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Abstract. This paper is devoted to global optimality conditions for quadratic optimization problems
in a real space of dimension n. More precisely, we are concerned with nonconvex quadratic optimization
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1. Introduction

Nonconvex quadratic optimization with linear constraints is a problem of minimization of non-
convex quadratic function subject to linear equality and inequality constraints. This problem
is important in mathematical programming, and it has numerous applications in diverse fields
of science and technology, see [11, 12] for more explanations. It is well known that any local
minimum is global for a convex quadratic optimization problems, for more results on this topic,
we refer the readers to Stephen Boyd and Lieven Vandenberghe [2] and Jorge Nocedal and
Stephen Wright [8]. In general, a local minimizer may not be a global minimizer.

In this paper, we present some global optimality conditions for a nonconvex quadratic func-
tion subject to linear constraints. This problem is an NP–hard global optimization problem,
see [7, 9, 10]. In [5, 8], the authors showed that, for some quadratic optimization problems
with linear equality constraints, if the Jacobian matrix of its equality constraints has a full-
row rank and the Hessian matrix of the Lagrangian is positive definite on the null space of
this Jacobian matrix, then there is a single global minimum. Without using this condition,
we establish alternative theorems to certain global optimality problems, and we present global
optimality conditions of a quadratic optimization problem with linear equality and inequality
constraints. We prove that, if the set of Karush-Kuhn-Tucker (KKT) triplets is convex, then a
local minimizer is global.

The outline of this paper is as follows. In the Section 2 we present notations and defini-
tions, which include the firs–order and the second–order necessary optimality conditions for
a quadratic optimization problem with linear constraints either equality or both equality and
inequality. The main results are stated and proved in the Section 3. In the Section 4 we val-
idate the obtained results by applying our approach to an example of quadratic optimization
problems. Finally, conclusion is given in the Section 5.
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2. Preliminaries and definitions

Consider the following quadratic optimization problem with linear equality constraints

min
x∈Rn

q(x) =
1

2
xTQx− cTx,

s. t. Ax = b,

(P1)

where x ∈ Rn, Q ∈ Rn×n, is a symmetric indefinite matrix; xT denotes the transposition of x;
A is an m by n real matrix with m ≤ n, b is a constant vector of Rm, c is a constant vector of
Rn and

F = {x ∈ Rn : Ax = b},

the feasible set of problem (P1)
Recall that x∗ ∈ F is a local minimizer, for problem (P1), if and only if x∗ satisfies first-order

and second-order necessary optimality conditions of Karush–Kuhn–Tucker, see for instance
[1, 3]. So x∗ is a local minimizer for the problem (P1), if and only if there exists a Lagrange
multiplier λ∗ ∈ Rm, satisfies

∇xL(x∗, λ∗) = 0, (1)

∇λL(x∗, λ∗) = 0, (2)

dTQd ≥ 0 ∀ d ∈ Ker(A), (3)

where the Lagrangian function

L(x, λ) = q(x) + λT (Ax− b),

is defined on Rn ×Rm. ∇x, ∇λ denotes the gradient with respect to x and λ, respectively and

Ker(A) = {x ∈ Rn : Ax = 0}.

This leads, in particular, to the following first order optimality conditions

Qx∗ +ATλ∗ = c, (4)

Ax∗ = b. (5)

Definition 1. A KKT pair for the problem (P1) is a pair (x, λ) ∈ Rn × Rm satisfying the
equations (4) and (5) and x is called a KKT point of problem (P1).

The set of the KKT pairs for the problem (P1) is denoted by KF .
Consider next the following quadratic optimisation problem with linear equality and in-

equality constraints:

min
x∈Rn

q(x) =
1

2
xTQx− cTx,

s. t. Ax = b,

xi ≥ 0, ∀ i ∈ {1, 2, . . . , n}.

(P2)

The feasible set of this problem is denoted by

∆ = {x ∈ Rn | Ax = b, xi ≥ 0, i ∈ {1, 2, . . . , n}} .

The Lagrangian function is defined, on Rn × Rm × Rn, by

L(x, λ, µ) =
1

2
xTQx− cTx+ λT (Ax− b)−

n∑
i=1

µixi.
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It can be seen that the problem (P2) is reduced to the problem (P1), when there is no inequality
constraints.

A feasible point x ∈ ∆ is said to be a KKT point (or a stationnary point for the Lagrangian
function L) of the problem (P2), if x satisfies necessary first-order optimality conditions of
Karush-Kuhn-Tucker and there exists Lagrange multipliers (λ, µ) such thatQx− c+ATλ− µ = 0,

Ax = b,
xi ≥ 0, µi ≥ 0, µixi = 0, ∀ i = 1, 2, . . . , n.

(CN1)

Let I(x) = {i ∈ {1, 2, . . . , n} : xi = 0} be the index set of active constraints. We put

M(x) = {i ∈ {1, 2, . . . , n} : µi > 0} ⊆ I(x),

Recall that a triplet (x, λ, µ) satisfy the strict complementarity condition if M(x) = I(x).
Let

T4(x) = {d ∈ Rn | Ad = 0; di ≥ 0, ∀ i ∈ I(x)},
be the tangent cone to 4 at x and let C(x) = T4(x) ∩∇xq(x)⊥ be the critical cone. One has

C(x) = {d ∈ Rn | Ad = 0; di ≥ 0, ∀ i ∈ I(x) and di = 0 for µi > 0} .

A KKT point x ∈ ∆ satisfies necessary second-order optimality conditions if the following
conditions holds:

dTQd ≥ 0 ∀ d ∈ C(x) (CN2)

Definition 2. A KKT triplet for the problem (P2), is a triplet (x, λ, µ) ∈ Rn × Rm × Rn
satisfying the conditions (CN1) and x is called a KKT point of problem (P29.

The set of the KKT triplets for (P2) is denoted by K4.

In general, the set K4 is not a convex set.

Definition 3. Let J ⊂ {1, 2, . . . , n}. The pseudo-face 4J is the subset of 4 defined by [6]

4J = {x ∈ 4 | xj = 0, j ∈ J ; xj > 0, j ∈ {1, 2, . . . , n} \ J}.

By Contesse [3], it is well known that the conditions (CN1) and (CN2)are necessary and suffi-
cient conditions for local optimality conditions for this problem.

For (P2), the most difficulty is that the local optimality does not imply the global optimality
in general, but we will see that this implication holds in a special case. In the next section, we
propose a global optimality criterion for this problem.

3. Mains results

In the following lemma, we present a first global optimality condition for the problem (P1)

Lemma 1. For the problem (P1), every local minimizer is a global minimizer.

Proof. Let x̄ be a local minimizer for (P1, λ̄ is an associated Lagrange multiplier vector and
x be a feasible point for this problem (satisfying Ax = b). Then, by using the second-order
Taylor expansion and the Hessian of the Lagrangian function, we have

q(x) = L(x, λ̄) = L(x̄, λ̄) +∇xL(x̄, λ̄)T (x− x̄) +
1

2
(x− x̄)TQ(x− x̄).

As L(x̄, λ̄) = q(x̄), (∇xL(x̄, λ̄) = 0 and (x− x̄) ∈ Ker(A), so from equation (3), we have that

q(x) ≥ q(x̄).
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The set KF is a convex set and has two properties listed in the following lemma.

Lemma 2. We have

1. (y − x)TQ(y − x) = 0 ∀{(x, λx), (y, λy)} ⊂ KF ,

2. The objective function q is constant over KF .

Proof.

1. By applying (x, λx) and (y, λy) into (4), we have

Qx− c+ATλx = 0, (6)

Qy − c+ATλy = 0. (7)

Furthermore, by subtracting these equations, we obtain an expression of the form

Q(y − x) +AT (λy − λx) = 0.

Then we have

(y − x)TQ(y − x) + (y − x)TAT (λy − λx) = 0. (8)

By applying x and y into (5), we have

Ay = b, (9)

Ax = b. (10)

From these equations, we deduce that A(y − x) = 0. So, we obtain

(y − x)TQ(y − x) = 0.

2. Using the second-order Taylor expansion and the Hessian of the Lagrangian function of
(P1), we get
q(y) = L(y, λy) = L(x, λx) +∇xL(x̄, λx)T (y − x) + 1

2 (y − x)TQ(y − x).
Since (y − x)TQ(y − x) = 0 ∀ {(x, λx), (y, λy)} ⊂ KF . So, it follows that q(x) = q(y).

We are able now to prove the following theorem of alternatives for quadratic programming
with linear equality constraints.

Theorem 1. Suppose that the objective function q is not constant on the feasible set F , then
for the problem (P1), only one of the following conditions is satisfied.

1) The objective function q has no lower and no upper bound on the feasible set F .

2) Every KKT point is a global minimizer.

3) Every KKT point is a global maximizer.

Proof.

Let α = inf {1

2
xTQx− cTx : Ax = b} and β = sup {1

2
xTQx− cTx : Ax = b}.

Suppose that the item 1) does not hold. This means that α or β is finite.

i) Suppose that α is finite, by Frank-Wolfe Theorem [4], the problem (P1) admits a global
minimizer x̄ which is a KKT point and λ̄ is the Lagrange multiplier associated. For any
other pair (x∗, λ∗) ∈ KF , we obtain q(x̄) = q(x∗), from Lemma 2.
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ii) Suppose that β is finite. In the same way, we prove that every KKT point is a global
maximizer.

iii) If α and β are finite. From Lemma 2 we have that α = β and q is constant. Thus this
case is excluded.

Now, we extend the previous results for the problem (P2).

Theorem 2. Suppose that the set K4 of KKT triplets is convex, then

1) (x− x∗)TQ(x− x∗) = 0 ∀ {(x, λ, µ), (x∗, λ∗, µ∗)} ⊂ K4.

2) the Lagrangian function L and the objective function q are constant over K4.

Proof. Let (x, λ, µ) and (x∗, λ∗, µ∗) in K4,

1) From the convexity of the set K4 of KKT triplets and the complementary condition, we
get, for every t ∈ [0, 1]

t(x, λ, µ) + (1− t)(x∗, λ∗, µ∗) =

= (tx+ (1− t)x∗, tλ+ (1− t)λ∗, tµ+ (1− t)µ∗)
= (x, λ, µ) ∈ K∆.

Let i ∈ {1, 2, . . . , n} and t ∈ [0, 1], we have

0 = µixi = (tµi + (1− t)µ∗i )(txi + (1− t)x∗i ) = t(1− t)(µix∗i + µ∗i xi).

We obtain
µix
∗
i = µ∗i xi = 0 ∀ i = 1, 2, . . . , n. (11)

Since x∗ and x satisfies

Qx+ATλ− µ = c, (12)

Qx∗ +ATλ∗ − µ∗ = c, (13)

by substituting (13) into (12) gives us one equation

Q(x− x∗) +AT (λ− λ∗)− (µ− µ∗) = 0.

which is equivalent to

Q(x− x∗) = −AT (λ− λ∗) + µ− µ∗.

Multiply (x− x∗) by this relation, we get

(x− x∗)TQ(x− x∗) = −(x− x∗)TAT (λ− λ∗) + (x− x∗)T (µ− µ∗).

Since (x− x∗)TAT = (A(x− x∗))T = 0, we have from this equation that

(x− x∗)TQ(x− x∗) = −
n∑
i=1

(xiµ
∗
i + x∗iµi). (14)

and, from equation (11), we obtain

(x− x∗)TQ(x− x∗) = 0. (15)
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2) From second-order Taylor expansion of the Lagrangian function L with respect to x, we
get

L(x∗, λ, µ) = L(x, λ, µ) +∇xL(x, λ, µ)T (x∗ − x) +
1

2
(x∗ − x)TQ(x∗ − x)

From (CN1) and (15) we have

L(x∗, λ, µ) = L(x, λ, µ) (16)

Since

L(x∗, λ, µ) =
1

2
x∗TQx∗ − cTx∗ −

n∑
i=1

x∗iµi

and

L(x, λ, µ) =
1

2
xTQx− cTx.

Using equations (11) and (16), we get

1

2
x∗TQx∗ − cTx∗ =

1

2
xTQx− cTx,

and q(x∗) = q(x).

Corollary 1. If a subset K of K4 is convex, then the Lagrangian function L is constant over
K.

Next, we give a criteria for the convexity of the set of KKT triplets K4. We begin with a
first result concerning the sufficient conditions for the convexity of K4.

Proposition 1. Suppose that one of the following conditions holds:

1) dTQd ≥ 0 ∀ d ∈ Ker(A).

2) I(x) = I(x∗) ∀ (x, λ, µ), (x∗, λ∗, µ∗) ∈ K4.

then the set K4 of KKT triplets is convex.

Proof. 1) Suppose that 1) holds and let (x, λ, µ) and (x∗, λ∗, µ∗) in K4. We shall prove
that, for every t ∈ [0, 1], t(x, λ, µ) + (1− t)(x∗, λ∗, µ∗) ∈ K4. It is sufficient to prove that
the complementary condition holds. Since x− x∗ ∈ Ker(A),

(x− x∗)TQ(x− x∗) ≥ 0

and from equation (14), we have

(x− x∗)TQ(x− x∗) = −
n∑
i=1

(xiµ
∗
i + x∗iµi) ≤ 0.

This means that
(x− x∗)TQ(x− x∗) = 0.

So xiµ
∗
i + x∗iµi = 0 ∀ i = 1, 2, . . . , n.

From this condition, we have

(tµi + (1− t)µ∗i )(txi + (1− t)x∗i ) = t(1− t)(µix∗i + µ∗i xi) = 0 ∀ i, ∀ t ∈ [0, 1].

We deduce that

t(x, λ, µ) + (1− t)(x∗, λ∗, µ∗) ∈ K4 ∀ t ∈ [0, 1].
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2) Suppose that 2) holds and let (x, λ, µ) and (x∗, λ∗, µ∗) in K4. We shall prove that, for
every t ∈ [0, 1], then t(x, λ, µ) + (1− t)(x∗, λ∗, µ∗) ∈ K4.

Since I(x) = I(x∗) then, we have

xiµ
∗
i = x∗iµi = 0 ∀ i = 1, 2, . . . , n.

This means that
xiµ
∗
i + x∗iµi = 0 ∀ i = 1, 2, . . . , n.

So we have the set K4 is convex.

From Proposition (1), we deduce the following corollary.

Corollary 2.

1) If Q is positive semidefinite, then the set K4 of KKT triplets is convex.

2) For every J ⊂ {1, 2, . . . , n}, K4J
= {(x, λ, µ) ∈ K4 | x ∈ 4J} is convex.

Theorem 3. Consider the following quadratic optimization problem

min {1

2
xTQx− cTx : x ∈ 4J}, (P3)

where Q is an arbitrary symmetric n× n matrix. Then, every local minimizer of problem (P3
is a global minimizer.

Proof. Let x∗ be a local minimizer for problem (P3 with Lagrange multiplier (λ∗, µ∗) and
x ∈ 4J . Then, we have I(x) = I(x∗). This means that µ∗i xi = 0 ∀ i = 1, 2, . . . , n and
L(x, λ∗, µ∗) = q(x).

Note that d = x− x∗ which satisfy the following conditions

d ∈ Ker(A) and di = 0 ∀ i ∈ I(x∗) = J.

Then, we deduce that

d ∈ T4J
(x∗) = {d ∈ Rn | Ad = 0; di = 0, ∀ i ∈ I(x∗) = J},

this means that dTQd ≥ 0. From second–order Taylor expansion of the Lagrangian function L
with respect to x, we have

q(x) = L(x, λ∗, µ∗) = L(x∗, λ∗, µ∗) +∇xL(x∗, λ∗, µ∗)T d+
1

2
dTQd.

Hence, we obtain q(x) ≥ q(x∗). This completes the proof.

4. Example

By using our approach, we show that every local minimizer is a global minimizer for the following
nonconvex quadratic minimization problems with linear constraints.

min
x∈R5

q(x) =
1

2
xTQx,

s. t. Ax =

5∑
i=1

xi = 1,

xi ≥ 0, ∀ i ∈ {1, 2, . . . , 5},

(P)
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where A =
[

1 1 1 1 1
]

and

Q =


2 1 1 1 −1
1 2 1 1 1
1 1 2 1 −1
1 1 1 2 −1
−1 1 −1 −1 2

 .
The eigenvalues of Q are: λ1 = 1

2 (5 −
√

33) < 0, λ2 = 1 > 0, λ3 = 1 > 0, λ4 = 3 > 0,

λ5 = 1
2 (5 +

√
33) > 0. Then this matrix is not positive semidefinite.

Let

∆ =

{
x ∈ R5 |

5∑
i=1

xi = 1; xi ≥ 0, i ∈ {1, 2, . . . , 5}

}
and

Ker(A) =

{
d ∈ R5 |

5∑
i=1

di = 0

}
.

=
{
Zu | u ∈ R4

}
,

where

Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 −1 −1 −1

 .
• First, we discuss according to the zero components of a solution of problem (P). Then we

can solve the necessary first order conditions (CN1) of this problem .

We obtain x =

[
3

16
, 0,

3

16
,

3

16
,

7

16

]T
; λ =

5

16
; µ =

[
0,

11

16
, 0, 0, 0

]T
.

• The solution x satisfies the conditions (CN2) for problem (P).

• Secondly, we show that, the matrix Q is positive semidefinite over the set Ker(A). Indeed,
we have

yTQy ≥ 0, ∀ y ∈ Ker(A) ⇔ dT (ZTQZ)d ≥ 0, ∀ d ∈ R4.

The matrix ZTQZ is positive semidefinite on R4, where

ZTQZ =


6 3 5 5
3 2 3 3
5 3 6 5
5 3 5 6

 ,
and the eigenvalues of ZTQZ are: λ1 = 9 + 2

√
19 > 0, λ2 = 1 > 0, λ3 = 1 > 0,

λ4 = 9− 2
√

19 > 0.

Therefore, the first item of Proposition 1 holds (i.e. the set K4 of this problem is convex).

• From the second item of Theorem 2, then x is a global minimizer for (P)
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5. Conclusion

We have given a new sufficient global optimality condition for non-convex quadratic minimiza-
tion problems subjective to both linear equality and linear inequality constraints, related to the
set of Karush-Kuhn-Tucker triplets (KKT) of this problem. We have shown that, if the set of
KKT of this problem is convex, then a local minimum is global. Our approach can be a tool
to solve globally a subclass of minimization of non-convex standard quadratic problems.
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