic breakers is necessary. 

 

 
 

Figure 2. The chart for excavation assessing proposed by Pettifer & Fookes (1994), with added data from the 

present study 

 

 
 

Figure 3. Plot of rock mass strength versus GSI for different excavation methods, after Abdullatif and 

Cruden (1983) 
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3. CAREFUL BLASTING 
 

Mining works must be carried out technologically, technically and organizationally in order to ensure the 

protection of people, natural and constructed buildings, equipment, environment, etc. The most common by-

product of blasting is damage to surrounding structures as a result of soil vibrations.  

Blasting seismic waves causes mechanical movements of the soil, which represent non-stationary periodic 

oscillations (Figure 1). When seismic waves reach a structure, part of the energy of the ground oscillation is 

transferred to its foundations, so that dynamic stresses occur in some parts of the structure. At a given earthquake 

intensity, these stresses can exceed the ultimate strength of the material from which the structure is constructed, 

and permanent deformation can occur. The degree of damages thus caused depends directly on the oscillation 

velocity of the building and the soil particles. 

 

 
 

Figure 4. Classification GSI diagram for rock masses with Is50 values below 3 MPa proposed by Tsiambaos & 

Saroglou (2010), with added data from the present study 

 

3.1. Measuring of ground oscillations velocity during blasting 
 

For blasting operations that take place without adverse effects, it is necessary to perform field measurements 

of the ground oscillation velocity during blasting. Seismograph instruments are used to measure the magnitudes 

of soil oscillations. The measuring instruments are equipped with three-component geophones, which record the 
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velocities of the three components of ground oscillations. This is possible because the three-component geophone 

consists of three geophones arranged in three spatial, mutually perpendicular axes and mechanically connected in 

one unit as follows: 

• Two geophones placed in the horizontal plane. One in the direction of the blasting point (for 

registration of the longitudinal component, indicated by 1 in Figure 6). The other perpendicular to 

the previous one (for registration of the transversal component, indicated by 2 in Figure 6). 

• A third geophone is perpendicular to the horizontal plane (to register the vertical component of the 

oscillations, indicated by 3 in Figure 6). 

 

 
 

Figure 5. Classification GSI diagram for rock masses with Is50 ≥ 3 MPa proposed by Tsiambaos & Saroglou 

(2010), with added data from the present study  

 

After the detonation of the explosives, each geophone registers one irregular curve obtained on the seismogram. 

Then the velocities of the individual oscillation components are calculated (VL is longitudinal, VT is transversal, 

and VV is the vertical component of oscillations). The resultant velocity of ground oscillations VR is equal to the 

vector sum of the velocities of the individual oscillation components (Equation 1), which are taken from the 

seismogram at the time of the greatest disturbance. 

 

2 2 2

R L T VV V V V= + +  (1) 
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Figure 6. Orientation of geophones in relation to the blasting site (Božić 1998) 

 

3.2. A criterion for seismic hazard assessment in blasting 
 

Blasting vibrations are influenced by a number of factors, such as physical-mechanical properties and 

geological structure of the rock mass through which seismic waves propagate, the amount and type of explosive 

charge, the manner and sizes of blasting, and the distance from the blasting site. The intensity of oscillations is 

expressed in various measuring values such as displacement, velocity, acceleration, frequency or energy of 

oscillations. Which of these values best represents the intensity of the seismic effect remains an open question, so 

different criteria are used to assess the seismic hazard. 

In Croatia, buildings are classified according to categories by standard (HRN DIN 4150-3:2011), and the 

permitted ground oscillation velocities are determined according to the frequency of oscillations. A graphical 

representation of the limit values for permissible ground oscillation values is given in Figure 7. 

 

 
 

Figure 7. Diagram of limit values of permissible ground oscillation velocities  

(according to HRN DIN 4150-3:2011) 

 

4. FIELD AND LABORATORY INVESTIGATIONS 
 

Investigations have been carried out on four sedimentary rock sites in the karst area of Croatia, before 

excavation. The aim of investigations was to collect the rock mass parameters required for classification according 

to the methods in Chapter 2. All field investigations and laboratory testing were conducted in accordance with the 

International Society for Rock Mechanics suggested methods (ISRM 1981; 2007).  
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4.1. Study sites and geological settings 
 

According to the basic geological map of Croatia (Figure 8), the local geology of the sites is as follows: 

1. Pula - the investigated area is composed of massive Cretaceous deposits, which correspond to thinly 

stratified limestones with rare deposits of dolomite, marl and breccia. 

2. Rijeka - the location is composed of Cretaceous carbonates, which correspond to thinner or thicker 

layered limestones. 

3. Split - the investigated area of the project is composed of massive flysch Paleogene deposits. 

4. Vrbovsko - the location is composed of massive Triassic and Jurassic sediments, which corresponds to 

dolomites. 

 

 

Figure 8. Basic geological map of Croatia (modified after Velić & Velić 1992) 

 

4.2. Methods of field investigations and laboratory testing 
 

Field investigations included engineering geological mapping and exploratory core drilling. For drilling 

purposes, wireline equipment and a double-tube core barrel were used, which offers better recovery by isolating 

the rock core from the drilling fluid stream (Mayne et al. 2001). The wireline drilling equipment allows the inner 

tube to be uncoupled from the outer tube and raised rapidly to the surface by means of a wireline hoist. Clear water 

is used as drilling fluid. The field characterisation of rock masses in terms of rock type consists of determining the 

geological strength index (GSI) and fracture spacing index (If) from drill core. 

Laboratory tests on samples of intact rock from boreholes included compressive strength of intact rock samples 

(σci) and PLTi. The uniaxial compressive strength (UCS) tests were carried out in a hydraulic press on rock 
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borehole samples in the form of specimens of regular geometry (ISRM 1981; 2007). σci was calculated by dividing 

the maximum load on the specimen during the test by the original cross-section area. PLT was carried out on 

borehole samples formed by regular and irregular rock cylindrical specimens. The tested samples required only 

some geometric minimums, with the indispensable requirement that the rupture of the specimen was produced by 

a fracture plane (or several) that contain the two points of the load application (ISRM 1985). PLT was normalized 

for cylindrical specimens that are 50 mm in diameter, obtaining the Is50. 

 

4.3. Practical excavations 
 

The results of all field investigations and laboratory testing, presented in Table 1, were used as input data for 

testing and comparison three existing classifications described in Chapter 2. Data was added to the chart for 

excavation assessing proposed by Pettifer & Fookes (1994) (Figure 2) and classification diagrams proposed by 

Tsiambaos & Saroglou (2010) (Figures 4 and 5). Assessments are shown in Table 2, and applied excavation 

methods at the individual studied sites are presented in the last column. 

By comparing the excavation technologies used for practical excavations and assessments of the methods for 

prediction of the rock mass excavatability (Table 2), it is observed that Hoek & Karzulovic method and 

Tsiambaos & Saroglou method have achieved very good assessments. The assessment of both methods was 

incorrect only for the Split S2 site, where the rock was excavated by digging, and the assessments were that 

ripping is required.  

Method recommended by Pettifer & Fookes (1994) was slightly less successful. In three cases (sites R1, S2 

and V1) method predicted ripping, while in one case, the excavation was carried out by blasting and in two cases 

by digging (Table 2). 

 

Table 1. Results of field investigations and laboratory tests on samples of intact rock from boreholes 

 

 

Table 2. Assessments of existing classifications and selected practical excavation  

 

 

On study site in Rijeka blasting could not be avoided, because there is no mechanical technology for excavation 

rock mass so good quality. For the purpose of constructing a building in Rijeka, a construction pit had to be 

excavated with blasting works. Therefore, it was necessary to design and perform careful blasting in order to 

minimize the impact of rock mass excavation on the environment. 

In order to carry out special blasting operations in the urban area, without adverse consequences, it was 

necessary to make previous investigations. Therefore, field measurements of the ground vibrations during trial 

blasting were performed with Instantel Minimate Plus seismograph, as described in Chapter 3.1., next to the 

residential building closest to the blasting site. 

SITE ROCK TYPE 
DATA 

ID 

σci (MPa) 

AVERAGE 

σcm (MPa) 

AVERAGE 

Is50 (MPa) 

AVERAGE 

GSI 

AVERAGE 

If (m) 

AVERAGE 

Pula Limestone 
P1 11.5 0.5 0.64 20 0.05 

P2 35.5 3 1.85 40 0.2 

Rijeka Limestone 
R1 143 15 7.16 65 0.25 

R2 178 20 9.12 75 0.50 

Split Flysch 
S1 16 0.5 1.21 20 0.01 

S2 41 3 4.06 40 0.25 

Vrbovsko Dolomite 
V1 42 2 1.91 25 0.1 

V2 74.5 4 3.39 35 0.3 

SITE 
ROCK 

TYPE 

DATA 

ID 

PETTIFER AND 

FOOKES (1994) 

HOEK AND 

KARZULOVIC 

(2000) 

TSIAMBAOS 

AND SAROGLOU 

(2010) 

PRACTICAL 

EXCAVATION 

TECHNOLOGY 

Pula Limestone 
P1 Hard Digging Dig Digging Digging 

P2 Easy Ripping Rip Ripping Ripping 

Rijeka Limestone 
R1 Very Hard Ripping Blast Blasting Blasting 

R2 Blasting Required Blast Blasting Blasting 

Split Flysch 
S1 Hard Digging Dig Digging Digging 

S2 Hard Ripping Rip Ripping Digging 

Vrbovsko Dolomite 
V1 Easy Ripping Dig Digging Digging 

V2 Hard Ripping Rip Ripping Ripping 
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During the first trial blasting, with three holes 6 m deep and 89 mm in diameter, the maximum weight of bulk 

explosive charge in one interval was 18.5 kilograms. Diagram obtained using a Blastware 10.74 software (Instantel 

2015) in Figure 9a shows that, during this blasting, the peak particle velocities (PPV) of the longitudinal 

component have crossed the allowable values line for residential buildings, with dominant frequency values of 

about 15 Hz.  

Therefore, the oscillation velocities should be reduced for the next trial blasting. Various methods and 

techniques for reducing soil vibration during blasting have been considered to solve the problem, such as reducing 

the depth of blast holes, increasing the activation interval between blast holes or blast hole rows, reduction of 

stemming length, etc. However, reducing the explosive charge weight in one interval probably most effects on the 

soil oscillation velocities. 

Using Equation 2 (Langefors et al. 1957), the optimal explosive charge weight (CW) in one interval was 

calculated (D is the distance from the blasting site, and K is site constant). During the second trial blasting the 

maximum weight of bulk explosive charge in one interval was 16 kilograms. The optimal explosive charge was 

achieved by reducing the blast hole diameter from 89 mm to 64 mm. The depth of blast holes remained 6 m. When 

observing the second trial blast, the peak particle velocities (PPV) dropped below the maximum permitted values, 

as a result of reduction explosive charge weight (Figure 9b). 

 
2

3/4
D

K

PPV
CW 
















=

 
(2) 

 

 
 

Figure 7. Results of measuring the soil oscillation velocities during blasting at a study site in Rijeka: 

 a) 1st trial blasting; b) 2nd trial blasting 

 

5. CONCLUSIONS 

 
When excavating rock mass, there are environmental impacts associated with the blasting. Adverse blasting 

effects include noise, fly-rock, dust and chemical contamination. The most significant effect is ground vibration, 

and it is important to be able to control them. Control is performed by field measurements of vibration intensity. 

The results obtained are used to produce quality blasting projects, which must comply with the prescribed standards 

for seismic hazard assessment in blasting. 

Whenever possible, or when the rock mass characteristics allow it, it is recommended to use a mechanical 

excavation that is less harmful to the environment. To predict the rock mass excavatability, different classification 

methods are available, and three most commonly used were tested. The results show that Petiffer & Fokes method 

is less reliable than other methods. Therefore, it is recommended to use Hoek & Karzulovic method or Tsiambaos 

& Saroglou method for future assessments of rock mass excavatability. 

If assessments indicate that it is not possible to avoid excavation by blasting, the controlled careful blasting 

techniques should be applied in order to minimize the impact ground vibration on the environment. Various 

HRN DIN 4150-3:2011 
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I – Historical buildings; II – Residential buildings; III – Industrial buildings 
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techniques for reducing soil vibration during blasting are known in the mining profession, but it has been shown 

that using the optimal explosive charge weight in one interval is a good and simple solution. By reducing the blast 

hole diameter, the consumption of explosives decreases and the optimal level of charge weight is reached.   
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