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Summary
In this self-contained paper, free vibrations of a pressurised toroidal 

shell, rotating around its axis of symmetry, are considered. Extensional 
and bending strain-displacement relationships are derived from general 
expressions for a thin shell of revolution. The strain and kinetic energies 
are determined in the co-rotating reference frame. The strain energy is 
first specified for large deformations, and then split into a linear and a non-
linear part. The non-linear part, which is subsequently linearized, is nec-
essary in order to take into account the effects of centrifugal and pressure 
pre-tensions. The Green-Lagrange non-linear strains are considered. The 
kinetic energy is formulated taking into account the centrifugal and the 
Coriolis terms. The variation of displacements u, v and w in the circumfer-
ential direction is described exactly. The dependence of the displacements 
on the meridional coordinate is described through the Fourier series. The 
Rayleigh-Ritz method is applied to determine the Fourier coefficients. As 
a result thereof, an ordinary stiffness matrix, a geometric stiffness ma-
trix due to pressurisation and centrifugal forces, and three inertia matri-
ces incorporating squares of natural frequencies, products of rotational 
speed and natural frequencies and squares of the rotational speed, are de-
rived. The application of the developed procedure is illustrated in cases 
of a closed and open toroidal shell and a thin-walled toroidal ring. The 
obtained results are compared with FEM results, and a very good agree-
ment is observed. The advantage of the proposed semi-analytical method 
is high accuracy and low CPU time-consumption.

Additionally, a finite strip for vibration analysis of rotating toroidal 
shells subjected to internal pressure is developed. The expressions for 
strain and kinetic energies are taken from the previous Rayleigh-Ritz 
method. The variation of displacements u, v and w with the meridional 
coordinate is modelled through a discretization with a number of finite 
strips. The finite strip properties, i.e. the stiffness matrix, the geometric 
stiffness matrix and the mass matrices are defined by employing bar and 
beam shape functions, and by minimizing the strain and kinetic energies. 
In order to improve the convergence of the results, the strip of a higher 
order is developed too. The application of the finite strip method is illus-
trated in case of closed toroidal shell. The obtained results are compared 
with those determined by the Rayleigh-Ritz method and the finite element 
method.
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The rigorous formulae for natural frequencies of in-plane and out-
of-plane free vibrations of a rotating ring are derived. An in-plane vibra-
tion mode of the ring is characterised by coupled flexural and extensional 
deformations, whereas an out-of-plane mode is distinguished by coupled 
flexural and torsional deformations. For the in-pane vibrations, the ring is 
considered to be a short top segment of a toroidal shell. The expressions 
for the ring strain and kinetic energies are deduced from the correspond-
ing expressions for the torus. It is shown that the ring rotation causes the 
bifurcation of natural frequencies for the in-plane vibrations only. The 
bifurcation of natural frequencies of the out-of-plane vibrations does not 
occur. The derived analytical results are validated by a comparison with 
FEM and FSM (Finite Strip Method) results, as well as with experimental 
results available in the literature.

Keywords: toroidal shell, ring; vibration; buckling; pressure; rota-
tion; the Rayleigh-Ritz method; finite strip method.
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1. Introduction

The statics and dynamics of thin shells have been a subject of investigation for over 
a century. In the beginning of the 20th century, statics problems were mainly consid-
ered, and the achievements are summarised in some capital books [1]-[4]. Later on, 
following the rapid development in all branches of the engineering science, dynamics 
problems became more and more relevant, [5]. In the recent decades, vibrations of rotat-
ing shells of revolution, especially cylindrical shells, are being extensively investigated 
[6]-[8], considering their significance in modelling rotating structures, such as automo-
tive tires, Fig. 1, [9],[10].

Fig. 1. Automotive wheel with tyre
Sl. 1. Automobilski kotač s gumom
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Toroidal shells are usually used in axisymmetric shell structures as a transition 
structural element from cylindrical body to a spherical head, in order to smoothen the 
stress concentration. Such a design solution can be found in heads of cargo tanks on 
liquefied gas carriers, off-shore structures, submarine pressure hulls, pressure vessels, 
etc., Figs. 2, 3 and 4, [11] [14].

The toroidal shell theory is rather complicated due to the double curvature associat-
ed with the toroidal geometry, [4]. Partial differential equations of motion can be derived 
directly by considering the equilibrium of sectional forces, inertia forces and external 
loads on an infinitesimal shell element. They can also be obtained indirectly from the 
strain and kinetic energies of the complete shell by applying Hamilton’s principle. Dif-
ferential equations of motion are normally expressed in terms of tensional and flexural 
displacements. In case of a closed toroidal shell, the variation of displacements in the 
circumferential direction can be described by the Fourier series. In this way, partial 
differential equations are reduced to a set of ordinary differential equations. However, 
due to variable coefficients, it is not possible to obtain a closed-form analytical solution. 
Therefore, numerical methods are ordinarily used.

Fig. 2. Liquefied Gas Carrier (LPG), capacity 8350 m3
Sl. 2. Brod za prijevoz ukapljenog plina (LPG), kapacitet 8350 m3

Fig. 3. Submarine pressure hull
Sl. 3. Čvrsti trup podmornice
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Nowadays, vibration analysis of pre-stressed and rotating shells of revolution is be-
coming more and more relevant. A shell, either opened or closed in the circumferential 
direction, can be modelled by shell finite elements, [15], [16]. A general formulation of 
double-curved shell finite elements is presented in [17]. For the vibration analysis of 
shells closed in the circumferential direction, special waveguide finite elements have 
been developed, [18]-[21]. In this case a 3D problem is reduced to a 2D problem, which 
results in significant savings of the computational time. A comparison of these two 
types of finite elements is given in [22].

Fig. 4. Underwater drilling rig
Sl. 4. Podvodni bušaći toranj
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The present state-of-the-art motivates to find a rigorous solution for the free vibra-
tions problem of rotating and pressurised toroidal shells. The paper is dedicated to this 
problem with a particular aim of better understanding the dynamic behaviour of rotating 
tires. For this purpose, the Rayleigh-Ritz method is used [23]. Ordinary strain energy, 
strain energy due to pre-stressing, and the kinetic energy are formulated taking into 
account the variation of shell displacements in the circumferential direction exactly, by 
using simple trigonometric functions [24]. Mode profiles of the shell cross-section (the 
variation in the meridional direction) are described by the Fourier series. Minimizing 
the total energy by its differentiation per the Fourier coefficients, a matrix equation of 
motion is obtained. The application of the presented numerical procedure is illustrated 
in the case of a closed toroidal shell and a thin-walled toroidal ring. The buckling prob-
lem of closed toroidal shell is also analysed by the same approach, [25].

In order to analyse vibrations of toroidal shells with open cross-section and arbitrary 
boundary conditions in a relatively simple way, a dedicated finite strip is derived in this 
paper [26]. Ordinary strain energy, strain energy due to pre-stressing, and the kinetic 
energy are formulated by describing variations of the shell displacements in the cir-
cumferential direction using simple trigonometric functions (sine and cosine). Bar and 
beam shape functions are employed in order to describe the displacement variations in 
the meridional direction within a finite strip. The equation of motion of the finite strip 
is obtained by minimizing the total energy. The ordinary stiffness matrix, geometric 
stiffness matrix and three mass matrices related to: 1) natural frequencies (inertia), 2) 
rotation speed (centrifugal load), and 3) the Coriolis effect, consist of sets of subma-
trices with variable coefficients. In order to improve the convergence of the results, a 
finite strip of higher order is also presented. The application of the developed finite strip 
is illustrated in cases of toroidal shells with both closed and open cross-sections. The 
advantages of the finite strip method with respect to the ordinary finite element method 
and the waveguide finite element method include: explicit equations, physical insight, 
and a considerable reduction of the number of degrees of freedom in the former case, 
which results in significant savings of the CPU time.

As a third subject in this paper, a mathematical model for the in-plane and out-
of-plane free vibrations of a rotating ring is formulated, [27]. In the former case, the 
flexural vibrations are coupled with the tensional vibrations, whilst in the latter, they 
are coupled with torsional vibrations. The governing equations of motion are deduced 
from the toroidal shell theory. In this way, the universality of the toroidal shell theory is 
demonstrated. The characteristic equations of motion are solved in a rigorous and ap-
proximate analytical way.
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The paper is structured in 8 sections. The state-of-the-art in the considered field is 
described in the Introduction, Section 1. In Section 2, general toroidal shell theory for 
the forthcoming special cases is presented as a starting point. General expressions for 
the linear strain energy due to pre-stressing, as well as kinetic energies due to rotation 
and vibration are derived. In Section 3, application of the Rayleigh-Ritz method for the 
vibration analysis of rotating closed and open toroidal shell is presented. Section 4 deals 
with the finite strip method. Ordinary stiffness matrix, geometric stiffness matrix, and 
mass matrices related to the centrifugal force, the Coriolis force and vibration, are de-
rived. In Section 5, the pre-stressing tension forces due to pressure and rotation are for-
mulated. In Section 6, the ring vibration theory is presented based on the toroidal shell 
theory. In Section 7, the application of the presented theories is illustrated by numerical 
examples and validated by comparing the obtained results with the FEM results. In Sec-
tion 8, several useful concluding remarks of the performed analysis are drawn.



8

Rad 541. Tehničke znanosti knj.; 20(2019), str. 1-98

2. AN OUTLINE OF TOROIDAL SHELL theory

2.1 Strain-displacement relationship

The thin shell theory is presented in [5] in general form using Lamé parameters, A1, 
A2, the main radii of curvature, R1, R2, the in-plane displacements, u1, u2, and normal 
displacement (deflection), u3.

A toroidal shell with the main dimensions and displacements is shown in Fig. 5. The 
shell parameters are the following:
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Fig. 5. Closed toroidal shell, main dimensions and displacements
Sl. 5. Zatvorena toroidna ljuska, glavne izmjere i pomaci
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Referring to [24] and employing (1), the expressions for toroidal shell deformations 
take the following form:
in-plane strains

curvature changes

rotation angles

,
cos11

sincos
1

1

v
r

v
a

u
r

wu
v

r

w
u

a




























































 

,cos22sin21cossin
1

sin
1cos

1

2

2

2

2

2

2

2

























 



















































































w
r
aw

v
r
avu

ar

wv
r

w
u

ar

wu
a

 

.sin
1

1

2

1

































w
v

r

w
u

a
 

(2)

(3)

(4)



10

Rad 541. Tehničke znanosti knj.; 20(2019), str. 1-98

2.2 Strain and kinetic energy

The ordinary strain energy due to extension and bending, according to [24], reads
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are the membrane and bending stiffness, respectively, E is Young’s modulus, ν is 
Poisson’s ratio, and h is the shell thickness.

Referring to [24], the strain energy due to pre-stressing by tension forces Nϑ and Nφ, 
is presented in the form
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where ϑε
∗  and ϕε

∗  are the second order strains based on the Green-Lagrange tensor [28]
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According to [24], the kinetic energy of the rotating toroidal shell reads
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where ρ is the mass density and Ω is the rotational speed.

2.3 The condensation of strain and kinetic energy to shell cross-section

For a toroidal shell closed in the circumferential direction, with either an open or 
a closed cross-section, having arbitrary cross-sectional boundary conditions, the dis-
placement components can be assumed in the form 
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where )(ϑU , )(ϑV  and )(ϑW  are functions of the cross-sectional mode profiles, and 
ω  is natural frequency. The argument tn ωϕ +  is used in order to enable describing 
the travelling modes that normally appear due to shell rotation, and n is the circumfer-
ential mode number.

Substituting (10) into Eqs. (2) and (3), and then into the strain energies (5) and (7), 
one obtains products of two displacement amplitudes or their derivatives, with squares 
of sine and cosine functions (10). Their integrals over the circumferential angle φ within 
the domain 0-2π equals π. Thus, the temporal variation vanishes, and the strain and 
kinetic energies become time-invariant. This is due to the fact that the natural modes 
rotate while keeping a fixed cross-sectional profile. As a result thereof, Eqs. (5) and (7) 
are reduced to the following form:

	

(9)

(10)



12

Rad 541. Tehničke znanosti knj.; 20(2019), str. 1-98

where the integrals over the meridional coordinate ϑ  are for the moment left open. Pa-
rameters ( ) ,ip ϑ  i=1,2…9, ( ) ,iq ϑ  i=1,2…16, and ( ) ,ic ϑ  i=1,2…11, in Eqs. (11) and 
(12) are variable coefficients specified in Appendices A and B, respectively.
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3. THE APPLICATION OF THE RAYLEIGH-RITZ METHOD

3.1 Displacement field

In case of a closed toroidal shell, Fig. 5, there are no boundary conditions, and shell 
displacements can be assumed in the form of the complete Fourier series. Hence, by 
applying matrix notation, one can write
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3.2 Stiffness matrix

Substituting expressions for displacement field (14) into (11) and differentiating the 
strain energy by the Fourier coefficients, a system of three matrix equations is obtained
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(16)
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where 9...2,1),( ipi    and 16...2,1),( iqi   are variable coefficients, depending 
on the meridional coordinateϑ , specified in Appendix A. Submatrices [ ]ik , whose 
elements are products of sine and cosine functions or their derivatives per ϑ , are listed 
in Appendix C.

The system of three matrix equations (16) can be presented in a condensed form

	 { } [ ]{ }δ
δ

KES =
∂
∂

,
	

where

	
{ } mmmmmm

T FEDCBA== δδ
	

is the vector of the Fourier coefficients, and

	

 
     
     
      ,333231

232221

131211


















KKK
KKK
KKK

K  

	

is the stiffness matrix. Submatrices   3,2,1,, jiK ij   encompass the integrals in Eqs. 
(16).

(17)

(18)

(19)
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3.3 Geometric stiffness matrix

Geometric stiffness matrix is derived from the strain energy component, which is 
due to pre-stressing, Eq. (12). Substituting expressions (14) for displacements into (12) 
and differentiating it per the Fourier coefficients, the following three matrix equations 
are obtained

{ }

{ }

[ ] [ ]( ) { }
{ }

[ ]
{ }
{ }

[ ] [ ]( ) [ ]( ) { }
{ }

{ }

{ }

[ ]
{ }
{ }

[ ] [ ] [ ] [ ]( )( ) { }
{ }

2 2

1 2 81 2 2
0 0

2
0 *

9 104 4 2
0

2
0 *

8 3 4 52 1 2 4 4
0

d d

d

d d

G

k m m

G m m

k

m

m

G

k m m

G m m

k

E
A A C

c k c k c k
E B D
B

E
c k k c k

F

E
C A C

c k c k c k c k k
E B D
D

π π

π

π

ϑ ϑ

ϑ

ϑ ϑ

∂ 
     ∂     = + +     ∂         
 ∂ 

  + − +  
  

∂ 
     ∂    = + + + +    ∂       
 ∂ 

∫ ∫

∫

∫

[ ]
{ }
{ }

{ }

{ }

[ ] [ ]( ) [ ]( ) { }
{ }

[ ]
{ }
{ }

[ ] [ ]( ) { }
{ }

2

0

2

11 2
0

2 2
* 0

9 10 114 4 2 2
0 0

2

6 71 2
0

d

d d

d ,

m

m

G

k m m

G m m

k

m

m

E
c k

F

E
E A C

c k k c k c k
E B D
F

E
c k c k

F

π

π

π π

π

ϑ

ϑ ϑ

ϑ





  +  
  

∂ 
     ∂     = − + +     ∂         
 ∂ 

  + +  
  

∫

∫

∫ ∫

∫
	

where variable coefficients ( ), 1, 2...11ic iϑ =  are specified in Appendix B, and subma-
trices [ ]ik  are given in Appendix C.

(20)
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The system of three matrix equations (20) can be presented in a condensed form by 
following the layout of Eq. (17)

	 { } [ ]{ }δ
δ

GEG =
∂
∂

,
	

where

	

 
     
     
      

















333231

232221

131211

GGG
GGG
GGG

G  

	

is the geometric stiffness matrix. Submatrices   3,2,1,, jiG ij   now represent the in-
tegrals in Eqs. (20).

According to the composition of the membrane forces ϑN  and ϕN , Section 5.1, 
and the formulation of coefficients ( )ic ϑ , Eqs. (B1), the geometric stiffness matrix can 
be split into two matrices, i.e. one due to the internal pressure, and the other related to 
the centrifugal forces, i.e.

	 [ ] [ ] [ ]ΩΩ+= GGpG p
2

.

(21)

(22)

(23)
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3.4 Mass matrices

Mass matrices are derived from the kinetic energy, Eq. (13). By substituting expres-
sions (14) into (13), and differentiating the kinetic energy per the Fourier coefficients, 
one obtains the following system of algebraic equations

	

{ }

{ }

( )[ ]
{ }
{ }

[ ]
{ }
{ }

[ ]
{ }
{ }

{ }

{ }

[ ]
{ }
{ }

[ ]

2
2 2 2

2
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2

2
0

2
2

2
0

2

2
0

2 2
2

cos d

2 cos d

sin cos d

2 cos d

( ) d

k

k m

k m

k

m

m

m

m

k

k m

k m

k

E
A A

r k
E B
B

C
r k

D

E
r k

F

E
C A

r k
E B
D

r k

π

π

π

π

α ω ϑ ϑ

αω ϑ ϑ

α ϑ ϑ ϑ

αω ϑ ϑ

α ω ϑ

∂ 
   ∂   = +Ω   ∂     
 ∂ 

  + Ω  
  

  + Ω  
  

∂ 
   ∂   = Ω   ∂     
 ∂ 

+ +Ω

∫

∫

∫

∫
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2
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2
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F
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π

π

π

π

π
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  
 
  
  + Ω  
  

∂ 
   ∂   = Ω   ∂     
 ∂ 

  + Ω  
  

  + +Ω  
  

∫

∫

∫

∫

∫

	

(24)
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where ha   . The three matrix equations (16) can be presented in the form

	 { } [ ] [ ] [ ]( ){ }δωω
δ

MCBEk 22 +Ω+Ω=
∂
∂

,

where

are mass matrices related to the centrifugal force )( 2Ω , the Coriolis force )( Ωω , and 
the ordinary inertia force )( 2ω . Submatrices    ijij CB ,   and   3,2,1,, jiM ij   are 
specified in Appendix D. All of them depend on the symmetric matrix [ ]2k , Appendix 
C. Therefore, all mass matrices (19), including the Coriolis matrix, are symmetric.

3.5 Matrix equation of motion and buckling

If a linear conservative dynamic system vibrates at its natural frequency, then it 
interchanges vibration energy from a purely potential state with the maximum strain 
energy, maxsE , to a purely kinetic state where the kinetic energy is maximum maxkE , 
[23]. Hence, the difference of the maximum energies, max maxs kE EΠ = − , equals zero. 
If these energies are determined for approximated mode shapes, then the difference Π  
is not zero. However, for a successful approximation of the true mode shape, it should 
be as close to zero as possible. 

 
     
     
     

 
     
     
     

 
     
     
      



















































33

22

11

32

2321

12

3331

22

1311

00
00
00

00
0

00

0
00

0

M
M

M
M

C
CC

C
C

BB
B

BB
B

 

(25)

(26)
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In the considered case of a rotating toroidal shell, the balance of energies reads

	 kGS EEE −+=Π .

Here, the situation is somewhat different, since all the terms on the right-hand side 
are time-invariant. This time-invariance is only due to the fact that fixed mode profiles 
rotate around the axis of symmetry of the torus. Natural frequency is in fact the speed 
of this rotation. Then the integration over the circumferential coordinate eliminates tem-
poral variations since it is irrelevant how the mode profile is positioned with reference 
to ϕ = 0. Nevertheless, each particle on the shell still undergoes motions where minima 
and maxima of the displacement and velocity are interchanged. If the modes are deter-
mined approximately with truncated series, the governing equation of motion can still 
be obtained from the minimum total energy principle [23]

	 { } { } { } { } { }0S G kE E E
δ δ δ δ

∂ ∂ ∂∂Π
= + − =

∂ ∂ ∂ ∂ .

Taking into account relations (17), (21) with (23), and (25) respectively, one obtains 
the following matrix equation for natural vibrations

	 [ ] [ ] [ ] [ ]( ) [ ] [ ]( ){ } { }022 =−Ω−−Ω++ Ω δωω MCBGGpK p .

The matrix [C] multiplying the mixed Ωω  term, which results from the Coriolis 
term in the kinetic energy expression(13), is the only one causing a bifurcation of natural 
frequencies. The geometric stiffness matrix [ ]ΩG  and the mass matrix [ ]B  are related 
to the centrifugal force with stiffening and softening effect respectively.

If a toroidal shell is exposed to influence of the external pressure, it can lose stabil-
ity. The corresponding matrix equation of buckling for determining critical pressure is 
deduced from (29), i.e., [25]

	 [ ] [ ]( ){ } { }0p
K p G δ− = .

(27)

(28)

(29)

(30)
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3.6 Open toroidal shell

The previous consideration is related to a closed toroidal shell, Fig. 5. In case of an 
open toroidal shell shown in Fig. 6, the convention of meridional coordinate is changed. 
Now the ϑ angle is measured from the shell top due to reason of simplicity. The central 
angle reads 2ϑ0, Fig. 6.

A simply supported toroidal shell is analysed, and the meridional displacement 
functions can also be assumed in the form of the trigonometric series (14). The coor-
dinate functions have to satisfy boundary conditions ( ) ( ) ( ) 0U V Wϑ ϑ ϑ= = =  at 

0ϑ ϑ= ± . This is the achieved setting:

	
( )

0 0

cos ,      sin ,

,       1 ,      1,3,5... .
2 2

m m m m

m m

f g

m m m N

ξ ϑ η ϑ
π πξ η
ϑ ϑ

= =

= = + =
(31)

Fig. 6. Simply supported open toroidal shell, main dimensions and displacements
Sl. 6. Slobodno oslonjena otvorena toroidna ljuska, glavne izmjere i pomaci
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The formulation of the stiffness and mass matrices is the same as in the case of 
closed toroidal shell. Variable stiffness coefficients ( )ip ϑ , ( )iq ϑ  and ( )ic ϑ , Ap-
pendices A and B, as well as the mass matrices, Eqs (24) have to be adopted due to 
the change of ϑ angle convention. Accordingly, sinϑ is replaced with cosϑ, and cosϑ 
with –sinϑ. The integration domain of the meridional coordinate is now changed from 
0 2ϑ π≤ ≤  to 0 0ϑ ϑ ϑ− ≤ ≤ .
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4. FINITE STRIP METHOD

4.1 Shape functions

The two-node finite strip of a toroidal shell is shown in Fig. 7. It is used to discretise 
the shell in the meridional direction, and it has 8 degrees of freedom (d.o.f.). The strip 
follows the shell meridional curvature with radius a, and is defined by the central angle 

12 ϑϑγ −= . The strip properties are derived using the energy approach.

Fig. 7. The finite strip nodal displacements and forces
Sl. 7. Pomaci i sile vrpčastog elementa torusne ljuske
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The strip displacements are approximated by the following interpolation functions:

	




4

1

2

1

2

1

)()(),()(),()(
j

jj
j

jj
j

jj fWgVVgUU   ,

where nodal displacements, Fig. 7, can be presented through the following three vectors:

	

     



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












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
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














2

2

1

1

2

1

2

1 ,,

Ψ
W
Ψ
W

V
V

V
U
U

U  

.

The cross-sectional rotation due to bending is designated by / ( d )dW aψ ϑ= − , 
Fig. 7. The in-surface displacements are interpolated by polynomial bar shape functions, 
whereas the bending deflections are interpolated by the beam shape functions (Hermi-
tian polynomials):

where

	

1 ,ϑ ϑξ
γ
−

=

is the normalised strip angle, and 2 1γ ϑ ϑ= −  is the strip central angle, so that ξ  is the 
strip arch dimensionless coordinate within a domain 10 ≤≤ ξ .

(32)

(33)

(34)

(35)

,)1(),23(

,)1(),23(1
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4.2 Stiffness matrix

Substituting expressions (32) into the strain energy equation (11) and differentiating 
by nodal displacements, the following system of eight algebraic equations is obtained:

Variable coefficients 9...2,1),( ipi    and 16...2,1),( iqi   , are specified in 
Appendix A. Elements of the submatrices   25...2,1, ik i   are products of the shape 
functions (34) and their spatial derivatives. Equations (36) can be presented in the ma-
trix notation as

(36)

        

        
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              
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	 { } [ ]{ }δ
δ

KES =
∂
∂

,

where

	   22112121 ΨWΨWVVUUT    

is the vector of nodal displacements, Fig. 7, and
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is the stiffness matrix, where

Submatrices   25...2,1, iK i   are given in Appendix E.
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4.3 Geometric stiffness matrix

The geometric stiffness matrix is derived from the strain energy due to pre-stress-
ing. Substituting expressions (32) for displacements into (12) and differentiating by nod-
al displacements, a system of eight algebraic equations is obtained

Variable coefficients 11...2,1),( ici    are specified in Appendix B. Elements of 
the submatrices   11...2,1, ig i   are again products of the shape functions (34) and 
their spatial derivatives.

The system of algebraic equations (41) can be presented in a matrix notation

	 { } [ ]{ }δ
δ

GEG =
∂
∂

,

where {δ} is the vector of nodal displacements, Eq. (38). The geometric stiffness matrix 
reads

(41)

(42)
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                                                                                                       ,

where submatrices   11...2,1, iG i   are specified in Appendix F.

4.4 Mass matrices

Mass matrices are derived from the expression for the kinetic energy, Eq. (13). Sub-
stituting expressions (32) into (13), and differentiating the kinetic energy by nodal dis-
placements, one obtains the following system of eight algebraic equations:
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The variable coefficients in (44) are the following:
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The elements of the submatrices [ ] 7...2,1, =im i  are products of the shape func-
tions (34) and their spatial derivatives.

The system of algebraic equations (44) can be split into three matrices, which are 
multiplied by the squared rotational speed, by a squared natural frequency, or by a prod-
uct of the rotational speed and a natural frequency as follows:

	 { } [ ] [ ] [ ]( ){ }δωω
δ

MCBEk 22 +Ω+Ω=
∂
∂

,

where
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are the mass matrices due to the centrifugal force, due to the Coriolis force, and due 
to the inertial force, respectively. Submatrices [ ] 7...2,1, =iM i  are specified in Ap-
pendix G.

4.5 Finite strip equation

In the natural vibration, the total strain energy equals the total kinetic energy. 
However, these energies are not balanced at the finite strip level. Their difference is 
compensated with the work of nodal forces

	 { }FWF δ−= ,

where δ  is the vector of nodal displacements, Eq. (38), and

	 { } 22112121 MQMQSSNNFF T ==

is the vector of the corresponding nodal forces, in which Ni and Si, i = 1, 2 are the tension 
and in-plane shear forces, while Qi and Mi, i = 1, 2 are the transverse shear forces and 
bending moments, respectively, Fig. 7. Hence, one can write the energy balance

	 FkGS WEEE +−+=Π ,

where 0=Π  for exact values of the energies. Since the displacement field within a 
finite strip is described approximately by the shape functions, Π  has to be minimum, 
referring to the minimum total energy principle, [23], i.e. { } 0/ =∂Π∂ δ {0}. Satisfying 
this condition yields

	
{ } { } { } { }δδδ ∂

∂
−

∂
∂

+
∂
∂

= kGS EEEF .

Substituting Eqs. (37), (42) and (46) into (53), the finite strip equation is obtained in 
the following form:

(50)

(51)

(52)

(53)
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	 { } [ ] [ ] [ ] [ ]( ) [ ] [ ]( ){ }δωω MCBGGpKF p
22 −Ω−−Ω++= Ω .

Hardening centrifugal geometric stiffness matrix [ ]ΩG  is dominant with respect to 
the softening centrifugal mass matrix [B]. Therefore, the increase in the shell rotation 
speed generally increases the values of natural frequencies. Furthermore, the Coriolis 
term with Ωω  causes bifurcations of natural frequencies.

4.6 The assembly of finite strips

In order to increase the accuracy of the vibration analysis, the shell should be mod-
elled by a large number of finite strips. Before assembling, the finite strip equation (54) 
has to be rearranged in such a way that the nodal displacements and the nodal forces, 
Eqs. (38) and (51), are first set up for node 1, and then for node 2, i.e.

	
.~

~

22221111

22221111

MQSNMQSNF

ΨWVUΨWVU




 

This implies the rearrangement of the rows and columns of all matrices in Eq. (54) 
accordingly.

Since the finite strip is curved and defined in the polar coordinate system, the strip 
equations can be assembled directly like links of a chain. This is also valid for shell 
structures consisting of different shell segments in case they have the same slope angle 
at the joints. Otherwise, the finite strip equation has to be transformed from the local 
(polar) coordinate system into the global (orthogonal) coordinate system of the shell 
structure.

If vibrations of a closed toroidal shell are analysed, the assembling of the finite strip 
equations is obtained in a circular form looking like a necklace, Fig. 8a. In order to for-
mulate the eigenvalue problem in the ordinary form, the “necklace” has to be unclasped 
at a joint and stretched, and the compatibility conditions of displacements at the joint 
have to be satisfied. This is achieved by superimposing the last rows and columns of the 
matrix related to the last node, to the first rows and columns related to the first node, 
Figs. 8b and c.

(54)

(55)
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Fig. 8. Assembling of finite strip dynamic stiffness matrices of closed toroidal shell
Sl. 8. Sprezanje matrica dinamičke krutosti zatvorene torusne ljuske



33

I. Senjanović, N. Alujević, I. Ćatipović, D. Čakmak, N. Vladimir: Semi-Analytical Methods for Vibration and ...

4.7 Finite strip of higher order

Numerical examples show that the convergence of natural frequencies determined 
in the above way, by employing simple two-node finite strips, is rather slow. To improve 
the convergence of the results, finite strips of higher order with three nodes are used.

The shape functions of a bar with three nodes reads, [29]

	 .)12(
)1(4
231

3

2

2
1

−=
−=
+−=

ξξ
ξξ
ξξ

g
g
g

For a three-node beam, one finds the following shape functions:

where 12 ϑϑγ −= , Fig. 3.
The condensation of stiffness matrix of the three-node finite strip to the end nodes 

is illustrated as follows. The full stiffness matrix reads
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 ,

where { } 3,2,1, =iiδ  are the nodal displacement vectors, Eqs. (55). Eq. (58) can be 
written as a system of three matrix equations. Extracting { }2δ  from the second equation 
and substituting it into the first and the last one yields the condensed finite strip equation
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,

where

The stiffness matrix, as well as the geometric stiffness matrix, depend on strains, i.e. 
on the derivatives of displacements u, v and w, and are very sensitive to the used inter-
polation (shape) functions. Therefore, the application of the higher order finite strips is 
very effective. On the other hand, however, mass matrices depend on the displacements 
and can be determined by simple two-node finite strips.
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5. PRE-STRESSING TENSION FORCES

5.1 Analytical membrane solution

A toroidal shell can be pre-stressed by uniform internal pressure, p, and/or cen-
trifugal load due to rotation, 2q h rρ= Ω , Fig. 5. In case of a closed toroidal shell, the 
generated tension forces can be determined analytically, based on the membrane shell 
theory, [30]

	

1 2 sin 1, ,
2 sin 2

     p p
R aN pa N pa

R aϑ ϕ
ϑ
ϑ

+
= =

+

	                               .

Expressions (61) are reliable, since the closed shell bending due to internal pressure 
is quite small. Eqs. (61) can also be used for a rough approximation of tension forces 
in an open toroidal shell. On the contrary, the shell bending due to centrifugal load is 
pronounced, and the corresponding tension forces have to be determined by employing 
the shell theory, [24] and [26].

5.2 Application of the Rayleigh-Ritz method

Closed toroidal shell is exposed to centrifugal load components, Fig. 5

	                                 .

An axisymmetric shell deformation is assumed: u=U, v=V, w=W. The total energy 
consists of the strain energy Es (U, W), Eq. (11) and work of centrifugal load

	
( ) ( )

2 2 2

0 0 0

d d 2 dq c r c rW q U q W ra a q U q W r
π π π

ϑ ϕ π ϑ= + = +∫ ∫ ∫ .

 220, sin     Ω ΩN N hΩ R a       

(61)

(62)

(63)

(64)

2 2cos , sin     c rq hΩ r q hΩ r      
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Due to energy balance, the difference of these energies has to be zero in the case of 
exact solution, and has to take minimum value in the approximate solution. Hence, one 
can write

	                        .

Substituting Eqs. (63) for load and Eqs. (14) for displacements into (64), the deriva-
tives of the load per the Fourier coefficients read

	 { } { }F
Wq =

∂
∂
δ ,

where

	 mmmm FEBA=δ

	 2
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Using the principle of minimum total energy, [23], (i.e. minimum error)

	 { } { } { } { }0qS WE
δ δ δ
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s qΠ E W   (65)
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and relation (17), a system of non-homogenous algebraic equations is obtained

	 [ ]{ } { }2 K Fδ = .

Stiffness matrix, Eq. (19), is reduced to

	
[ ]

[ ] [ ]
[ ] [ ]

11 13

31 33

K K
K

K K

 
=  
  

.

It is multiplied by 2 in Eq. (71), since in derivation of stiffness matrix, Eq. (19), 
integration for mode wave number n>0 is performed resulting in ( )

2
2

0

cos dI n
π

ϕ ϕ π= =∫ . 
However, in the considered case of axisymmetric deformation n=0, and I=2π.

Since the Fourier coefficients 000 == FB , the corresponding equations are ex-
cluded from the matrix equation (71). For coefficients in the Fourier series characterised 
by k=1, two identical equations are obtained in (71) for B1 and F1, as can be seen in the 
load terms, Eq. (69). Therefore, one of these equations is omitted in order to avoid the 
singularity of the stiffness matrix.

By calculating displacements U and W, Eqs. (14), it is possible to determine the ten-
sion strains, Eqs. (2), and finally the tension forces by employing Hooke’s law

(71)
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5.3 Application of the finite strip method

In general case of an open toroidal shell, the tension forces can be determined nu-
merically by the finite strip method. Work of pressure, p, and centrifugal load, Eq. (63), 
on the corresponding displacement reads

							          .

The considered statics problem is axisymmetric and n=0, u=U, v=V=0, w=W. 
According to Eqs. (32), the displacements are approximated by the shape functions, 

{ }gUU =  and { }fW ∆= . If one substitutes these relations and Eqs. (63) into 
(74), then integrates (74) per ϕ , and finally differentiates it per nodal displacements, the 
nodal load forces are obtained as

The finite strip equation reads

	 { } [ ]{ } { }qFKF += δ2 ,

where, according to Eqs. (51) and (38), respectively
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The stiffness matrix according to Eq. (39) is reduced to

	
     

    







 *

33
*
31

*
13

*
11

KK
KK

K  .

The stiffness matrix [K] in Eq. (76) is multiplied by 2 due to the same reason as in 
the previous section.

After assembling the finite strips of the complete toroidal shell, the resulting non-
homogenous equation

	 [ ]{ } { }qFK ~~~ −=δ

is solved, and the nodal displacements { }δ , Eqs. (77), for each finite strip are deter-
mined. The tension forces are calculated by Eqs. (73).

(78)

(79)
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6. RING VIBRATION THEORY

6.1 In-plane vibration

Ring vibration analysis in this paper is based on the toroidal shell theory. For this 
purpose, a toroidal shell segment in the vicinity of angle 2/πϑ =  is considered a 
ring, as shown in Fig. 9. For the in-plane vibrations, the relevant displacements are the 
circumferential and the radial ones, V and W, [27]. The expressions for the strain energy, 
the geometric strain energy and the kinetic energy, Eqs. (11), (12) and (13), respectively, 
are after integration no longer functions of the angle ϑ . Therefore, they are reduced to 
the following form for a unit length of the arch (b=1):
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where har   . The terms in KE  with 2Ω  and Ω  represent the kinetic energy 
due to the centrifugal and the Coriolis forces, respectively. Coefficients pi, qi and ci in 
(80) are specified according to Appendices A and C, taking into account that 2/πϑ =  
and 0=ν  for the ring as a one-dimensional structural element
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where

	
.

12
,

3Eh
DEhK   

The coefficients c4, c7 and c11 take into account the pre-stressing membrane force 
22 hrN    due to the centrifugal load.

(82)

Fig. 9. Rings as segments of toroidal shell
Sl. 9. Prstenovi kao isječci torusne ljuske
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Minimizing the total energy KGS EEEE −+=  by setting its derivatives per V 
and W equal to zero yields a symmetric matrix equation
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The non-trivial solution of Eq. (83) is obtained from the condition that the determi-
nant of its matrix vanishes. Applying this condition results in the following characteris-
tic equation in the form of a fourth order (quartic) polynomial:
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Substituting Eqs. (84) into (86), one obtains
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Eq. (85) can be solved analytically in a rather complicate way, as shown in Appen-
dix H. However, an approximate solution of Eq. (85) with ignored small terms of higher 
order is at disposal, [27]. The first solution is related to extensional natural frequency of 
rotating ring in case that n and Ω are relatively small quantities
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2 22
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ee ωω ,
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is an extensional natural frequency of the non-rotating ring.
The second root of Eq. (85) is related to bending natural frequencies
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is a flexural natural frequency of the non-rotating ring.
Since the ring tension stiffness is much higher than the flexural stiffness, values of 

eω  are much higher than those of bω . Therefore, bω  is of primary interest.
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6.2 Out-of-plane vibration

This type of vibrations is analysed by considering the toroidal shell segment in the 
vicinity of angle πϑ = , with two degrees of freedom, i.e. deflection W and twist angle 
Ψ , Fig. 9. Since extensional displacements U and V are zero, the strain energy accord-
ing to Eq. (11) is reduced to [27]

( ) ( ) WWqWWqWWqWqWqWqES ′+′′+′′′++′+′′= 654
2
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2
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where referring to Appendix A, and setting K=0
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Stiffness K and stiffness D are defined with Eq. (82). Poisson’s coefficient ν  is not 
ignored in (93) (as in the case of in-plane vibrations), since it is introduced through the 
shear modulus ( ))1(2/ ν+= EG  at the very beginning of the development of toroidal 
shell vibration theory.

The deflection derivative is actually the twist angle, Fig. 9, and a new variable is 
introduced for simplicity:
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In a similar way, one can write for the curvature
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Substituting expressions (94)) and (95) into (92) yields
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Since the displacement Y is neither accompanied by the inertia term nor present in 
the geometric strain energy, the right-hand side of the last equation of (97) is set to zero. 
Hence, one obtains
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Substituting (98) into the first two equations of (97), the system of equations is re-
duced to
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where coefficients i ja , taking into account Eq. (93), are given by:
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The geometric strain energy, Eq. (12), has only one term, i.e.

	
2

72
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where, according to Appendix A and after applying the membrane force due to the cen-
trifugal load 22 hrN   , it yields
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The kinetic energy, Eq. (13), has also got only one term, Wh 2ωρ , which is related 
to the inertia force. Since a rotation of the ring cross-section Ψ  is introduced, the rotary 
inertia must be taken into account, too. Based on the analogy between inertia force and 
the moment of rotary inertia, as well as taking into account the substitution X

r
1

=Ψ , 
Eq. (94), one can write
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In this way, the kinetic energy can be written as
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Now, Eq. (99) is extended to the total energy KGS EEEE −+= , and one can 
write
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where har    and pira )/(   . If the first and the second equation in (105) 
are divided by α  and β , respectively, one obtains an asymmetric matrix equation
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The determinant of the matrix in equation (106) must vanish, i.e.
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Now, it is necessary to substitute all the shell parameters specified per unit length 
with the ring parameters of breadth b, Fig. 9
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The moment of inertia of the shell cross-section 12/3hi p   , related to 
the rotary inertia, is substituted by the equivalent ring polar moment of inertia 

12/)( 22 bhbhI p   .
Furthermore, formulae (110) are derived for a shell segment, and the strain energy 

includes the energy of both twist moments at the meridional and circumferential shell 
cross-sections, 2112 MM   . Their energy is represented in the formula for the total 
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strain energy in Eq. (5) by the term ( ) 21 / 2ϑϕν κ− , where ϑϕκ  is the twist strain. This is 
shown in Eqs. (110) by the coefficient )1/(2   . Therefore, only one half of this coef-
ficient must be taken into account in Eqs. (110). In this way, formulae (110) derived for 
the toroidal shell are modified in such a way to be valid for a ring
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The solutions of the bi-quadratic equation (108) can be presented in the form
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The first solution represents natural frequencies of predominantly torsional vibra-
tions, while the second one represents natural frequencies of predominantly flexural 
vibrations. This can easily be seen in the case of a non-rotating ring. By setting 0=Ω  
in Eqs. (110), it becomes obvious that the second term under the inner square root of 
Eq. (113) is very small. By using the approximation 2/11 εε −≈− , one obtains the 
following expressions for natural frequencies of torsional and flexural vibrations of a 
stationary ring:
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It is observed that both the centrifugal load and the Coriolis load induced by the 
ring rotation are involved in the ring in-plane vibrations (the terms with 2Ω  and Ω  
in Eqs. (87), respectively). With the out-of-plane vibrations, only the centrifugal load 
participates (the terms with 2Ω  in Eqs. (110)). Hence, there is no bifurcation of natural 
frequencies in the latter case.

6.3 Rigorous solution of the characteristic equation

Solving quartic equation has been a challenging subject of investigation since the 
16th century. There are several well-known names among scientists: Lodovico Ferrari, 
Gerolamo Cardano, Descartes, Euler, [31], [32]. The problem is still relevant nowadays 
[33], [34].

The non-linear characteristic equation for the rotating ring in-plane vibrations, Eq. 
(85), is actually a depressed quartic equation, i.e. quartic equation without the cubic 
term. It can be solved by following the mathematical procedure described in [35]. One of 
the possibilities to solve Eq. (85) is to assume that it is reducible by factorization. Hence, 
the four roots of Eq. (85) coincide with two pairs of roots of two quadratic equations

	
0

2
1 12 =






 −++

A
ayAωω ,

where 

	 248 ayA +±=

and y is a real root of the cubic resolvent of Eq. (85)

	 0)4(848 2
1020

2
2

3 =+−−+ aaayayay .

Eq. (118) can be condensed into a simpler form by shifting y. Substituting 
6/2axy −=  into (118) yields

	 0233  qpxx  ,

(116)

(117)

(118)

(119)
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where 

	
)12(

36
1 2

20 aap   

	
 .27722

432
1 2

102
3
2 aaaaq   

The three real roots of Eq. (119) are assumed in the form

	 vuxvuxvux 1232121 ,, εεεε +=+=+= ,

where 1ε  and 2ε  are the roots of equation 012 =++ εε , i.e.

	 2
3

2
1

2,1 i±−=ε .

The first root 1x  in (122) is determined by Cardano’s formula
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2
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1 , zvzu == ,

where

	
32

2,1 pqqz +±−=

are roots of the equation 022  pqzz  . If the discriminant 032 <+= pqD , 
one can write

	
32

2,1 , pqwwiqz +=+−= .

The complex quantity 2,1z  can be presented in the exponential form (De Moire’s 
formula), i.e.
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where πϕπ ≤≤− . Substituting (127) into (124) yields

	
[ ])3/sin()3/cos(e, 33/33

2,1 ϕϕρρ ϕ izvu i ±=== ± .

Finally, one obtains for the first root of Eq. (119), according to Eqs. (122)

	 )3/cos(2 3
1 ϕρ=x .

The values of 1x  are real, since the imaginary parts of u and v cancel each other. Further-
more, the solutions of Eq. (130) read
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Substituting (A3) and 6/21 axy −=  into (116), one obtains
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where )(sign As = , Eq. (117).
The following example can be used as a benchmark for the application of the above 

procedure: 
	 Data: 

3
38

,
3

32
,1 210  aaa  .

	 Eq. (131):  16289282.6
32

1
 ss  .

	 Solution: 0.3,0.1,085146.0,91485.3 4321 ==−=−= ωωωω .

(128)

(129)

(130)

(131)
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7. NUMERICAL EXAMPLES

7.1 Closed toroidal shell
7.1.1	 Vibration analysis

The application of developed numerical procedures is illustrated by a case of a 
closed toroidal shell with the following geometric and physical properties, Fig. 5: R=1 
m, a=0.4 m, h=0.01 m, E=2.1·1011 N/m2, υ=0.3 and ρ=7850 kg/m3.

The first 11 natural frequencies for stationary shell, Ω=0, determined by RRM and 
FSM, are listed in Table 1 and compared with the FEM Abaqus results determined by fi-
nite element S8R5 [36]. The convergence analysis shows that stable results are obtained 
by 15 sine and cosine terms in RRM, 200 finite strips of higher order in FSM, and the 
finite element mesh 200x500 in the meridional and circumferential directions in FEM. 
All values shown in Table 1 mutually agree very well.

The distribution of displacements U, V and W over shell cross-section for the first 
six natural modes, determined by RRM and FSM, are identical and shown in Fig. 10. 
Some mode profiles are symmetric, and some asymmetric, with respect to the vertical 
symmetry plane. Natural modes determined by FEM are shown in Figs. 10 and 11 in 
the isometric view and orthogonal planes, respectively. The shell cross-section mode 
profiles obtained by RRM and FSM are almost the same, while the FEM profiles are 
similar, Figs. 10 and 12.

Mode no. Mode type n RRM
2·15 terms

FSM
200 FS

FEM
200x500

1 Asym. 0 80.73 81.26 80.67

2 Asym. 2 111.11 111.29 110.22

3 Sym. 2 123.05 123.19 122.08

4 Asym. 3 207.40 207.52 205.30

5 Sym. 3 207.85 207.98 205.75

6 Sym. 4 309.74 309.84 306.67

7 Asym. 4 309.89 309.99 306.82

8 Asym. 1 351.06 351.16 350.98

9 Asym. 2 398.61 398.68 398.44

10 Sym. 2 401.28 401.33 401.15

11 Sym. 1 415.22 415.27 415.17

Table 1. Natural frequencies of closed toroidal shell, ω [Hz], R=1 m, a= 0.4 m, h=0.01 m
Tablica 1. Prirodne frekvencije zatvorene torusne ljuske, ω [Hz], R=1 m, a=0.4 m, h=0.01 m
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Fig. 10. Modal displacements of closed toroidal shell, – ∙ – U, - - - V, ––– W
Sl. 10. Pomaci prirodnih oblika vibracija na poprečnom presjeku zatvorene 

torusne ljuske: – ∙ – U, - - - V, ––– W

Fig. 11. The first six natural modes of closed toroidal shell (ABAQUS)
Sl. 11. Prvih šest prirodnih oblika vibriranja zatvorene torusne ljuske (ABAQUS)
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Fig. 12. Natural modes of FEM model in the coordinate planes (ABAQUS)
Sl. 12. Prirodni oblici vibriranja modela konačnih elemenata u koordinatnim

ravninama (ABAQUS)
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In the convergence analysis, the converged RRM results from Table 1 are used as 
referent values. The convergence of FSM is considered taking N=50, 100, 150 and 200 
finite strips into account. The error is defined as ( )% 100FSM RRM

RRM

ω ωε
ω
−

= ⋅ . As shown in 
Fig. 13, the results converge from upside, and convergence is faster for higher mode 
number n.

The convergence of FEM results is also analysed by taking into account different 
finite element mesh density: 50x124, 100x252 and 200x500. The NASTRAN results 
obtained by finite element CQUAD4, [37], for 300x600 mesh density are used as the 
referent ones, Fig. 14. It is observed that the values of natural frequencies ω4, ω5, ω6 and 
ω7 converge slower to the referent values than the others.

The converged natural frequencies determined by FEM differ from those determi-
ned by RRM analysis for ca 1%, Fig. 15. This is due to both the applied shell theory and 
the type of used finite elements.

Fig. 13. Convergence of natural frequencies, FSM
Sl. 13. Konvergencija prirodnih frekvencija, metoda vrpčastih elemenata
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Fig. 14. Convergence of natural frequencies, FEM- - - ABAQUS, ∙ ∙ ∙ NASTRAN
Sl. 14. Konvergencija prirodnih frekvencija, metoda konačnih elemenata:

- - - ABAQUS, ∙ ∙ ∙ NASTRAN

Fig. 15. Relative difference of FEM and RRM natural frequencies
Sl. 15. Relativna razlika prirodnih frekvencija određenih metodom konačnih elemenata i 

Rayleigh-Ritzovom metodom
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Furthermore, the bifurcation phenomenon of natural frequencies caused by the shell 
rotation is considered. The tension forces due to centrifugal load are determined by 
RRM and FSM, as described in Section 5.2 and 5.3. The shell cross-section deformation 
obtained by RRM and FSM, as well as FEM for Ω=60 rad/s, is shown in Fig. 16. The 
results are almost the same. The diagrams of tension forces are shown in Fig. 17. All 
three methods used give the same results.

Fig. 16. Shell cross-section deformation due to rotation, Ω=60 rad/s, a) RRM, FSM; b) FEM
Sl. 16. Deformacija poprečnog presjeka ljuske uslijed vrtnje, Ω=60 rad/s, a) RRM, FSM; b) FEM
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Fig. 17. In-plane forces of rotating toroidal shell, Ω=60 rad/s
Sl. 17. Ravninske sile u ljusci uslijed vrtnje, Ω=60 rad/s

The same values of natural frequencies determined by RRM and FSM are ob-
tained. They are shown separately for asymmetric and symmetric modes in Figs. 18 
and 19, with their comparisons to FEM results. Some differences between the diagrams 
can be noticed as a result of different numerical methods. If the Coriolis force is omit-
ted (  0ω Ω = , Eq. (29)), there is no bifurcation of natural frequencies, as can be seen 
in Figs. 18 and 19.
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Fig. 18. Natural frequencies of the rotating closed toroidal shell, asymmetric modes, ω0= 80.73 
Hz, ––– RRM, FSM; – – – FEM; – ∙ – ∙ – RRM, FSM, Fcor. = 0

Sl. 18. Prirodne frekvencije rotirajuće zatvorene toroidne ljuske, asimetrični modovi, ω0 = 80.73 
Hz, ––– RRM, FSM; – – – FEM; – ∙ – ∙ – RRM, FSM, Fcor. = 0

Fig. 19. Natural frequencies of the rotating closed toroidal shell, symmetric modes, ω0=80.73 
Hz, ––– RRM, FSM; – – – FEM; – ∙ – ∙ – RRM, FSM, Fcor. = 0

Sl. 19. Prirodne frekvencije rotirajuće zatvorene toroidne ljuske, simetrični modovi, ω0=80.73 
Hz, ––– RRM, FSM; – – – FEM; – ∙ – ∙ – RRM, FSM, Fcor. = 0
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7.1.2	 Buckling analysis
The stability of the closed toroidal shell specified in Section 7.1.1 exposed to action 

of the uniform external pressure is considered. Tension forces due to uniform pressure 
p=1MPa are determined analytically by the simple membrane formulae (61). The rigor-
ous forces based on the shell theory are obtained according to the procedure presented 
in Section 5.2. Diagrams of both membrane and total tension forces are shown in Fig. 
20. The same total forces are obtained by FSM, Section 5.3, and FEM.

The values of buckling parameters determined by RRM, FSM and FEM are listed 
in Table 2. The RRM and FSM results agree very well, since both methods are based on 
the same toroidal shell theory. Among the FEM results, there are some differences. The 
best agreement between RRM and FEM results is achieved in the case of Catia (finite 
element QD8) [38], and SolidWorks (finite element SHELL6) [39] application.

Concerning the buckling modes, it is observed that they are identical to the natural 
modes for closed toroidal shell, Figs. 10, 11 and 12, as in the case of simply supported 
beam.

Critical pressure is minimal pressure value causing shell buckling, 1 1 3.874p pλ= =  
MPa. Shell stability can be increased by built-in N=2n cross-sectional rings. According 
to Table 2, by the shell reinforcement with four very stiff rings, the critical pressure is 
increased to 2 2 4.568p pλ= =  MPa, and by six rings to 4 4 5.936p pλ= =  MPa.

Fig. 20. In-plane forces of closed toroidal shell due to uniform external pressure p=1MPa:
 ––– RRM, – ∙ – ∙ – membrane theory

Sl. 20. Ravninske sile zatvorene torusne ljuske uslijed jednolikog vanjskog tlaka p=1MPa: 
––– RRM, – ∙ – ∙ – membranska teorija
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7.2 Open toroidal shell

7.2.1	 Vibration analysis
The vibration analysis of an open, simply supported toroidal shell, shown in Fig. 

6, is carried out. The shell geometric and physical properties are the same as in the 
previous example. The shell central angle in the cross-section plane is 0 3 / 4ϑ π= ± . 
Values of the first six natural frequencies are listed in Table 3 and compared with those 
determined by the finite strip method (FSM), and the finite element method (FEM) by 
employing two commercial software packages with different shell finite elements. If the 
rigorous Rayleigh-Ritz results are used as the referent ones, discrepancies of the FSM 
and FEM results are within 1%.

Displacement components of the shell cross-sections determined by RRM for the 
first six natural modes are shown in Fig. 21. Displacements U and W are symmetric, and 
V is antisymmetric, with respect to the y-z plane, for modes 3, 5 and 6, resulting with 
symmetric modes. In case of modes 1, 2 and 4, displacements U and W are antisymmet-
ric, and V is symmetric, so that the modes are asymmetric. This is indicated in Table 3.

Table 3. Natural frequencies of simply supported toroidal shell, ω [Hz], R=1 m, a=0.4 m, 
h=0.01 m, 0 3π / 4   

Tablica 3. Prirodne frekvencije slobodno oslonjene torusne ljuske, ω [Hz], R=1 m, a=0.4 m, 
h=0.01 m, 0 3π / 4   

Mode n Mode 
type RRM FSM (3q, 3f) 

150 FS

FEM
CATIA QD8
38×176 FE

FEM ABAQUS S4R
38×124 FE

1 0 Asym. 47.64 47.98 47.62 47.70

2 1 Asym. 173.84 173.94 173.80 173.91

3 1 Sym. 383.35 383.30 383.19 384.81

4 2 Asym. 416.75 416.63 416.44 417.71

5 0 Sym. 429.79 429.67 429.49 431.24

6 2 Sym. 447.58 447.38 447.09 450.68
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The first six natural modes generated by ABAQUS are shown in Figs. 22 and 23 in 
isometric view and coordinate planes, respectively. The RRM mode profiles, Fig. 21, 
agree very well with FEM mode profiles, Fig. 23. 

Fig. 21. Cross-section displacements of simply supported toroidal shell,
 – ∙ – U, - - - V, ––– W

Sl. 21. Pomaci poprečnog presjeka slobodno oslonjene torusne ljuske,
 – ∙ – U, - - - V, ––– W
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Fig. 22. Natural modes of simply supported toroidal shell (ABAQUS)
Sl. 22. Prirodni oblici vibriranja slobodno oslonjene torusne ljuske (ABAQUS)
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Fig. 23. Natural modes of simply supported toroidal shell in the coordinate planes (ABAQUS)
Sl. 23. Prirodni oblici vibriranja slobodno oslonjene torusne ljuske u koordinatnim ravninama 

(ABAQUS)
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Cross-section deformation due to centrifugal load, determined by the procedure 
presented in Section 5.2 for rotation speed of 50 rad/s, is shown in Fig. 24. The cor-
responding tension forces are shown in Fig. 25. The circumferential force, Nφ, is much 
higher than the meridional force, Nϑ. The values calculated by FSM, Section 5.3, and 
FEM are very close to RRM results shown in Fig. 25. Diagrams of natural frequen-
cies for the circumferential wave number n=0, 1± , 2± , where the sign designates the 
forward and backward travelling modes, are shown in Figs. 26, 27 and 28, respectively, 
as functions of dimensionless rotation speed. The problem is also solved by FSM and 
FEM. In the former case, values of natural frequencies are very close to those of RRM, 
while FEM results show some discrepancies.

Fig. 24. Cross-section deformation of rotating toroidal shell, Ω =50 rad/s
Sl. 24. Deformacija poprečnog presjeka rotirajuće torusne ljuske, Ω =50 rad/s
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Fig. 25. Tension forces of rotating toroidal shell, Ω =50 rad/s
Sl. 25. Rastezne sile rotirajuće torusne ljuske, Ω =50 rad/s
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Fig. 26. Natural frequencies of rotating open toroidal shell, n = 0: ––– RRM, FSM; - - - FEM
Sl. 26. Prirodne frekvencije rotirajuće otvorene torusne ljuske, n = 0: ––– RRM, FSM; - - - FEM

Fig. 27. Natural frequencies of rotating open toroidal shell, n = ±1: ––– RRM, FSM; - - - FEM
Sl. 27. Prirodne frekvencije rotirajuće otvorene torusne ljuske, n = ±1: ––– RRM, FSM; - - - FEM
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Fig. 28. Natural frequencies of rotating open toroidal shell, n = ±2: ––– RRM, FSM; - - - FEM
Sl. 28. Prirodne frekvencije rotirajuće otvorene torusne ljuske, n = ±2: ––– RRM, FSM; - - - FEM
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7.2.2	 Buckling analysis
The buckling analysis is performed for the same simply supported open toroidal 

shell as specified in the previous section. The shell cross-section deformation due to 
internal pressure of 10 MPa is shown in Fig. 29, and the tension forces due to p=1Mpa 
in Fig. 30. It is observed that the meridional membrane force of the closed shell is very 
good approximation of the total meridional force for open shell, Nϑ. This is not the case 
for the circumferential tension force, Nφ, Fig. 30.

Fig. 29. Deformation of shell cross-section due to internal pressure p=10MPa
Sl. 29. Deformacija poprečnog presjeka ljuske uslijed unutarnjeg tlaka p=10MPa

Fig. 30. Tension forces of simply supported open toroidal shell due to internal pressure 
p=1MPa, ––– RRM, FSM; – ∙ – membrane theory

Sl. 30. Rastezne sile slobodno oslonjene torusne ljuske uslijed tlaka p=1MPa,
––– RRM, FSM; – ∙ – membranska teorija
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Buckling parameters determined by RRM, FSM and FEM, by employing four 
commercial software with different types of finite elements, are shown in Table 4. From 
the engineering point of view, all values agree quite well.

Buckling modes determined by RRM and FSM, as well as FEM, are shown in Fig. 
31, and Figs. 32 and 33, respectively. The mode profiles of shell cross-section obtained 
by RRM and FSM agree very well with those of FEM.

Values of critical pressure 1 1 3.853p pλ= =  MPa can be considerably increased 
to 2 2 16.283p pλ= =  MPa, Table 4, by shell reinforcement with two stiff rings.
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Fig. 31. Displacement components of buckling modes, simply supported toroidal shell, RRM, 
FSM: – ∙ – U, - - - V, ––– W

Sl. 31. Pomaci izvijanja slobodno oslonjene torusne ljuske, RRM, FSM: – ∙ – U, - - - V, ––– W
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Fig. 32. Buckling modes of simply supported open toroidal shell under external pressure 
(ABAQUS)

Sl. 32. Oblici izvijanja slobodno oslonjene otvorene torusne ljuske izložene vanjskom tlaku 
(ABAQUS)
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Fig. 33. Buckling modes of simply supported open toroidal shell in the coordinate planes 
(ABAQUS)

Sl. 33. Oblici izvijanja slobodno oslonjene otvorene torusne ljuske u koordinatnim ravninama 
(ABAQUS)
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7.3 Ring vibration

As explained in [27] a toroidal shell of small radius ratio a/R behaves as a ring. Vi-
bration analysis is performed for a thin-walled toroidal ring of the following geometric 
and physical properties: R=1 m, a=0.05 m, h=0.01 m, E=2.1·1011 N/m2, ν=0.3, ρ=7850 
kg/m3. Natural frequencies for the first four flexural modes of non-rotating ring are 
determined by corresponding formulae (91) and (115) and are listed in Table 5. Natural 
frequencies of in-plane flexural vibrations are slightly higher than those for out-of-plane 
vibrations.

The same problem is also solved considering ring as a thin toroidal shell. Software 
ABAQUS with 54R shell element is used. 3D FEM model with mesh density in circular 
and meridional directions 20x416 includes 8320 finite elements. The first four natural 
modes are shown in Fig. 34. Natural frequencies determined by FEM model agree very 
well with those of ring determined by simple formulae, Table 5. Table 5 further includes 
values of natural frequencies determined by the finite strip method (FSM). Toroidal 
shell cross-section is modelled with 200 three nodes higher order strips. Values of ring 
natural frequencies are bounded by the FEM and FSM values.

Table 5. Flexural natural frequencies of stationary thin-walled toroidal ring, ω (Hz), R=1 m, 
a=0.05 m, h=0.01 m, Ω=0

Tablica 5. Fleksijske prirodne frekvencije stacionarnog tankostijenog torusnog prstena, ω (Hz), 
R=1 m, a=0.05 m, h=0.01 m, Ω=0

Mode 
no.

Mode  
type Eq. n Ring Shell, FEM 

20 × 416
FSM (3,3) 200 

FS

1 In-plane (91) 2 77.32 75.02 84.85

2 Out-of-plane (115) 2 75.41 72.98 80.94

3 In-plane (91) 3 216.07 209.10 218.04

4 Out-of-plane (115) 3 214.68 205.61 216.85
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Fig. 34. Natural vibration modes of thin-walled toroidal ring (ABAQUS)
Sl. 34. Prirodni oblici vibriranja tankostijenog torusnog prstena (ABAQUS)
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Natural frequencies of the in-plane vibrations of the rotating ring, i.e. flexural and 
extensional, are determined analytically by employing exact procedure, Eq. (131), ap-
proximated formulae, and formulae for estimation, Eqs. (90) and (88), Table 6. Three 
values of rotation speed Ω are selected, and n=2 is taken into account for illustration. 
Approximated formulae give values of natural frequencies very close to the exact ones. 
The accuracy of formulae for the estimation of natural frequencies is acceptable only for 
relatively small values of rotational speed.

Natural frequencies of the rotating ring out-of-plane vibrations, i.e. flexural and tor-
sional determined by Eq. (113), are shown in Table 7. In this case, there is no bifurcation, 
and values of natural frequencies of both spectra are increased by increasing rotation 
speed.

Table 6. Natural frequencies of rotating thin-walled toroidal ring in-plane vibrations, ω~ (Hz), 
R=1 m, a=0.05 m, h=0.01 m, n=2, 0ω =75.41 Hz

Tablica 6. Prirodne frekvencije rastezanja rotirajućeg tankostijenog torusnog prstena, ω~ (Hz), 
R=1 m, a=0.05 m, h=0.01 m, n=2, 0ω =75.41 Hz

0/ωΩ Method Flexural, bω~ Extensional, eω~

Forward Backward Forward Backward 

0 All 77.97 77.97 1843.6 1843.6

1
Rigorous, Eq. (131) 58.54 184.09 1796.0 1921.6

Approximated, Eqs. (90), (88) 59.36 184.00 1802.6 1927.2

2
Rigorous, Eq. (131) 73.51 327.23 1776.8 2030.5

Approximated, Eqs. (90), (88) 77.90 327.18 1797.9 2047.2
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Table 7. Natural frequencies of rotating thin-walled toroidal ring out-of-plane vibrations, 
ω~ (Hz), R=1 m, a=0.05 m, h=0.01 m, 0ω =75.41 Hz

Tablica 7. Prirodne frekvencije uvijanja rotirajućeg tankostijenog torusnog prstena, 
ω~ (Hz), R=1 m, a=0.05 m, h=0.01 m, 0ω =75.41 Hz

n
0/ωΩ Flexural, bω~ , Eq. (113) Torsional, tω~ , Eq. (113)

2

0 75.57 1179.73

1 168.18 1179.80

2 309.79 1180.04

3

0 216.53 1646.82

1 312.30 1646.99

2 499.32 1647.52

4

0 417.39 2135.85

1 513.89 2136.12

2 730.33 2136.98

5

0 676.69 2634.81

1 773.38 2635.18

2 1009.05 2636.41

Natural frequencies of rotating ring as a thin toroidal shell, are determined by FEM 
in the fixed coordinate system for n=2 and 3. Dimensionless rotational speed Ω/ω0 is 
varied between 0 and 1. The obtained results for the forward and backward mode waves 
are given in [27]. They are transformed into rotating coordinate system by the expre-
ssions

	 ,      F F B BnΩ nΩ        

and presented in [37]. In case of out-of-plane vibrations, there is no bifurcation of natu-
ral frequencies. The analytically determined natural frequencies for the rotating toroidal 
ring are compared with FEM values for thick-walled toroidal shell, Figs. 35 and 36.

(132)
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Fig. 35. Natural frequencies of rotating toroidal ring, out-of-plane vibrations, 
––– FEM, - - - analytical

Sl. 35. Prirodne frekvencije uvijanja rotirajućeg torusnog prstena, ––– FEM,
- - - analitičko rješenje

Fig. 36. Natural frequencies of rotating toroidal ring, in-plane vibrations, 
––– FEM, - - - analytical

Sl. 36. Prirodne frekvencije savijanja rotirajućeg torusnog prstena, ––– FEM,
- - - analitičko rješenje
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8. CONCLUSION

In this self-contained paper, vibrations of pressurised rotating toroidal shells with 
open and closed cross-section are analysed by the Rayleigh-Ritz method. The Fourier 
series are used to describe the displacement components as a function of the meridional 
coordinate, whereas their dependence on the circumferential coordinate is described 
exactly using convenient trigonometric sine and cosine functions. Linear strain-dis-
placement relationships, the ordinary strain energy, and the kinetic energy are derived 
from general expressions for thin shells of revolution. For the strain energy due to pre-
stressing, the Green-Lagrange non-linear strain-displacement relation is employed. Pre-
stressing tension forces due to the internal pressure and centrifugal load are derived by 
employing the membrane and the shell theory. Numerical examples show that tension 
forces determined according to the membrane assumption are very close to those deter-
mined by the shell theory (membrane + bending), in case of internal pressure. However, 
with centrifugal load, there are some differences between the tension forces calculated 
according to the membrane theory and the total tension forces calculated according to 
the shell theory.

The developed procedure for vibration analysis of toroidal shells by employing the 
Rayleigh-Ritz method and the Fourier series is rather complicated. Ordinary stiffness ma-
trix, geometric stiffness matrix and mass matrices, related to the pressurisation and the 
centrifugal loads, the Coriolis force and the inertia load, depend on a large number of vari-
able coefficients and submatrices. Nevertheless, the procedure is presented in a consistent 
and physically transparent way, which is also easy for computer coding. The quadratic 
eigenvalue problem, ( )[ ] 0,,Det 210 =dynK ωωω , is solved by a commercial package as 
a polynomial eigenvalue problem [40]. Forward and backward modes rotating in the cir-
cumferential direction and the corresponding natural frequencies are obtained.

Vibrations of three characteristic toroidal shells are analysed, i.e. closed shell of an 
ordinary ratio of geometric parameters, open shell of the same parameters, and the third 
one, which can be seen as a thin-walled toroidal ring. In all examples, two distinctive 
spectra of natural frequencies are obtained. In the first two examples, they are related 
to symmetric and asymmetric natural modes, respectively. In the third example, typical 
in-plane and out-of-plane natural modes of the ring are recognized. The convergence of 
results is very fast. Only 15 sine and cosine terms of the three sets of the Fourier series 
for displacements is sufficient to achieve accurate results. These three numerical exam-
ples can be used as a benchmark for evaluation of numerical methods.

The presented finite strip method for vibration analysis of rotating pre-stressed 
toroidal shells is developed in a detailed systematic and physically transparent way. 
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A two node finite strip is developed by interpolating within the strip the in-surface 
displacements with bar shape functions, and the normal bending deflections with beam 
shape functions. The finite strip properties, i.e. its stiffness matrix, geometric stiffness 
matrix and mass matrices, are derived by applying the minimum total energy principle. 
Each matrix consists of a set of variable coefficients and submatrices with recognized 
physical meaning.

In order to improve the convergence of the results, a three-node finite strip is devel-
oped as an effective solution. It is shown that the free vibration problem of a closed toroi-
dal shell can be solved directly in the polar (local) coordinate system, which is an ad-
vantage. Furthermore, an arbitrary axisymmetric shell can be modelled by the toroidal 
finite strip, since any shell geometry can be approximated by a set of toroidal segments.

The application of the developed finite strip is illustrated in cases of a closed toroidal 
shell. Natural vibrations of stationary and rotating shells, with influence of pre-stressing, 
are analysed. The convergence analysis of the closed toroidal shell shows that the shell 
cross-section has to be modelled by at least 200 finite strips. This task is also solved by 
FEM, and the same meridional subdivision is required. It is interesting to point out that 
FSM and FEM results do not converge to the same values for a few lowest-order natural 
frequencies in the beginning of the frequency spectrum. As a reference, the rigorous re-
sults of vibration analysis performed by the Rayleigh-Ritz method are used. An advan-
tage of the finite strip method is a considerably reduced number of degrees of freedom.

Rotating ring in-plane and out-of-plane vibrations are carried out, based on the 
toroidal shell theory. The strain and the kinetic energies are formulated indirectly by 
deducing from the corresponding energies of a toroidal shell. In the relevant literature, 
this problem is ordinary analysed by solving differential equations of motion derived 
from the balance of strain and kinetic energy via Hamilton’s principle.

The in-plane vibration modes consist of combined flexural and extensional defor-
mations, whereas the out-of-plane modes comprise combined flexural and torsional de-
formations. The problem is solved in an exact sophisticated way and in an approximate 
way that yields relatively simple formulae for practical use. The formulae for the natu-
ral frequencies of the in-plane and the out-of-plane flexural vibrations are very similar 
and give almost the same results assuming the same circumferential wave number. The 
simplified expression for the in-plane natural frequencies is identical to the well-known 
formula in the relevant literature.

The application of the developed ring vibration theory is illustrated by a number 
of numerical examples. The obtained results agree very well with those determined by 
the FEM analysis and the FSM analysis of a slender toroidal shell. The structure of the 
derived formulae for the in-plane vibrations indicates how centrifugal forces, induced 
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by the ring rotation, increase the mean value of natural frequencies, and the Coriolis 
forces cause their bifurcation.

The presented theory for the in-plane and out-of-plane free vibration of a rotating 
ring, based on the application of the toroidal shell theory, seems to be rather compli-
cated. On the other hand, it is very educative, since it points out the universality of the 
toroidal shell theory and sheds more light on this still challenging problem.
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Appendix A
Variable coefficients of the strain energy
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Appendix B
Variable coefficients of the strain energy due to pre-stressing
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Nϑ and Nφ are in-plane forces due to pressure and centrifugal load.
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Appendix C
Submatrices of the stiffness matrices
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Appendix D
Submatrices of the mass matrices
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Appendix E
Submatrices of the finite strip stiffness matrix
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Appendix F
Submatrices of the finite strip geometric stiffness matrix
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Appendix G
Submatrices of the finite strip mass matrices
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Polu-analitičke metode za analizu vibracija i 
stabilnosti tlačnih i rotirajućih torusnih ljuski 

energetskim pristupom

Sažetak

Prikazane su polu-analitičke metode za analizu vibracija torusnih lju-
ski izloženih tlaku, koje rotiraju oko svoje osi simetrije. Ovisnost defor-
macija rastezanja i savijanja o pomacima ljuske izvedena je iz općih izra-
za za rotacijske ljuske. Izrazi za deformacijsku (potencijalnu) i kinetičku 
energiju izvedeni su za rotirajući polarni koordinatni sustav. Potencijalna 
energija je najprije formulirana za slučaj velikih deformacija, a zatim je 
rastavljena na linearni i nelinearni dio, koji je zatim lineariziran. Kori-
štena je nelinearna Green-Lagrangeova formulacija. Kinetička energija 
osim vibracijske komponente uključuje centrifugalni i Coriolisov dio. Za 
promjenu pomaka u, v i w u cirkularnom smjeru postavljeni su točni har-
monijski izrazi. Pomaci u meridijalnom smjeru su pretpostavljeni u obliku 
Fourierovih redova. Korištena je Rayleigh-Ritzova metoda za minimizira-
nje ukupne energije. To je rezultiralo općom matricom krutosti, geometrij-
skom matricom krutosti uslijed prednaprezanja, te trima matricama masa 
vezanim za kvadrat prirodne frekvencije, umnožak prirodne frekvencije i 
brzine vrtnje, te kvadrat brzine vrtnje. Primjena razvijenog postupka ilu-
strirana je na primjeru zatvorene i otvorene torusne ljuske i tankostijenog 
torusnog prstena. Dobiveni rezultati (prirodne frekvencije i oblici vibrira-
nja) uspoređeni su s rezultatima dobivenim metodom konačnih elemenata 
i uočeno je dobro podudaranje. Prednost prikazanog postupka je u znatno 
skraćenom vremenu obrade problema na računalu.

U nastavku je razvijena metoda vrpčastih elemenata za analizu istih 
problema.Za deformacijsku i kinetičku energiju korišteni su ranije postav-
ljeni izrazi u okviru Rayleigh-Ritzove metode. Ljuska je u meridijalnom 
smjeru modelirana nizom dvočvornih vrpčastih elemenata. Promjena po-
maka u, v i w u meridijalnom smjeru unutar svakog elementa aproksi-
mirana je štapnim i grednim funkcijama oblika. Minimiziranjem ukupne 
energije vrpčastog elementa formirane su matrice krutosti i matrice masa. 
U svrhu ubrzanja konvergencije rješenja razvijen je vrpčasti element vi-
šeg reda s tri čvora. Prikazanom metodom riješen je problem zatvorene 
torusne ljuske. Dobiveni rezultati uspoređeni su s rezultatima Rayleigh-
Ritzove metode i metode konačnih elemenata.

Nadalje, razmatrane su fleksijske i torzijske vibracije rotirajućeg pr-
stena. Fleksijske vibracije se sprežu sa rasteznim vibracijama, a torzijske 
sa savojnim vibracijama. Odgovarajuće jednadžbe gibanja izvedene su iz 
teorije vibracija torusne ljuske. U prvom slučaju prsten je promatran kao 
vršni segment torusne ljuske, a u drugom slučaju kao bočni segment. Po-
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kazano je da rotacija prstena dovodi do bifurkacije fleksijskih prirodnih 
frekvencija, a ne i torzijskih frekvencija. Teorija vibracija prstena ocjenje-
na je usporedbom rezultata analize vibracija jednog prstena s rezultatima 
metode konačnih elemenata i metode vrpčastih elemenata, te izmjerenim 
vrijednostima dostupnim u literaturi.

Ključne riječi: torusna ljuska; vibracije; izvijanje; tlak; rotacija; 
Rayleigh-Ritzova metoda; metoda vrpčastih elemenata.
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