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Summary

In this self-contained paper, free vibrations of a pressurised toroidal
shell, rotating around its axis of symmetry, are considered. Extensional
and bending strain-displacement relationships are derived from general
expressions for a thin shell of revolution. The strain and kinetic energies
are determined in the co-rotating reference frame. The strain energy is
first specified for large deformations, and then split into a linear and a non-
linear part. The non-linear part, which is subsequently linearized, is nec-
essary in order to take into account the effects of centrifugal and pressure
pre-tensions. The Green-Lagrange non-linear strains are considered. The
kinetic energy is formulated taking into account the centrifugal and the
Coriolis terms. The variation of displacements u, v and w in the circumfer-
ential direction is described exactly. The dependence of the displacements
on the meridional coordinate is described through the Fourier series. The
Rayleigh-Ritz method is applied to determine the Fourier coefficients. As
a result thereof, an ordinary stiffness matrix, a geometric stiffness ma-
trix due to pressurisation and centrifugal forces, and three inertia matri-
ces incorporating squares of natural frequencies, products of rotational
speed and natural frequencies and squares of the rotational speed, are de-
rived. The application of the developed procedure is illustrated in cases
of a closed and open toroidal shell and a thin-walled toroidal ring. The
obtained results are compared with FEM results, and a very good agree-
ment is observed. The advantage of the proposed semi-analytical method
is high accuracy and low CPU time-consumption.

Additionally, a finite strip for vibration analysis of rotating toroidal
shells subjected to internal pressure is developed. The expressions for
strain and kinetic energies are taken from the previous Rayleigh-Ritz
method. The variation of displacements u, v and w with the meridional
coordinate is modelled through a discretization with a number of finite
strips. The finite strip properties, i.e. the stiffness matrix, the geometric
stiffness matrix and the mass matrices are defined by employing bar and
beam shape functions, and by minimizing the strain and kinetic energies.
In order to improve the convergence of the results, the strip of a higher
order is developed too. The application of the finite strip method is illus-
trated in case of closed toroidal shell. The obtained results are compared
with those determined by the Rayleigh-Ritz method and the finite element
method.



Rad 541. Tehnicke znanosti knj.; 20(2019), str. 1-98

The rigorous formulae for natural frequencies of in-plane and out-
of-plane free vibrations of a rotating ring are derived. An in-plane vibra-
tion mode of the ring is characterised by coupled flexural and extensional
deformations, whereas an out-of-plane mode is distinguished by coupled
flexural and torsional deformations. For the in-pane vibrations, the ring is
considered to be a short top segment of a toroidal shell. The expressions
for the ring strain and kinetic energies are deduced from the correspond-
ing expressions for the torus. It is shown that the ring rotation causes the
bifurcation of natural frequencies for the in-plane vibrations only. The
bifurcation of natural frequencies of the out-of-plane vibrations does not
occur. The derived analytical results are validated by a comparison with
FEM and FSM (Finite Strip Method) results, as well as with experimental
results available in the literature.

Keywords: toroidal shell, ring; vibration; buckling; pressure; rota-
tion; the Rayleigh-Ritz method; finite strip method.
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1. INTRODUCTION

The statics and dynamics of thin shells have been a subject of investigation for over
a century. In the beginning of the 20th century, statics problems were mainly consid-
ered, and the achievements are summarised in some capital books [1]-[4]. Later on,
following the rapid development in all branches of the engineering science, dynamics
problems became more and more relevant, [5]. In the recent decades, vibrations of rotat-
ing shells of revolution, especially cylindrical shells, are being extensively investigated
[6]-[8], considering their significance in modelling rotating structures, such as automo-
tive tires, Fig. 1, [9],[10].
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Fig. 1. Automotive wheel with tyre
Sl. 1. Automobilski kotat s gumom
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Toroidal shells are usually used in axisymmetric shell structures as a transition
structural element from cylindrical body to a spherical head, in order to smoothen the
stress concentration. Such a design solution can be found in heads of cargo tanks on
liquefied gas carriers, off-shore structures, submarine pressure hulls, pressure vessels,
etc., Figs. 2, 3 and 4, [11] [14].

The toroidal shell theory is rather complicated due to the double curvature associat-
ed with the toroidal geometry, [4]. Partial differential equations of motion can be derived
directly by considering the equilibrium of sectional forces, inertia forces and external
loads on an infinitesimal shell element. They can also be obtained indirectly from the
strain and kinetic energies of the complete shell by applying Hamilton’s principle. Dif-
ferential equations of motion are normally expressed in terms of tensional and flexural
displacements. In case of a closed toroidal shell, the variation of displacements in the
circumferential direction can be described by the Fourier series. In this way, partial
differential equations are reduced to a set of ordinary differential equations. However,
due to variable coefficients, it is not possible to obtain a closed-form analytical solution.
Therefore, numerical methods are ordinarily used.

Fig. 2. Liquefied Gas Carrier (LPG), capacity 8350 m3
Sl. 2. Brod za prijevoz ukapljenog plina (LPG), kapacitet 8350 m3
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Fig. 3. Submarine pressure hull
Sl. 3. Cvrsti trup podmornice
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Nowadays, vibration analysis of pre-stressed and rotating shells of revolution is be-
coming more and more relevant. A shell, either opened or closed in the circumferential
direction, can be modelled by shell finite elements, [15], [16]. A general formulation of
double-curved shell finite elements is presented in [17]. For the vibration analysis of
shells closed in the circumferential direction, special waveguide finite elements have
been developed, [18]-[21]. In this case a 3D problem is reduced to a 2D problem, which
results in significant savings of the computational time. A comparison of these two
types of finite elements is given in [22].

DRILLING DERRICK

ELECTRICAL CABINS DOCKING
ROOMS POINT

Fig. 4. Underwater drilling rig
Sl. 4. Podvodni busaci toranj



Rad 541. Tehnicke znanosti knj.; 20(2019), str. 1-98

The present state-of-the-art motivates to find a rigorous solution for the free vibra-
tions problem of rotating and pressurised toroidal shells. The paper is dedicated to this
problem with a particular aim of better understanding the dynamic behaviour of rotating
tires. For this purpose, the Rayleigh-Ritz method is used [23]. Ordinary strain energy,
strain energy due to pre-stressing, and the kinetic energy are formulated taking into
account the variation of shell displacements in the circumferential direction exactly, by
using simple trigonometric functions [24]. Mode profiles of the shell cross-section (the
variation in the meridional direction) are described by the Fourier series. Minimizing
the total energy by its differentiation per the Fourier coefficients, a matrix equation of
motion is obtained. The application of the presented numerical procedure is illustrated
in the case of a closed toroidal shell and a thin-walled toroidal ring. The buckling prob-
lem of closed toroidal shell is also analysed by the same approach, [25].

In order to analyse vibrations of toroidal shells with open cross-section and arbitrary
boundary conditions in a relatively simple way, a dedicated finite strip is derived in this
paper [26]. Ordinary strain energy, strain energy due to pre-stressing, and the kinetic
energy are formulated by describing variations of the shell displacements in the cir-
cumferential direction using simple trigonometric functions (sine and cosine). Bar and
beam shape functions are employed in order to describe the displacement variations in
the meridional direction within a finite strip. The equation of motion of the finite strip
is obtained by minimizing the total energy. The ordinary stiffness matrix, geometric
stiffness matrix and three mass matrices related to: 1) natural frequencies (inertia), 2)
rotation speed (centrifugal load), and 3) the Coriolis effect, consist of sets of subma-
trices with variable coefficients. In order to improve the convergence of the results, a
finite strip of higher order is also presented. The application of the developed finite strip
is illustrated in cases of toroidal shells with both closed and open cross-sections. The
advantages of the finite strip method with respect to the ordinary finite element method
and the waveguide finite element method include: explicit equations, physical insight,
and a considerable reduction of the number of degrees of freedom in the former case,
which results in significant savings of the CPU time.

As a third subject in this paper, a mathematical model for the in-plane and out-
of-plane free vibrations of a rotating ring is formulated, [27]. In the former case, the
flexural vibrations are coupled with the tensional vibrations, whilst in the latter, they
are coupled with torsional vibrations. The governing equations of motion are deduced
from the toroidal shell theory. In this way, the universality of the toroidal shell theory is
demonstrated. The characteristic equations of motion are solved in a rigorous and ap-
proximate analytical way.
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The paper is structured in 8 sections. The state-of-the-art in the considered field is
described in the Introduction, Section 1. In Section 2, general toroidal shell theory for
the forthcoming special cases is presented as a starting point. General expressions for
the linear strain energy due to pre-stressing, as well as kinetic energies due to rotation
and vibration are derived. In Section 3, application of the Rayleigh-Ritz method for the
vibration analysis of rotating closed and open toroidal shell is presented. Section 4 deals
with the finite strip method. Ordinary stiffness matrix, geometric stiffness matrix, and
mass matrices related to the centrifugal force, the Coriolis force and vibration, are de-
rived. In Section 5, the pre-stressing tension forces due to pressure and rotation are for-
mulated. In Section 6, the ring vibration theory is presented based on the toroidal shell
theory. In Section 7, the application of the presented theories is illustrated by numerical
examples and validated by comparing the obtained results with the FEM results. In Sec-
tion 8, several useful concluding remarks of the performed analysis are drawn.
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2. AN OUTLINE OF TOROIDAL SHELL THEORY

2.1 Strain-displacement relationship

The thin shell theory is presented in [5] in general form using Lamé parameters, 4,
AZ, the main radii of curvature, R, R, the in-plane displacements, u, u, and normal
displacement (deflection), u,.

A toroidal shell with the main dimensions and displacements is shown in Fig. 5. The
shell parameters are the following:

r=R+asin9, R =a, R,= ey

Fig. 5. Closed toroidal shell, main dimensions and displacements

Sl. 5. Zatvorena toroidna ljuska, glavne izmjere i pomaci
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Referring to [24] and employing (1), the expressions for toroidal shell deformations
take the following form:

in-plane strains
1({0u
Eg=—| —+w
a\ 09

1

8¢=—[ﬁ+ucosl9+wsin 19) 2
r\op
1odu 10v cosd

Egp ==+ ———— v,
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1 (ou ow
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2.2 Strain and kinetic energy

The ordinary strain energy due to extension and bending, according to [24], reads

1% 1
E =— I I K[gg +g; +2vege, +—(l—v)g§¢}
20% 2
. ®)
+DI:K‘; +K, +2Vi,K, +E(1 —V)K§¢:|}al”d¢)d19,
where
3
k= Eh Eh ©)

-2 D:12(1—v2)

are the membrane and bending stiffness, respectively, £ is Young’s modulus, v is
Poisson’s ratio, and / is the shell thickness.

Referring to [24], the strain energy due to pre-stressing by tension forces N, and N,,
is presented in the form

27

E. = Ij(&‘;Ng +8;N¢)ardl9d(p, (7)
09

where €, and 6‘; are the second order strains based on the Green-Lagrange tensor [28]

gL (a_j {@_mj (a_wj
247\ 09 09 rog o9
oo L[] fau) (aw)
 2r7 |\ o o op) |

10
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According to [24], the kinetic energy of the rotating toroidal shell reads

1 Fel(ou * (ov ’
E :—phjj ——1Qcos | +| —+uldcos P+ wQsin G
) ot ot
0 & (9)

2
+ (% —1Q2sin 9) ard9d e,

where p is the mass density and Q is the rotational speed.

2.3 The condensation of strain and kinetic energy to shell cross-section

For a toroidal shell closed in the circumferential direction, with either an open or
a closed cross-section, having arbitrary cross-sectional boundary conditions, the dis-
placement components can be assumed in the form

u(G,@,t)=U(F)cos(np + wt)
v(,p,t) =V () sin(np+ wt) (10)
w(S,p,t) =W () cos(np+ wt),

where U(:9), V($) and W (9) are functions of the cross-sectional mode profiles, and
@ is natural frequency. The argument n @ + @ ¢ is used in order to enable describing
the travelling modes that normally appear due to shell rotation, and 7 is the circumfer-
ential mode number.

Substituting (10) into Egs. (2) and (3), and then into the strain energies (5) and (7),
one obtains products of two displacement amplitudes or their derivatives, with squares
of sine and cosine functions (10). Their integrals over the circumferential angle ¢ within
the domain 0-2m equals ©. Thus, the temporal variation vanishes, and the strain and
kinetic energies become time-invariant. This is due to the fact that the natural modes
rotate while keeping a fixed cross-sectional profile. As a result thereof, Egs. (5) and (7)
are reduced to the following form:

11
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1 1 1 1
E, = I[— pU') +=p U+ pUU +=p, (V') + = pV >+ pVV
212 2 2 2
+ p UV + pUV'+ pUV
1 ”\2 1 1\2 1 2 " [; " I (11)
+5q1(W ) +5q2(W ) + G QW g W g W
+ g, WU +q,W'U+WU')+qW'U +q, WU +q, WU

+q WV +q WV +q WV +q WV +q, WV ][dI,

M, e 1 1o 1 ,
E, = ”Ecl (U'y +Ec2U2 +oe(r ) +5c4V2 +e V'V
! (12)

2

+%06 (w') + %C7W2 + e UV +co (UW —UW')+c, UW +c11VWJd9,

where the integrals over the meridional coordinate & are for the moment left open. Pa-
rameters p, (), i=1,2..9, ¢,(&), i=1.2...16, and ¢, ($), i=1,2...11, in Egs. (11) and
(12) are variable coefficients specified in Appendices A and B, respectively.

In a similar way substituting expressions (10) into (9), one obtains for the condensed
kinetic energy

E = %nphajr[(a)z +0Q7 cos’ 9)(]2 +(a)2 +!22)V2 + J.r[(af +Q° sin’ 19)W2

9 9
1
+wQ(cosSUV+sin3VW)+2QZsinScosSUV]dS. (13

12
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3. THE APPLICATION OF THE RAYLEIGH-RITZ METHOD

3.1 Displacement field

In case of a closed toroidal shell, Fig. 5, there are no boundary conditions, and shell
displacements can be assumed in the form of the complete Fourier series. Hence, by
applying matrix notation, one can write

V(9)=({/.){e. )}{%g’” %} (14)

where 4 ,B ,C ,D ,E andF arethe unknown Fourier coefficients, and

m’> " m’

f, =cosm$8, g =sinm¥, m=0,12,..,N (15)

are the coordinate functions.

13
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3.2 Stiffness matrix

Substituting expressions for displacement field (14) into (11) and differentiating the
strain energy by the Fourier coefficients, a system of three matrix equations is obtained

(G )

ff(m[k]z+pg[k1:+pg[k1z>d‘9ﬁ§’”}}

0

+2£ ( ([, + 6T, )+ a0 (K], + g [T, + 4, [k]z)dg{ii:}}}

m

L 2{(m[k + py[k +p9[k]z)d‘9{§zmi}

+2JZ[(p4 [k]1 + ps [k]2 + D [k]s)dg{igz}}}

0

+1 (402 [T, + 0, [K], + 01 TR, + s [£], + 4, [k]z)ds{ii:}}}

2z

S (G GRIE) )+q9[k12+qm[k12+qn[k]z)d9{{Am}}

{B.}

—/_\
QD
&
)

\_—\r—/

+2J?(q12[k];+q13[k]1+q14[k] *ds [k] +qm[k {Z }

0

+1”(€11 [k], + 4 [k], + 4 [k], + q, [K], + 45 [K], + 4, [£], )d {ii i}
(16)

14
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where p,(8),i =1,2...9 and q,(9),i =1,2...16 are variable coefficients, depending
on the meridional coordinate 4, specified in Appendix A. Submatrices [k]i , whose
elements are products of sine and cosine functions or their derivatives per ¢, are listed
in Appendix C.

The system of three matrix equations (16) can be presented in a condensed form

Sor KTl )

where

61 =(8)={(4, )8, )(C,) (D), )(F,) 18)

is the vector of the Fourier coefficients, and

r 11 [K]IZ [K]13
[x]=|[x ]21 k], [K], (19)
K 31 [K]32 [K]33

is the stiffness matrix. Submatrices [K ][j, i, j =1,2,3 encompass the integrals in Egs.
(16).

15
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3.3 Geometric stiffness matrix

Geometric stiffness matrix is derived from the strain energy component, which is
due to pre-stressing, Eq. (12). Substituting expressions (14) for displacements into (12)
and differentiating it per the Fourier coefficients, the following three matrix equations
are obtained

OE,

el e

0 m 0 {Dm}
{0B.}

o (o1 -4 )+ 8], )dgﬁi}}}

0 m

OE,
{222} :chg [%], dSﬁZﬁ}ﬁf(q [£], +ei[k], +cs ( [£], +[k]4))d3{§;:}}}
{eD, }
+2£r ¢ [K], dg{i’:i}
OEg_
{;f;} i I (6 ([T, =11 )+ i [k]z)dg{g:i} j e [#], dg{ig%}
{oF,}

2

[ (e K], +e, [k]z)dg{in}}},

0 (20)

m

where variable coefficients ¢; (), i =1, 2...11 are specified in Appendix B, and subma-
trices [k] are given in Appendix C.

1

16
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The system of three matrix equations (20) can be presented in a condensed form by
following the layout of Eq. (17)

°%s _[Gs) e
where

l6]. [c]. [o];
[G]: [G]Zl [G]zz [G]zs 22

6], [¢], [G]s]

is the geometric stiffness matrix. Submatrices [G],-j, i,7=1,2,3 now represent the in-
tegrals in Egs. (20).

According to the composition of the membrane forces N4 and N > Section 5.1,
and the formulation of coefficients ¢, (3) , Egs. (B1), the geometric stiffness matrix can
be split into two matrices, i.e. one due to the internal pressure, and the other related to
the centrifugal forces, i.e.

[G]=plG], +@°[Gl,. 23)

17
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3.4 Mass matrices

Mass matrices are derived from the kinetic energy, Eq. (13). By substituting expres-
sions (14) into (13), and differentiating the kinetic energy per the Fourier coefficients,
one obtains the following system of algebraic equations

OE,
{Z;li} =a.fr(a)2+Qz cos’ 19)[k]2d.9{?;:§}
{0B,}
+2aa)QTrcosl9[k] {{ M}}}
227; {Em
+aQ !rsm&cos&[k] dg (] }
OE,
{ZZ} :zawgfrcosg[k]zdng{iZ:i}
{oD,}
+a(w’ +Qz)Irr[k]2 dg{il(;:}}}
+2aa)92.frsin,9[k]2 dgﬁi:}}}
OE,
{221:} :aQQ.frsin&lcosg[k]zdg{}Zﬁ} 4)
{0F}

+2aa)§22!jrrsin 9[k]2 dQ{iZm }}}

m

+a2fr(a)2 +Q7sin’ 9)[k]2 dS{gi}}

0

18
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where a = mpha. The three matrix equations (16) can be presented in the form

= (@*[B]+ 0Q[C]+ 0 [M] ){5} 25)

o{s}

where

8], [ [8],]
8]=|[0) [BL. [0] |
s o] (8]
o] [l ] T
[c]=|[cL, [o] [c]BJ
o [l [o]

), ] o]
r]=|fo] [l [o]

1|
|
o Bl

(26)

are mass matrices related to the centrifugal force (Qz) the Coriolis force (@ Q) , and
the ordinary inertia force (@°). Submatrices [B]u’[ ];j and [M ]U, i,j=1,2,3 are
specified in Appendix D. All of them depend on the symmetric matrix |k |, , Appendix
C. Therefore, all mass matrices (19), including the Coriolis matrix, are symmetric.

3.5 Matrix equation of motion and buckling

If a linear conservative dynamic system vibrates at its natural frequency, then it
interchanges vibration energy from a purely potential state with the maximum strain
energy, E

smax’

to a purely kinetic state where the kinetic energy is maximum E,
[23]. Hence, the difference of the maximum energies, [1=FE __ —F, . equals zero.

If these energies are determined for approximated mode shapes, then the difference 1

max’

is not zero. However, for a successful approximation of the true mode shape, it should
be as close to zero as possible.

19
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In the considered case of a rotating toroidal shell, the balance of energies reads

N=E,+E,—E,. @7)

Here, the situation is somewhat different, since all the terms on the right-hand side
are time-invariant. This time-invariance is only due to the fact that fixed mode profiles
rotate around the axis of symmetry of the torus. Natural frequency is in fact the speed
of this rotation. Then the integration over the circumferential coordinate eliminates tem-
poral variations since it is irrelevant how the mode profile is positioned with reference
to @ = 0. Nevertheless, each particle on the shell still undergoes motions where minima
and maxima of the displacement and velocity are interchanged. If the modes are deter-
mined approximately with truncated series, the governing equation of motion can still
be obtained from the minimum total energy principle [23]

ol _0E, 0k, O, _{0} o8
oo} ofs} ofs} ofe}

Taking into account relations (17), (21) with (23), and (25) respectively, one obtains
the following matrix equation for natural vibrations

([&]+ pl6], +@([6L, -[B])- wlc]- o’ [M ]} =0}, ©9)

The matrix [C] multiplying the mixed @Q) term, which results from the Coriolis
term in the kinetic energy expression(13), is the only one causing a bifurcation of natural
frequencies. The geometric stiffness matrix [G]Q and the mass matrix [B ] are related
to the centrifugal force with stiffening and softening effect respectively.

If a toroidal shell is exposed to influence of the external pressure, it can lose stabil-
ity. The corresponding matrix equation of buckling for determining critical pressure is
deduced from (29), i.e., [25]

(30)
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3.6 Open toroidal shell

The previous consideration is related to a closed toroidal shell, Fig. 5. In case of an
open toroidal shell shown in Fig. 6, the convention of meridional coordinate is changed.
Now the 3 angle is measured from the shell top due to reason of simplicity. The central
angle reads 29, Fig. 6.

Fig. 6. Simply supported open toroidal shell, main dimensions and displacements

Sl. 6. Slobodno oslonjena otvorena toroidna ljuska, glavne izmjere i pomaci

A simply supported toroidal shell is analysed, and the meridional displacement
functions can also be assumed in the form of the trigonometric series (14). The coor-
dinate functions have to satisfy boundary conditions U (9) = V(S) = W(S) =0 at
@ ==, . This is the achieved setting:

f,=cosé& 9, g =sinn, 9,

31
£=m, g =(mi1),  m=135.N. b
28, 29,
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The formulation of the stiffness and mass matrices is the same as in the case of
closed toroidal shell. Variable stiffness coefficients p, (3), q; (9) and ¢, (3), Ap-
pendices A and B, as well as the mass matrices, Eqs (24) have to be adopted due to
the change of 9§ angle convention. Accordingly, sind is replaced with cos9, and cos3
with —sin3d. The integration domain of the meridional coordinate is now changed from
0<9<27to -9, <893,

22



I. Senjanovic, N. Alujevic, I. Catipovic, D. Cakmak, N. Vladimir: Semi-Analytical Methods for Vibration and ...

4. FINITE STRIP METHOD

4.1 Shape functions

The two-node finite strip of a toroidal shell is shown in Fig. 7. It is used to discretise
the shell in the meridional direction, and it has 8 degrees of freedom (d.o.f.). The strip
follows the shell meridional curvature with radius a, and is defined by the central angle
y =8, — 8 . The strip properties are derived using the energy approach.

Cross-section

-~

Fig. 7. The finite strip nodal displacements and forces
Sl. 7. Pomaci i sile vrptastog elementa torusne ljuske
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The strip displacements are approximated by the following interpolation functions:

U(3)=ZU,g,»(n9), V(3)=ZV,-g,(n9), W(9)=ZA,f_,~(r9), (32)

where nodal displacements, Fig. 7, can be presented through the following three vectors:
Wl
U Vv, 14
S R NI @)
2

The cross-sectional rotation due to bending is designated by w =—dW /(ad9),
Fig. 7. The in-surface displacements are interpolated by polynomial bar shape functions,
whereas the bending deflections are interpolated by the beam shape functions (Hermi-
tian polynomials):

g1=1—§, g2=§
fi=1-8(3-28), f,=—ayi(1-¢), (34)
fi=E23-28), f,=ay’(1-¢),

where

¥ 33)

is the normalised strip angle, and y =&, — 4 is the strip central angle, so that & is the
strip arch dimensionless coordinate within a domain 0 < & <1.
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4.2 Stiffness matrix

Substituting expressions (32) into the strain energy equation (11) and differentiating
by nodal displacements, the following system of eight algebraic equations is obtained:

1

{aES } = T(pl [k] + p[k], + py[k].)d&{U}

ou, )

+ T(p7[k]13 + pelk]. + polk] s )d${V}

9

+ T(Q7[k]l6 g5 [k]n + %[k]ls + qu[k]19 + Q11[k]20)d‘9{A}

{Zis_ } = T(m[kL + polk)s + plk], )dg{v}
o T, ple, + pkE iU} -

+ T(Q1z[k]21 + %3[k]22 + q14[k]23 + Q15[k]24 + q]e[k]zs)d‘g{A}

9

{2?3 }i=1,2,3,4 B LI(%[](L + ‘h[k]x +4; [k]o + ‘]4[k]1o +4; [k]ll + qs[k]lz)d‘g{A}

1

+ T(% [k]lTs + QS[k]1T7 + %[k]lTs + Q1o[k]1T9 + q“[k]go)d‘g{U}
+ gf(qu[k]; 4 [k + a0 kT + g, [k + g, [k Ja 9 (v

9

Variable coefficients p,($),i =1,2...9 and ¢q,(9),i =1, 2...16 , are specified in
Appendix A. Elements of the submatrices [k]l., i=1,2...25 are products of the shape
functions (34) and their spatial derivatives. Equations (36) can be presented in the ma-
trix notation as
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- [klis), o7
where
oy =(s)=(u, U, v, v, w, ¥ w, ¥, (38)

is the vector of nodal displacements, Fig. 7, and

IV K]ll [K]IZ [K]13 |
{ L. [kL [k, J (39)

K]Sl [K]32 K]33

is the stiffness matrix, where
i} 3
[K ]11 = z [K ]i
i=1
6
[K ]22 = Z [K ]i
i=4
X 12
[K ]33 = Z [K ]i
i=7

15

k], =3 [x] o

i=13

(K], = z K]

K], =X [K]

i=21

[K];:([K]L)Ts [K];:([ ] )a [K]32 ([K]23)f

Submatrices [K ]l, =1,2...25 are given in Appendix E.
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4.3 Geometric stiffness matrix

The geometric stiffness matrix is derived from the strain energy due to pre-stress-
ing. Substituting expressions (32) for displacements into (12) and differentiating by nod-
al displacements, a system of eight algebraic equations is obtained

2ok~ Jlelel +eliehaalu} [olsdasty)

ouU, ;

+ T(% [g]9 + Clo[g]m)dlg{A}

2ok~ Jlelid +clel relebaaly
i Ji=12 3]92 @1
Jalel as(u}+ Je, ¢ asia)
(2] - [elshrelehasa)

+ T(%[g]g + Clo[g]lro)d'g{U}+ J‘C“[g]lr1 dS{V}_

9, 9

Variable coefficients ¢,(:), i =1, 2...11 are specified in Appendix B. Elements of
the submatrices [g]i, i=1,2...11 are again products of the shape functions (34) and
their spatial derivatives.

The system of algebraic equations (41) can be presented in a matrix notation

e _[6lis} @)

where {0} is the vector of nodal displacements, Eq. (38). The geometric stiffness matrix
reads
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¢y [6+[6l,+[c]; [6], |
6], +[Gl, 61, 6], +[a], |’

ek el el
=
L

where submatrices [G]i ,i=1,2...11 are specified in Appendix F.

4.4 Mass matrices

43)

Mass matrices are derived from the expression for the kinetic energy, Eq. (13). Sub-
stituting expressions (32) into (13), and differentiating the kinetic energy by nodal dis-

placements, one obtains the following system of eight algebraic equations:

ou,

{aE } =a)zgfdl[m]ld8{U}+QZSJZd2[m]3d,9{U}

+20Q) j d,[m], d9{V}+Q? fd6 [m]; d9{A}
o) 2 2 i T
{%} =@ @l a9V} 200 alnhasi
+ 200 [dy[m], d9{n)

OF “ K
{_k} — o [d[m], d9{a}+ @* [dm], asfa}
oA i=1,2,3,4 9 &

iJj=

+ 2a)QT dy[m], d${V}+ ngfdé [m] dS{U}.

The variable coefficients in (44) are the following:
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d =rxphar
d,=rpharcos’ 3

d,=npharsin® 9 as)

d,=npharcos$
d;=mpharsin$
di =mpharsinYcos§.

The elements of the submatrices [m]l ,i=1,2...7 are products of the shape func-
tions (34) and their spatial derivatives.

The system of algebraic equations (44) can be split into three matrices, which are
multiplied by the squared rotational speed, by a squared natural frequency, or by a prod-
uct of the rotational speed and a natural frequency as follows:

OE,

o5}

= (QZ[B]+ wQ[Cl+ o’ [M ]){5} (46)

3

where

B]=|lo]  [m] [o] @7)

[Ccl=|m], [o] [m], @)

[M]= [0% ], [o] 9)
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are the mass matrices due to the centrifugal force, due to the Coriolis force, and due
to the inertial force, respectively. Submatrices [M ]n i=1,2...7 are specified in Ap-
pendix G.

4.5 Finite strip equation

In the natural vibration, the total strain energy equals the total kinetic energy.
However, these energies are not balanced at the finite strip level. Their difference is
compensated with the work of nodal forces

W, ={o)iF). 0

where <§> is the vector of nodal displacements, Eq. (38), and

\F{ =(F)=(N, N, S S, O M, 0, M, (51)

is the vector of the corresponding nodal forces, in which N, and S, i = 1, 2 are the tension
and in-plane shear forces, while Q and M, i = 1, 2 are the transverse shear forces and
bending moments, respectively, Fig. 7. Hence, one can write the energy balance

[I=E;+E;-E +W,., (52

where I1=0 for exact values of the energies. Since the displacement field within a
finite strip is described approximately by the shape functions, IT has to be minimum,
referring to the minimum total energy principle, [23], i.e. OI1/ 6{5 } = {0} Satisfying
this condition yields

-k (53)

Substituting Egs. (37), (42) and (46) into (53), the finite strip equation is obtained in
the following form:
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(F}=([k]+ plc], +@*([6la - [B])-wQlc]- M ]fs}. 649

Hardening centrifugal geometric stiffness matrix [G]Q is dominant with respect to
the softening centrifugal mass matrix [B]. Therefore, the increase in the shell rotation
speed generally increases the values of natural frequencies. Furthermore, the Coriolis
term with @2 causes bifurcations of natural frequencies.

4.6 The assembly of finite strips

In order to increase the accuracy of the vibration analysis, the shell should be mod-
elled by a large number of finite strips. Before assembling, the finite strip equation (54)
has to be rearranged in such a way that the nodal displacements and the nodal forces,
Egs. (38) and (51), are first set up for node 1, and then for node 2, i.e.

&)=, v, wow U, VoW, -
(Fy=(N, s, 0 M, N, s, 0, M)

This implies the rearrangement of the rows and columns of all matrices in Eq. (54)
accordingly.

Since the finite strip is curved and defined in the polar coordinate system, the strip
equations can be assembled directly like links of a chain. This is also valid for shell
structures consisting of different shell segments in case they have the same slope angle
at the joints. Otherwise, the finite strip equation has to be transformed from the local
(polar) coordinate system into the global (orthogonal) coordinate system of the shell
structure.

If vibrations of a closed toroidal shell are analysed, the assembling of the finite strip
equations is obtained in a circular form looking like a necklace, Fig. 8a. In order to for-
mulate the eigenvalue problem in the ordinary form, the “necklace” has to be unclasped
at a joint and stretched, and the compatibility conditions of displacements at the joint
have to be satisfied. This is achieved by superimposing the last rows and columns of the
matrix related to the last node, to the first rows and columns related to the first node,
Figs. 8b and c.
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b) | c)

n-

1

e

K,

38 ]

=
]

32

Fig. 8. Assembling of finite strip dynamic stiffness matrices of closed toroidal shell

Sl. 8. Sprezanje matrica dinamicke krutosti zatvorene torusne ljuske
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4.7 Finite strip of higher order

Numerical examples show that the convergence of natural frequencies determined
in the above way, by employing simple two-node finite strips, is rather slow. To improve
the convergence of the results, finite strips of higher order with three nodes are used.

The shape functions of a bar with three nodes reads, [29]

g, =1-36+2&°
g, =45(1-¢) (56)
=&(28-1).

For a three-node beam, one finds the following shape functions:

fi=1-23E2+66&° —68&% +24¢&°
fy=—ayE(l—6£ +13£> —128° + 4£*)
fy=16&%(1-¢)
fo=8aye>(1-4¢ + 58> —28%)
fo=&(7-348+52£> - 24¢%)
fo=arg’(1-55 +88" - 48%),

G7)

where ¥ =%, — 9, Fig. 3.
The condensation of stiffness matrix of the three-node finite strip to the end nodes
is illustrated as follows. The full stiffness matrix reads

lf[K]“ [x], [K]1J| (ol
|[K]21 [ ]22 [K]23| {5}2 Z{O}, (58)
|_ 31 [K]32 [K]33J {5}3

where {5 }i ,i=1,2,3 are the nodal displacement vectors, Egs. (55). Eq. (58) can be
written as a system of three matrix equations. Extracting {5 }2 from the second equation
and substituting it into the first and the last one yields the condensed finite strip equation
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{F} _ [K]ll _[K]Zl [K]13 _[K]Tz ]{{5}1}, (59)

where

[K]:l = [K]IZ [K];; [K]Zl
[K ]Tz = [K ]12 [K ];; [K]23
[K]; = [K]32 [K];; [K]Zl
[

K]Zz = [K]32 [K]; [K]23 .

(60)

The stiffness matrix, as well as the geometric stiffness matrix, depend on strains, i.e.
on the derivatives of displacements u, v and w, and are very sensitive to the used inter-
polation (shape) functions. Therefore, the application of the higher order finite strips is
very effective. On the other hand, however, mass matrices depend on the displacements
and can be determined by simple two-node finite strips.
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5. PRE-STRESSING TENSION FORCES

5.1 Analytical membrane solution

A toroidal shell can be pre-stressed by uniform internal pressure, p, and/or cen-
trifugal load due to rotation, ¢ = thZV , Fig. 5. In case of a closed toroidal shell, the
generated tension forces can be determined analytically, based on the membrane shell
theory, [30]

1 2R+ asin 4 1
—pa————, N__=—pa, (61)
o 2p R+asin 8 or 2p

Ny =0, N,,=phQ*(R+asing). (62)

Expressions (61) are reliable, since the closed shell bending due to internal pressure
is quite small. Egs. (61) can also be used for a rough approximation of tension forces
in an open toroidal shell. On the contrary, the shell bending due to centrifugal load is
pronounced, and the corresponding tension forces have to be determined by employing
the shell theory, [24] and [26].

5.2 Application of the Rayleigh-Ritz method

Closed toroidal shell is exposed to centrifugal load components, Fig. 5

g, = phQ’rcos8, g, =phQ’rsin. (63)

An axisymmetric shell deformation is assumed: u=U, v=F, w=W. The total energy
consists of the strain energy E_(U, W), Eq. (11) and work of centrifugal load

2727 7
W, = J (q.U+qW)rad9dep = 27mj (q.U +q,W)rd3. (64)
0 0 0
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Due to energy balance, the difference of these energies has to be zero in the case of
exact solution, and has to take minimum value in the approximate solution. Hence, one
can write

M=E -W,.

q

(65)

Substituting Egs. (63) for load and Egs. (14) for displacements into (64), the deriva-
tives of the load per the Fourier coefficients read

where

36

<F> = 2mphaQ)’ <Ik191k2’]k391k4>

2r

I, = J.r2 cosk9cos 9d g

r* sin k3 cos 3d 9

I, =

7% sin k9sin 9d 9.

2
|
0

I;= Trz coskgsin $d 9
2071'
I, = J‘
0

Using the principle of minimum total energy, [23], (i.e. minimum error)

om 0B, oW,

50 ale] o) U

(66)

©7)

(68)

(©69)

(70)
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and relation (17), a system of non-homogenous algebraic equations is obtained
2[K]{s}={F}. (1)

Stiffness matrix, Eq. (19), is reduced to

[K]= {K]” : (72)

It is multiplied by 2 in Eq. (71), since in derivation of stiffness matrix, Eq. (19),
integration for mode wave number n>0 is performed resulting in 7= jcosz (np)p=r.
However, in the considered case of axisymmetric deformation n=0, and’/=2.

Since the Fourier coefficients B, = F;y = 0, the corresponding equations are ex-
cluded from the matrix equation (71). For coefficients in the Fourier series characterised
by k=1, two identical equations are obtained in (71) for B, and F, as can be seen in the
load terms, Eq. (69). Therefore, one of these equations is omitted in order to avoid the
singularity of the stiffness matrix.

By calculating displacements U and W, Egs. (14), it is possible to determine the ten-
sion strains, Egs. (2), and finally the tension forces by employing Hooke’s law

E 1 1
Ngz1 hz[—d—U+KUcosl9+(—+Ksinz9]W}
-v

ad8 r a r
[ ] "
N(p: Eh2 lU00519+Kd—U+(lsi1119+KjW .
1-v Lr add r a J
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5.3 Application of the finite strip method

In general case of an open toroidal shell, the tension forces can be determined nu-
merically by the finite strip method. Work of pressure, p, and centrifugal load, Eq. (63),
on the corresponding displacement reads

279,

w,= jj[qcu+(p+qr)w]ard3d(0 . (74)

09

The considered statics problem is axisymmetric and »n=0, u=U, v=V=0, w=W.
According to Egs. (32), the displacements are approximated by the shape functions,
U= <U >{g} and W = <A>{ f } If one substitutes these relations and Egs. (63) into
(74), then integrates (74) per ¢, and finally differentiates it per nodal displacements, the
nodal load forces are obtained as

0 rg, cos

[an ) 0 rg, cos $

olu) 2o .t ifisin
F{ =- =-2 d9-27x phQ dg. 75
{F}, (an 7rpa;[1 " 7 p ag!‘] i, sin 9 (75)

ofa} i, of, sin 9

rf, rf,sin 8

The finite strip equation reads

{Fy=2lkfis}+{F}, . (76)

where, according to Egs. (51) and (38), respectively

<F>:<N| N, O M, 0O M2>

(77)
(6)=(Uu, U, w, v, w, ¥,).
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The stiffness matrix according to Eq. (39) is reduced to

k], [K],]

[K]:r 31, (78)
k], k)

I
L

The stiffness matrix [K] in Eq. (76) is multiplied by 2 due to the same reason as in
the previous section.

After assembling the finite strips of the complete toroidal shell, the resulting non-
homogenous equation

K] }=-{F), (79)

is solved, and the nodal displacements {5 }, Egs. (77), for each finite strip are deter-
mined. The tension forces are calculated by Egs. (73).
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6. RING VIBRATION THEORY

6.1 In-plane vibration

Ring vibration analysis in this paper is based on the toroidal shell theory. For this
purpose, a toroidal shell segment in the vicinity of angle ¥ =7 /2 is considered a
ring, as shown in Fig. 9. For the in-plane vibrations, the relevant displacements are the
circumferential and the radial ones, V' and W, [27]. The expressions for the strain energy,
the geometric strain energy and the kinetic energy, Egs. (11), (12) and (13), respectively,
are after integration no longer functions of the angle 4. Therefore, they are reduced to
the following form for a unit length of the arch (b=1):

1 » 1 2
E;=—p V" +—q,W" +q,JW
2 2
1, 1 2
E, 2504V +EC7W +c, VW (80)

E. =%a[(a)2 Jr£)2)V2 +(a)2 +QZ)W2 +4a)QVW],

where a = zp har . The terms in £, with Q% and Q represent the kinetic energy
due to the centrifugal and the Coriolis forces, respectively. Coefficients p,, ¢, and ¢, in
(80) are specified according to Appendices A and C, taking into account that ¢ = 7/2
and v =0 for the ring as a one-dimensional structural element

K D
Ps _ 5 n2[1+ 2]
a  phr Kr
K D
95 _ > (1+n4 2J
a  phr Kr
K D
Do _ zn[unz j @)
a  phr Kr
C—4=C—7=(n2+1)§22
a «a
S0,
a
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where

3
K = Eh, D:L?;. : (82)

The coefficients ¢, ¢, and c,, take into account the pre-stressing membrane force
N, = phr*Q? due to the centrifugal load.

Fig. 9. Rings as segments of toroidal shell

S1. 9. Prstenovi kao isjecci torusne ljuske
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Minimizing the total energy £ = E¢ + E. — E by setting its derivatives per V
and W equal to zero yields a symmetric matrix equation

a,-o a, _2Qa)HV} _ {0}, ®3)

2
a, —2Qw a, - w
where
c
”:&4__4_92
a o
c
azz—q—3+ 1_0?
a o
q16 cll (84)
Uy, =dy = +—-
a a

The non-trivial solution of Eq. (83) is obtained from the condition that the determi-
nant of its matrix vanishes. Applying this condition results in the following characteris-
tic equation in the form of a fourth order (quartic) polynomial:

4 2 _
o -a,0" taw+a, =0,

where
2
a,=a, +a, +4Q (85)
a, =4a,,Q
2
Ay =apdy —ayy-
Substituting Egs. (84) into (86), one obtains (86)
K D
a, = ——(n? +1)(1+n2 2j+2(n2 +2)0?
phr Kr
K D
a, =4Qn 2(1+n2 2j+2Q2 (87)
phr Kr
2
K D K D
a, = 5 n2(112—1)2 -+ 2112(112—3)(1+n2 szz+n2(n2—4)Q4.
phr Kr phr Kr
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Eq. (85) can be solved analytically in a rather complicate way, as shown in Appen-
dix H. However, an approximate solution of Eq. (85) with ignored small terms of higher

order is at disposal, [27]. The first solution is related to extensional natural frequency of
rotating ring in case that » and Q are relatively small quantities

- +1Q+\/ s 2 +2)02 (89)

where

D[k
o’ = |n* +1] 1+n° —
: \/( X KFZJ,/WZ 9

is an extensional natural frequency of the non-rotating ring

The second root of Eq. (85) is related to bending natural frequencies

~ 2n g n(mt =1
W, = Qf o, | +————Q°, 90
"o+l \/( b) (n® +1) 0

0 n(n® —1) , D
, "
2 » D phr O
\/(n + 1{1 +n j

where

Kr?

is a flexural natural frequency of the non-rotating ring.

Since the ring tension stiffness is much higher than the flexural stiffness, values of
@, are much higher than those of @, . Therefore, @, is of primary interest
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6.2 Out-of-plane vibration

This type of vibrations is analysed by considering the toroidal shell segment in the
vicinity of angle ¢ = 7, with two degrees of freedom, i.e. deflection ¥ and twist angle
Y, Fig. 9. Since extensional displacements U and V are zero, the strain energy accord-
ing to Eq. (11) is reduced to [27]

14 1 ! 1 " ! "
Ex = ai (W'Y 4500V 45 a0+ g VW +q W + g W, O

where referring to Appendix A, and setting K=0

4 =1——
a a

q, :ﬂa—lz[l+2(l—v)n2]

q, = 7[222112 [nz +2(1—v)]
rr ©3)

g =-nv—n’

a :—ﬂl:1+2(1—v)]r22n2.

Stiffness K and stiffness D are defined with Eq. (82). Poisson’s coefficient v is not
ignored in (93) (as in the case of in-plane vibrations), since it is introduced through the
shear modulus G = E/ (2(1 + V)) at the very beginning of the development of toroidal
shell vibration theory.

The deflection derivative is actually the twist angle, Fig. 9, and a new variable is
introduced for simplicity:

AW _a

W' = =a¥Y ==X 94
dg r

44



I. Senjanovic, N. Alujevic, I. Catipovic, D. Cakmak, N. Vladimir: Semi-Analytical Methods for Vibration and ...

In a similar way, one can write for the curvature

2 2
W":i;’j:aze:[ﬂ Y, ©3)
r

Substituting expressions (94)) and (95) into (92) yields

96)

Furthermore,

OF ’
8)5 =q2(rJ X+q4( j Y+q6[ij O7

Since the displacement Y is neither accompanied by the inertia term nor present in
the geometric strain energy, the right-hand side of the last equation of (97) is set to zero.

Hence, one obtains
3 2
a
) qs(rJ
X w. (98)
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Substituting (98) into the first two equations of (97), the system of equations is re-
duced to

OE, . «
e =a,W +a,X
99
0E, .
x a,W+a,,X,
where coefficients g, , taking into account Eq. (93), are given by:
. a D 2
a,, :77——2(1 —vz)n2 n’ +
rr 1+v
% aD 2 2
a, =r——1-v?) 1+ n (100)
2 ror’ ( )( 1+v J
- « a D 2\ 2
a a T——\1- n°| 1+
T A e
The geometric strain energy, Eq. (12), has only one term, i.e.
! 2 101
EG =EC7W , ( )

where, according to Appendix A and after applying the membrane force due to the cen-
trifugal load N, = p hr 207, it yields

c, =7Zgn2N¢ = mphar Q°n” . (102)
r

The kinetic energy, Eq. (13), has also got only one term, p ha*W , which is related
to the inertia force. Since a rotation of the ring cross-section W is introduced, the rotary
inertia must be taken into account, too. Based on the analogy between inertia force and
the moment of rotary inertia, as well as taking into account the substitution ¥ = — X,

Eq. (94), one can write r
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2 i 3
ARy L L S (103)
12 r P12

In this way, the kinetic energy can be written as

1 1
E, =57rpharw2W2 +57rp£ipa)2X2, (104)
r

Now, Eq. (99) is extended to the total energy £ = E¢ + E. — E,, and one can
write

aE * *
—=a,W+a , X +aQ’n’W -ao’W =0
ow

(105)
—=a,W+a,  X-Low X =0,
6X 21 22 ﬂ

where & = zZp har and S = 7p(a/r)i, . If the first and the second equation in (105)
are divided by & and [, respectively, one obtains an asymmetric matrix equation

a,, -0 |[X

where

gy =P ()[

" ]+an2
p hr

1+v

(107)
D 2
a, =— 4(1—1/2 n2(1+ ]
p hr 1+v
a, =-— b 5 1—V2)I’l2(1+ 2 j
pi,r 1+v

47



Rad 541. Tehnicke znanosti knj.; 20(2019), str. 1-98

The determinant of the matrix in equation (106) must vanish, i.e.
4 2 = 108
o' —a,0’ +a, =0, (108)
where

a, =a,, +a
2 11 22 (109)
Ay = a1y, — Ay, -

Inserting (107) into (109) yields

) 2 D 2 )|
a,=(1-v?) 4n“(nz+ j+ 2[1+ nzj +n°Q°
p hr l+v) pi,r 1+v
[ D T 1 L 2 2 2 V]
a, = 2(1—1/2) an (n2+ j(l+ nzj—(l+ jnz
pr hi,r 1+v I+v I+v

D 2
- (1—v2)n2(1+1

pi,r +v

n nzjgz. (110)

Now, it is necessary to substitute all the shell parameters specified per unit length
with the ring parameters of breadth b, Fig. 9

Di-v?) _E DU-v)_E i, I, (i

3

i 1 h A

P P

2

The moment of inertia of the shell cross-section i, = h? /12, related to
the rotary inertia, is substituted by the equivalent ring polar moment of inertia
1, =(h*+b*)bh/12.

Furthermore, formulae (110) are derived for a shell segment, and the strain energy
includes the energy of both twist moments at the meridional and circumferential shell
cross-sections, M, = M,,. Their energy is represented in the formula for the total
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strain energy in Eq. (5) by the term (1-v)x;, /2, where «,, is the twist strain. This is
shown in Egs. (110) by the coefficient 2 /(1 + v) . Therefore, only one half of this coef-
ficient must be taken into account in Egs. (110). In this way, formulae (110) derived for
the toroidal shell are modified in such a way to be valid for a ring

E 1 1 1 1
5 5 5 nz[n2 + ]+—(1+ nzj +n°Q°
pr-| Ar l+v) I, 1+v
2
E I I 1 E 1 1
a, = 5 - — n*(n> =17+ 2—n2(1+ nszZ.
pr Ar= 1, 1+v pr-1, l1+v

The solutions of the bi-quadratic equation (108) can be presented in the form

o, = %{11 /1—4%} (113)
a,

The first solution represents natural frequencies of predominantly torsional vibra-

<
I

(112)

tions, while the second one represents natural frequencies of predominantly flexural
vibrations. This can easily be seen in the case of a non-rotating ring. By setting 2 =0
in Egs. (110), it becomes obvious that the second term under the inner square root of
Eq. (113) is very small. By using the approximation v/1—& =~ 1—&/2, one obtains the
following expressions for natural frequencies of torsional and flexural vibrations of a
stationary ring:

2 1 1 E I
a)j’:\/(u " J+ pznz(n2+ ] — (114)
I+v ) Ar l+v )\ pr- 1,
0 n(n® -1) E 1
a)b =

pri Ar’ . (115)

2

1
\/n2+1+v+ z nz[(l+v)n2+1]
Ar

For a toroidal ring ///, =1/2 and 1, (AR?) = (a/R)’.
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It is observed that both the centrifugal load and the Coriolis load induced by the
ring rotation are involved in the ring in-plane vibrations (the terms with Q% and Q
in Egs. (87), respectively). With the out-of-plane vibrations, only the centrifugal load
participates (the terms with Q% in Egs. (110)). Hence, there is no bifurcation of natural
frequencies in the latter case.

6.3 Rigorous solution of the characteristic equation

Solving quartic equation has been a challenging subject of investigation since the
16™ century. There are several well-known names among scientists: Lodovico Ferrari,
Gerolamo Cardano, Descartes, Euler, [31], [32]. The problem is still relevant nowadays
[33], [34].

The non-linear characteristic equation for the rotating ring in-plane vibrations, Eq.
(85), is actually a depressed quartic equation, i.e. quartic equation without the cubic
term. It can be solved by following the mathematical procedure described in [35]. One of
the possibilities to solve Eq. (85) is to assume that it is reducible by factorization. Hence,
the four roots of Eq. (85) coincide with two pairs of roots of two quadratic equations

a)2+lAa)+ y—ﬁ =0, (116)
2 A

where

A=+,8y+4a, (117)

and y is a real root of the cubic resolvent of Eq. (85)
8y’ +4a,y* —8a,y —(4a,a, +al)=0. (118)

Eq. (118) can be condensed into a simpler form by shifting y. Substituting
Y =x—a,/6 into (118) yields

X +3px+2¢g=0, (119)
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where
1
p=—£(12a0 +a3) (120)
1 3 2 121
q=5(2612—72azao—27a1 ) (121)

The three real roots of Eq. (119) are assumed in the form

X, =u+v, X,=U+tEY, X;=&UtEV, (122)
where &, and &, are the roots of equation e +e+1=0,ie.
1 3
£ :——iii. (123)
’ 2 2

The first root X, in (122) is determined by Cardano’s formula

u=3z, v=3z, (124)

where
212 =—qi\/q2+p3 (125)

are roots of the equation z” +2gz — p = 0. If the discriminant D = g*> + p* <0,
one can write

Z,=—q+iw, w= ‘q2+p3‘. (126)

The complex quantity z,, can be presented in the exponential form (De Moire’s

z, =pe™, p=qg+w, @= arctg[iJ ; (127)
-q

formula), i.c.
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where — 77 < @ < 7r . Substituting (127) into (124) yields
v =3[z, =3/pe™’” =3/plcos(p/3) +isin(p/3)]. (128)
Finally, one obtains for the first root of Eq. (119), according to Egs. (122)
x, =23/pcos(p/3). (129)

The values of X, are real, since the imaginary parts of # and v cancel each other. Further-
more, the solutions of Eq. (130) read

2
o, :—fi\/[ﬂ _(y_%) (130

Substituting (A3) and y = x, —a, /6 into (116), one obtains

6+/3
@, 534 :L —84/2a, +6x, £ _|4a, —6x, +# ., (131
243 S+l2a, +6x,

where s =sign(A4), Eq. (117).
The following example can be used as a benchmark for the application of the above

procedure: ) 2 B ﬁ

Data: a, =1, a, , a, .
3 3

Eq. (131) L\/_(—s-6.9282 +/28 +5-16).
243

Solution: @, =—3.91485, @, =-0.085146, , =1.0, ®, =3.0.
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7. NUMERICAL EXAMPLES

7.1 Closed toroidal shell

7.1.1  Vibration analysis

The application of developed numerical procedures is illustrated by a case of a
closed toroidal shell with the following geometric and physical properties, Fig. 5: R=1
m, a=0.4 m, #/=0.01 m, E=2.1-10" N/m?, v=0.3 and p=7850 kg/m°.

The first 11 natural frequencies for stationary shell, Q=0, determined by RRM and
FSM, are listed in Table 1 and compared with the FEM Abaqus results determined by fi-
nite element S8R5 [36]. The convergence analysis shows that stable results are obtained
by 15 sine and cosine terms in RRM, 200 finite strips of higher order in FSM, and the
finite element mesh 200x500 in the meridional and circumferential directions in FEM.
All values shown in Table 1 mutually agree very well.

The distribution of displacements U, V" and W over shell cross-section for the first
six natural modes, determined by RRM and FSM, are identical and shown in Fig. 10.
Some mode profiles are symmetric, and some asymmetric, with respect to the vertical
symmetry plane. Natural modes determined by FEM are shown in Figs. 10 and 11 in
the isometric view and orthogonal planes, respectively. The shell cross-section mode
profiles obtained by RRM and FSM are almost the same, while the FEM profiles are
similar, Figs. 10 and 12.

Table 1. Natural frequencies of closed toroidal shell, ® [Hz], R=1 m, a= 0.4 m, h=0.01 m
Tablica 1. Prirodne frekvencije zatvorene torusne ljuske, @ [Hz], R=1 m, a=0.4 m, h=0.01 m

Mode no. | Mode type n 2-1R5RtZ:ms 2(F)§)A25 202%\00
1 Asym. 0 80.73 81.26 80.67
2 Asym. 2 111,11 111.29 110.22
3 Sym. 2 123.05 123.19 122.08
4 Asym. 3 207.40 207.52 205.30
5 Sym. 3 207.85 207.98 205.75
6 Sym. 4 309.74 300.84 306.67
7 Asym. 4 309.89 309.99 306.82
8 Asym. 1 351.06 351.16 350.98
9 Asym. 2 398.61 398.68 398.44
10 Sym. 2 401.28 40133 401.15
11 Sym. 1 415.22 415.27 415.17
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Mode 1,n=0 Mode 2,n=2

Fig. 10. Modal displacements of closed toroidal shell, = - - U, - - -V, —— W

Sl. 10. Pomaci prirodnih oblika vibracija na popretnom presjeku zatvorene
torusne ljuske: —- - U, - - -V, — W
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/ %
e
RIS

K V
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e
e,
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ERL 1052
(o
\n‘\?hy,{/{-

Mode 4, n=3 Mode 5,n=3 Mode 6, n=4

Fig. 11. The first six natural modes of closed toroidal shell (ABAQUS)
Sl. 11. Prvih Sest prirodnih oblika vibriranja zatvorene torusne ljuske (ABAQUS)
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®,=80.87Hz,n=0

w3 =122.58 Hz,n=2

— Top Front

®;=20728 Hz,n =3

Fig. 12. Natural modes of FEM model in the coordinate planes (ABAQUS)

Sl. 12. Prirodni oblici vibriranja modela konacnih elemenata u koordinatnim
ravninama (ABAQUS)

55



Rad 541. Tehnicke znanosti knj.; 20(2019), str. 1-98

In the convergence analysis, the converged RRM results from Table 1 are used as
referent values. The convergence of FSM is considered taking N=50, 100, 150 and 200
finite strips into account. The error is defined as €(%) =M'100. As shown in
Fig. 13, the results converge from upside, and convergenceai)gmfaster for higher mode

number 7.
n
0 2 2 3 3 4 4 1 ) 2 1
1 v
\
\
\
\
\
%\ 50 FS
[} ---0_
\ ~
? \\ \\
S 0.5 A & ‘0
w S \\\
150 FS \\ 100 FS
200 FS% \';:::' -:::X.:-::.x::: _-_;_
0 T T T T T
1 2 3 4 5 6 7 8 9 10 11
Mode

Fig. 13. Convergence of natural frequencies, FSM
Sl. 13. Konvergencija prirodnih frekvencija, metoda vrpcastih elemenata

The convergence of FEM results is also analysed by taking into account different
finite element mesh density: 50x124, 100x252 and 200x500. The NASTRAN results
obtained by finite element CQUADA4, [37], for 300x600 mesh density are used as the
referent ones, Fig. 14. It is observed that the values of natural frequencies o,, ®,, o, and
o, converge slower to the referent values than the others.

The converged natural frequencies determined by FEM differ from those determi-
ned by RRM analysis for ca 1%, Fig. 15. This is due to both the applied shell theory and
the type of used finite elements.
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n
0 3 2 3 3 4 4 1 2 2 1
2
P‘ --Q
’ \
1.5 A 3 \
1 \
1] \
7 \
P .p"".!! \
- sox124|! o
S 1A --t LR
@ '.

Mode

Fig. 14. Convergence of natural frequencies, FEM- - - ABAQUS, - - - NASTRAN
Sl. 14. Konvergencija prirodnih frekvencija, metoda konatnih elemenata:
- -- ABAQUS, - - - NASTRAN

n
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X \ /
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\\\ 1
-1 1 @ ----@----6----
-1.5
1 2 3 4 5 6 7 8 9 10 11
Mode

Fig. 15. Relative difference of FEM and RRM natural frequencies

Sl. 15. Relativna razlika prirodnih frekvencija odredenih metodom konatnih elemenata i
Rayleigh-Ritzovom metodom
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Furthermore, the bifurcation phenomenon of natural frequencies caused by the shell
rotation is considered. The tension forces due to centrifugal load are determined by
RRM and FSM, as described in Section 5.2 and 5.3. The shell cross-section deformation
obtained by RRM and FSM, as well as FEM for =60 rad/s, is shown in Fig. 16. The
results are almost the same. The diagrams of tension forces are shown in Fig. 17. All
three methods used give the same results.

S .

*

O

N\ . _.
o_ ]x A 4o Ix
Q Q

Fig. 16. Shell cross-section deformation due to rotation, Q=60 rad/s, a) RRM, FSM; b) FEM
Sl. 16. Deformacija poprecnog presjeka ljuske uslijed vrtnje, Q=60 rad/s, a) RRM, FSM; b) FEM

0.5mm
|
|
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7 T S
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()

Fig. 17. In-plane forces of rotating toroidal shell, Q=60 rad/s
Sl. 17. Ravninske sile u ljusci uslijed vrtnje, Q=60 rad/s

The same values of natural frequencies determined by RRM and FSM are ob-
tained. They are shown separately for asymmetric and symmetric modes in Figs. 18
and 19, with their comparisons to FEM results. Some differences between the diagrams
can be noticed as a result of different numerical methods. If the Coriolis force is omit-
ted (@ 2 =0, Eq. (29)), there is no bifurcation of natural frequencies, as can be seen
in Figs. 18 and 19.
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350

0.0 0.2 0.4 2/ 0.6 0.8 1.0
(4

Fig. 18. Natural frequencies of the rotating closed toroidal shell, asymmetric modes, w = 80.73

Hz, —— RRM, FSM; — — — FEM; — - — - — RRM, FSM, Fcor. = 0
SI. 18. Prirodne frekvencije rotirajuce zatvorene toroidne ljuske, asimetri¢ni modovi, w,= 80.73
Hz, ——— RRM, FSM; — — — FEM; — - — - = RRM, FSM, Fcor. = 0

100

0.0 0.2 0.4 2/, 0.6 0.8 1.0
0

Fig. 19. Natural frequencies of the rotating closed toroidal shell, symmetric modes, w,=80.73

Hz, —— RRM, FSM; — — — FEM; — - — - — RRM, FSM, Fcor. =0
SI. 19. Prirodne frekvencije rotirajuce zatvorene toroidne ljuske, simetricni modovi, w,=80.73
Hz, —— RRM, FSM; — — — FEM; — - — - — RRM, FSM, Fcor. = 0

60



I. Senjanovic, N. Alujevic, I. Catipovic, D. Cakmak, N. Vladimir: Semi-Analytical Methods for Vibration and ...

7.1.2  Buckling analysis

The stability of the closed toroidal shell specified in Section 7.1.1 exposed to action
of the uniform external pressure is considered. Tension forces due to uniform pressure
p=IMPa are determined analytically by the simple membrane formulae (61). The rigor-
ous forces based on the shell theory are obtained according to the procedure presented
in Section 5.2. Diagrams of both membrane and total tension forces are shown in Fig.
20. The same total forces are obtained by FSM, Section 5.3, and FEM.

06 1
0.5 |
: /Iv_ﬂ_
~ 04 ]
E ]
S 03
g
< 02 7 T . = e gy o =
1N,
01"
0 1 . — ;
0 45 90 135 180

9(°)
Fig. 20. In-plane forces of closed toroidal shell due to uniform external pressure p=1MPa:
———RRM, - - — - — membrane theory

Sl. 20. Ravninske sile zatvorene torusne ljuske uslijed jednolikog vanjskog tlaka p=1MPa:
——— RRM, - - — - — membranska teorija

The values of buckling parameters determined by RRM, FSM and FEM are listed
in Table 2. The RRM and FSM results agree very well, since both methods are based on
the same toroidal shell theory. Among the FEM results, there are some differences. The
best agreement between RRM and FEM results is achieved in the case of Catia (finite
element QD8) [38], and SolidWorks (finite element SHELL6) [39] application.

Concerning the buckling modes, it is observed that they are identical to the natural
modes for closed toroidal shell, Figs. 10, 11 and 12, as in the case of simply supported
beam.

Critical pressureis minimal pressure value causingshell buckling, p, = 4, p =3.874
MPa. Shell stability can be increased by built-in N=2n cross-sectional rings. According
to Table 2, by the shell reinforcement with four very stiff rings, the critical pressure is
increased to p, = A, p =4.568 MPa, and by six ringsto p, =4, p =5.936 MPa.
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7.2 Open toroidal shell

7.2.1  Vibration analysis

The vibration analysis of an open, simply supported toroidal shell, shown in Fig.
6, is carried out. The shell geometric and physical properties are the same as in the
previous example. The shell central angle in the cross-section plane is 3, =137 /4.
Values of the first six natural frequencies are listed in Table 3 and compared with those
determined by the finite strip method (FSM), and the finite element method (FEM) by
employing two commercial software packages with different shell finite elements. If the
rigorous Rayleigh-Ritz results are used as the referent ones, discrepancies of the FSM
and FEM results are within 1%.

Displacement components of the shell cross-sections determined by RRM for the
first six natural modes are shown in Fig. 21. Displacements U and W are symmetric, and
V' is antisymmetric, with respect to the y-z plane, for modes 3, 5 and 6, resulting with
symmetric modes. In case of modes 1, 2 and 4, displacements U and W are antisymmet-
ric, and V' is symmetric, so that the modes are asymmetric. This is indicated in Table 3.

Table 3. Natural frequencies of simply supported toroidal shell, @ [Hz], R=1 m, a=0.4 m,
h=0.01m, 8, =3n/4

Tablica 3. Prirodne frekvencije slobodno oslonjene torusne ljuske, @ [Hz], R=1 m, a=0.4 m,
h=0.01m, 3, =3n/4

Mode | n "t"y‘l’o‘ie RRM FS';ASS‘;'SM CATFI/EAN(‘)DB FEM;;E?%”& S4R
38x176 FE
1 0 | Asym. | 47.64 47.98 47.62 47.70
2 1 | Asym. | 173.84 173.94 173.80 173.91
3 1 Sym. | 383.35 383.30 383.19 384.81
4 2 | Asym. | 416.75 416.63 416.44 417.71
5 0 | Sym. | 429.79 429.67 429.49 431.24
6 2 Sym. | 447.58 447.38 447.09 450.68
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Mode 4,n=2 Mode 5,n=2 Mode 6,n=0

Fig. 21. Cross-section displacements of simply supported toroidal shell,

U -V, - W
SI. 21. Pomaci popretnog presjeka slobodno oslonjene torusne ljuske,
U -V, W

The first six natural modes generated by ABAQUS are shown in Figs. 22 and 23 in
isometric view and coordinate planes, respectively. The RRM mode profiles, Fig. 21,
agree very well with FEM mode profiles, Fig. 23.
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——
T

—

T

Mode 4, n=2 Mode 5, n=0 Mode 6, n=2

Fig. 22. Natural modes of simply supported toroidal shell (ABAQUS)
Sl. 22. Prirodni oblici vibriranja slobodno oslonjene torusne ljuske (ABAQUS)
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0w1=47.708 Hz, n=0
Side

2 =173.881 Hz, n=1
Side Top

S
i a | @@
G

®3=384.798 Hz, n =1
Side Top

S
C
C 10,
-
&

®04s=417.633 Hz,n=2

ws=431.240 Hz, n=0
Side Top Front

@L@ @ @
&

w6 =450.619 Hz, n=2

Fig. 23. Natural modes of simply supported toroidal shell in the coordinate planes (ABAQUS)

S1. 23. Prirodni oblici vibriranja slobodno oslonjene torusne ljuske u koordinatnim ravninama
(ABAQUYS)
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Cross-section deformation due to centrifugal load, determined by the procedure
presented in Section 5.2 for rotation speed of 50 rad/s, is shown in Fig. 24. The cor-
responding tension forces are shown in Fig. 25. The circumferential force, N, is much
higher than the meridional force, N,. The values calculated by FSM, Section 5.3, and
FEM are very close to RRM results shown in Fig. 25. Diagrams of natural frequen-
cies for the circumferential wave number n=0, =1, £2, where the sign designates the
forward and backward travelling modes, are shown in Figs. 26, 27 and 28, respectively,
as functions of dimensionless rotation speed. The problem is also solved by FSM and
FEM. In the former case, values of natural frequencies are very close to those of RRM,
while FEM results show some discrepancies.

Fig. 24. Cross-section deformation of rotating toroidal shell, Q =50 rad/s
Sl. 24. Deformacija popretnog presjeka rotirajuce torusne ljuske, Q =50 rad/s
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Fig. 25. Tension forces of rotating toroidal shell, Q =50 rad/s
SI. 25. Rastezne sile rotirajuce torusne ljuske, Q =50 rad/s

68



I. Senjanovic, N. Alujevic, I. Catipovic, D. Cakmak, N. Vladimir: Semi-Analytical Methods for Vibration and ...

500
_ _mide_S— _ Fii=i
400 -
300 -
~
=
(S
S 200 -
100 -
mode 1 n=0
O T T T
0 0.25 0.5 0.75 i
/o,
Fig. 26. Natural frequencies of rotating open toroidal shell, n = 0: —— RRM, FSM; - - - FEM
Sl. 26. Prirodne frekvencije rotirajuce otvorene torusne ljuske, n = 0: —— RRM, FSM; - - - FEM
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Fig. 27. Natural frequencies of rotating open toroidal shell, n = +1: —— RRM, FSM; - - - FEM
Sl. 27. Prirodne frekvencije rotirajuce otvorene torusne ljuske, n = +1: ——— RRM, FSM; - - - FEM
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Fig. 28. Natural frequencies of rotating open toroidal shell, n = £2: ——— RRM, FSM; - - - FEM
Sl. 28. Prirodne frekvencije rotirajuce otvorene torusne ljuske, n = £2: —— RRM, FSM; - - - FEM
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7.2.2  Buckling analysis

The buckling analysis is performed for the same simply supported open toroidal
shell as specified in the previous section. The shell cross-section deformation due to
internal pressure of 10 MPa is shown in Fig. 29, and the tension forces due to p=1MPa
in Fig. 30. It is observed that the meridional membrane force of the closed shell is very
good approximation of the total meridional force for open shell, ;. This is not the case
for the circumferential tension force, N¢, Fig. 30.

X
-

Fig. 29. Deformation of shell cross-section due to internal pressure p=10MPa
Sl. 29. Deformacija popretnog presjeka ljuske uslijed unutarnjeg tlaka p=10MPa
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Fig. 30. Tension forces of simply supported open toroidal shell due to internal pressure
p=1MPa, ——— RRM, FSM; — - — membrane theory

Sl. 30. Rastezne sile slobodno oslonjene torusne ljuske uslijed tlaka p=1MPa,
——— RRM, FSM; — - — membranska teorija
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Buckling parameters determined by RRM, FSM and FEM, by employing four
commercial software with different types of finite elements, are shown in Table 4. From
the engineering point of view, all values agree quite well.

Buckling modes determined by RRM and FSM, as well as FEM, are shown in Fig.
31, and Figs. 32 and 33, respectively. The mode profiles of shell cross-section obtained
by RRM and FSM agree very well with those of FEM.

Values of critical pressure p, = A p =3.853 MPa can be considerably increased
to p, =A,p =16.283 MPa, Table 4, by shell reinforcement with two stiff rings.

72



I. Senjanovic, N. Alujevic, I. Catipovic, D. Cakmak, N. Vladimir: Semi-Analytical Methods for Vibration and ...

€9%°91 78¥'91 €76'G1L 06791 695791 66191 L¥S91L TE€S91 0 | ‘whsy 9

69791 STE9l TLLS) 0191 €8€91 zLe9lL 04591 €9€791 ¢ | whs S

8¥C 91 09791 1§26 /9191 §9€91 €691 0rS 9l 8€€ 91 ¢ | wAs 14

86191 0091 899°G1L §5091 £0€91 8€T9L 62€91L LLT91L L | wAs €

8¥191 05191 r€9°G1 §96°G1 6vC 91 08191 €87°91 80791 L | “wAsy 14

s 698°€ LL0Y 601t v€6'€ S06'€ €58°¢ 788 0 | "wAsy L
8¥C X9/ vl x 8¢ | ¥l x 8¢ vl x 8¢ IENH aueiqudW [12ys aueiquidw

9T1IHS lale} EREN ravnod | ‘NN NN NN NN odky ‘ON
SYIOMPIJOS ene) snbeqy ueseN u OpOW | 9pow

W34 S4061 ‘WsA SWIR) G L X T WY

edIN L =d ‘pagT =% ‘W 10’0 =y ‘W 0 = & ‘w | =y ‘&ysnl| ausnio} aua(uojso oupoqols v efueliaz) Jejoweley ‘¢ ealjqe]

edN L =d ‘pacF="% ‘W 100 =y ‘W0 =2 ‘W | =y [|Pys [epioioy papoddns Ajdwis uado jo v ieyewered Suippng “p ajqeL

73



Rad 541. Tehnicke znanosti knj.; 20(2019), str. 1-98

Mode 4,n=2 Mode 5,n=2 Mode 6,n=0

Fig. 31. Displacement components of buckling modes, simply supported toroidal shell, RRM,
FSM:—-— U, ---V, — W

Sl. 31. Pomaci izvijanja slobodno oslonjene torusne ljuske, RRM, FSM: —- - U, - - -V, — W
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Fig. 32. Buckling modes of simply supported open toroidal shell under external pressure
(ABAQUS)

Sl. 32. Oblici izvijanja slobodno oslonjene otvorene torusne ljuske izlozene vanjskom tlaku
(ABAQUS)
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Fig. 33. Buckling modes of simply supported open toroidal shell in the coordinate planes
(ABAQUS)

Sl. 33. Oblici izvijanja slobodno oslonjene otvorene torusne ljuske u koordinatnim ravninama
(ABAQUS)
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7.3 Ring vibration

As explained in [27] a toroidal shell of small radius ratio /R behaves as a ring. Vi-
bration analysis is performed for a thin-walled toroidal ring of the following geometric
and physical properties: R=1 m, ¢=0.05 m, #=0.01 m, E=2.1-10"" N/m?, v=0.3, p=7850
kg/m®. Natural frequencies for the first four flexural modes of non-rotating ring are
determined by corresponding formulae (91) and (115) and are listed in Table 5. Natural
frequencies of in-plane flexural vibrations are slightly higher than those for out-of-plane
vibrations.

The same problem is also solved considering ring as a thin toroidal shell. Software
ABAQUS with 54R shell element is used. 3D FEM model with mesh density in circular
and meridional directions 20x416 includes 8320 finite elements. The first four natural
modes are shown in Fig. 34. Natural frequencies determined by FEM model agree very
well with those of ring determined by simple formulae, Table 5. Table 5 further includes
values of natural frequencies determined by the finite strip method (FSM). Toroidal
shell cross-section is modelled with 200 three nodes higher order strips. Values of ring
natural frequencies are bounded by the FEM and FSM values.

Table 5. Flexural natural frequencies of stationary thin-walled toroidal ring, @ (Hz), R=1 m,
a=0.05 m, h=0.01 m, Q=0
Tablica 5. Fleksijske prirodne frekvencije stacionarnog tankostijenog torusnog prstena, @ (Hz),
R=1 m, a=0.05 m, h=0.01 m, Q=0

Mode Mode Eq. n Ring Shell, FEM | FSM (3,3) 200
no. type 20 x 416 FS
1 In-plane 91) 2 77.32 75.02 84.85
2 Out-of-plane (115) 2 75.41 72.98 80.94
3 In-plane 91) 3 216.07 209.10 218.04
4 Out-of-plane (115) 3 214.68 205.61 216.85
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Fig. 34. Natural vibration modes of thin-walled toroidal ring (ABAQUS)
Sl. 34. Prirodni oblici vibriranja tankostijenog torusnog prstena (ABAQUS)
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Natural frequencies of the in-plane vibrations of the rotating ring, i.e. flexural and

extensional, are determined analytically by employing exact procedure, Eq. (131), ap-
proximated formulae, and formulae for estimation, Egs. (90) and (88), Table 6. Three
values of rotation speed Q are selected, and n=2 is taken into account for illustration.

Approximated formulae give values of natural frequencies very close to the exact ones.
The accuracy of formulae for the estimation of natural frequencies is acceptable only for
relatively small values of rotational speed.

Natural frequencies of the rotating ring out-of-plane vibrations, i.e. flexural and tor-
sional determined by Eq. (113), are shown in Table 7. In this case, there is no bifurcation,
and values of natural frequencies of both spectra are increased by increasing rotation

speed.

Table 6. Natural frequencies of rotating thin-walled toroidal ring in-plane vibrations, @ (Hz),
R=1m, a=0.05 m, h=0.01 m, n=2, @, =75.41 Hz

Tablica 6. Prirodne frekvencije rastezanja rotirajuceg tankostijenog torusnog prstena, @ (Hz),
R=1m, a=0.05 m, h=0.01 m, n=2, @, =75.41 Hz

/ Method Flexural, 517 Extensional, 56
Q @ Forward | Backward | Forward Backward
0 All 77.97 77.97 1843.6 1843.6
: Rigorous, Eq. (131) 58.54 184.09 1796.0 1921.6
Approximated, Egs. (90), (88) 59.36 184.00 1802.6 1927.2
) Rigorous, Eq. (131) 73.51 327.23 1776.8 2030.5
Approximated/ Egs. (90), (88) 77.90 327.18 1797.9 2047.2
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Table 7. Natural frequencies of rotating thin-walled toroidal ring out-of-plane vibrations,
@ (Hz), R=1 m, a=0.05 m, h=0.01 m, @, =75.41 Hz

Tablica 7. Prirodne frekvencije uvijanja rotirajuceg tankostijenog torusnog prstena,
@ (Hz), R=1 m, a=0.05 m, h=0.01 m, @, =75.41 Hz

n Q/ w, Flexural, @, , Eq. (113) Torsional, @, , Eq. (113)
0 75.57 1179.73
2 1 168.18 1179.80
2 309.79 1180.04
0 216.53 1646.82
3 1 312.30 1646.99
2 499.32 1647.52
0 417.39 2135.85
4 1 513.89 2136.12
2 730.33 2136.98
0 676.69 2634.81
5 1 773.38 2635.18
2 1009.05 2636.41

Natural frequencies of rotating ring as a thin toroidal shell, are determined by FEM
in the fixed coordinate system for n=2 and 3. Dimensionless rotational speed Q/o, is
varied between 0 and 1. The obtained results for the forward and backward mode waves
are given in [27]. They are transformed into rotating coordinate system by the expre-
ssions

W, =0, +nQ, W, =w,—n (132)

and presented in [37]. In case of out-of-plane vibrations, there is no bifurcation of natu-
ral frequencies. The analytically determined natural frequencies for the rotating toroidal
ring are compared with FEM values for thick-walled toroidal shell, Figs. 35 and 36.
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0 ;
0 05 2/w, 1

Fig. 35. Natural frequencies of rotating toroidal ring, out-of-plane vibrations,
——— FEM, - - - analytical

Sl. 35. Prirodne frekvencije uvijanja rotirajuceg torusnog prstena, —— FEM,
- - - analiticko rjesenje

100 -

0 0.5 2/w, 1

Fig. 36. Natural frequencies of rotating toroidal ring, in-plane vibrations,
——— FEM, - - - analytical

Sl. 36. Prirodne frekvencije savijanja rotirajuceg torusnog prstena, —— FEM,
- - - analiticko rjesenje
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8. CONCLUSION

In this self-contained paper, vibrations of pressurised rotating toroidal shells with
open and closed cross-section are analysed by the Rayleigh-Ritz method. The Fourier
series are used to describe the displacement components as a function of the meridional
coordinate, whereas their dependence on the circumferential coordinate is described
exactly using convenient trigonometric sine and cosine functions. Linear strain-dis-
placement relationships, the ordinary strain energy, and the kinetic energy are derived
from general expressions for thin shells of revolution. For the strain energy due to pre-
stressing, the Green-Lagrange non-linear strain-displacement relation is employed. Pre-
stressing tension forces due to the internal pressure and centrifugal load are derived by
employing the membrane and the shell theory. Numerical examples show that tension
forces determined according to the membrane assumption are very close to those deter-
mined by the shell theory (membrane + bending), in case of internal pressure. However,
with centrifugal load, there are some differences between the tension forces calculated
according to the membrane theory and the total tension forces calculated according to
the shell theory.

The developed procedure for vibration analysis of toroidal shells by employing the
Rayleigh-Ritz method and the Fourier series is rather complicated. Ordinary stiffness ma-
trix, geometric stiffness matrix and mass matrices, related to the pressurisation and the
centrifugal loads, the Coriolis force and the inertia load, depend on a large number of vari-
able coefficients and submatrices. Nevertheless, the procedure is presented in a consistent
and physically transparent way, which is also easy for computer coding. The quadratic
eigenvalue problem, Det |K|0’, ', @” = 0, is solved by a commercial package as
a polynomial eigenvalue problem [40]. Forward and backward modes rotating in the cir-
cumferential direction and the corresponding natural frequencies are obtained.

Vibrations of three characteristic toroidal shells are analysed, i.e. closed shell of an
ordinary ratio of geometric parameters, open shell of the same parameters, and the third
one, which can be seen as a thin-walled toroidal ring. In all examples, two distinctive
spectra of natural frequencies are obtained. In the first two examples, they are related
to symmetric and asymmetric natural modes, respectively. In the third example, typical
in-plane and out-of-plane natural modes of the ring are recognized. The convergence of
results is very fast. Only 15 sine and cosine terms of the three sets of the Fourier series
for displacements is sufficient to achieve accurate results. These three numerical exam-
ples can be used as a benchmark for evaluation of numerical methods.

The presented finite strip method for vibration analysis of rotating pre-stressed
toroidal shells is developed in a detailed systematic and physically transparent way.
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A two node finite strip is developed by interpolating within the strip the in-surface
displacements with bar shape functions, and the normal bending deflections with beam
shape functions. The finite strip properties, i.e. its stiffness matrix, geometric stiffness
matrix and mass matrices, are derived by applying the minimum total energy principle.
Each matrix consists of a set of variable coefficients and submatrices with recognized
physical meaning.

In order to improve the convergence of the results, a three-node finite strip is devel-
oped as an effective solution. It is shown that the free vibration problem of a closed toroi-
dal shell can be solved directly in the polar (local) coordinate system, which is an ad-
vantage. Furthermore, an arbitrary axisymmetric shell can be modelled by the toroidal
finite strip, since any shell geometry can be approximated by a set of toroidal segments.

The application of the developed finite strip is illustrated in cases of a closed toroidal
shell. Natural vibrations of stationary and rotating shells, with influence of pre-stressing,
are analysed. The convergence analysis of the closed toroidal shell shows that the shell
cross-section has to be modelled by at least 200 finite strips. This task is also solved by
FEM, and the same meridional subdivision is required. It is interesting to point out that
FSM and FEM results do not converge to the same values for a few lowest-order natural
frequencies in the beginning of the frequency spectrum. As a reference, the rigorous re-
sults of vibration analysis performed by the Rayleigh-Ritz method are used. An advan-
tage of the finite strip method is a considerably reduced number of degrees of freedom.

Rotating ring in-plane and out-of-plane vibrations are carried out, based on the
toroidal shell theory. The strain and the kinetic energies are formulated indirectly by
deducing from the corresponding energies of a toroidal shell. In the relevant literature,
this problem is ordinary analysed by solving differential equations of motion derived
from the balance of strain and kinetic energy via Hamilton’s principle.

The in-plane vibration modes consist of combined flexural and extensional defor-
mations, whereas the out-of-plane modes comprise combined flexural and torsional de-
formations. The problem is solved in an exact sophisticated way and in an approximate
way that yields relatively simple formulae for practical use. The formulae for the natu-
ral frequencies of the in-plane and the out-of-plane flexural vibrations are very similar
and give almost the same results assuming the same circumferential wave number. The
simplified expression for the in-plane natural frequencies is identical to the well-known
formula in the relevant literature.

The application of the developed ring vibration theory is illustrated by a number
of numerical examples. The obtained results agree very well with those determined by
the FEM analysis and the FSM analysis of a slender toroidal shell. The structure of the
derived formulae for the in-plane vibrations indicates how centrifugal forces, induced
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by the ring rotation, increase the mean value of natural frequencies, and the Coriolis
forces cause their bifurcation.

The presented theory for the in-plane and out-of-plane free vibration of a rotating
ring, based on the application of the toroidal shell theory, seems to be rather compli-
cated. On the other hand, it is very educative, since it points out the universality of the
toroidal shell theory and sheds more light on this still challenging problem.
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Appendix A
Variable coefficients of the strain energy
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Appendix B
Variable coefficients of the strain energy due to pre-stressing
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N, and N, are in-plane forces due to pressure and centrifugal load.
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Appendix C
Submatrices of the stiffness matrices
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Appendix D
Submatrices of the mass matrices
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Appendix E
Submatrices of the finite strip stiffness matrix
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Appendix F
Submatrices of the finite strip geometric stiffness matrix
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Appendix G
Submatrices of the finite strip mass matrices
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POLU-ANALITICKE METODE ZA ANALIZU VIBRACIJA 1
STABILNOSTI TLACNIH I ROTIRAJUCIH TORUSNIH LJUSKI
ENERGETSKIM PRISTUPOM

Sazetak

Prikazane su polu-analiticke metode za analizu vibracija torusnih lju-
ski izlozenih tlaku, koje rotiraju oko svoje osi simetrije. Ovisnost defor-
macija rastezanja i savijanja o pomacima ljuske izvedena je iz op¢ih izra-
za za rotacijske ljuske. Izrazi za deformacijsku (potencijalnu) i kineticku
energiju izvedeni su za rotirajuéi polarni koordinatni sustav. Potencijalna
energija je najprije formulirana za slucaj velikih deformacija, a zatim je
rastavljena na linearni i nelinearni dio, koji je zatim lineariziran. Kori-
Stena je nelinearna Green-Lagrangeova formulacija. Kineticka energija
osim vibracijske komponente ukljucuje centrifugalni i Coriolisov dio. Za
promjenu pomaka u, v i w u cirkularnom smjeru postavljeni su to¢ni har-
monijski izrazi. Pomaci u meridijalnom smjeru su pretpostavljeni u obliku
Fourierovih redova. Koristena je Rayleigh-Ritzova metoda za minimizira-
nje ukupne energije. To je rezultiralo opéom matricom krutosti, geometrij-
skom matricom krutosti uslijed prednaprezanja, te trima matricama masa
vezanim za kvadrat prirodne frekvencije, umnozak prirodne frekvencije i
brzine vrtnje, te kvadrat brzine vrtnje. Primjena razvijenog postupka ilu-
strirana je na primjeru zatvorene i otvorene torusne ljuske i tankostijenog
torusnog prstena. Dobiveni rezultati (prirodne frekvencije i oblici vibrira-
nja) usporedeni su s rezultatima dobivenim metodom konac¢nih elemenata
i uoceno je dobro podudaranje. Prednost prikazanog postupka je u znatno
skra¢enom vremenu obrade problema na racunalu.

U nastavku je razvijena metoda vrpcastih elemenata za analizu istih
problema.Za deformacijsku i kineti¢ku energiju koriSteni su ranije postav-
Jjeni izrazi u okviru Rayleigh-Ritzove metode. Ljuska je u meridijalnom
smjeru modelirana nizom dvocvornih vrpcastih elemenata. Promjena po-
maka u, v i w u meridijalnom smjeru unutar svakog elementa aproksi-
mirana je Stapnim i grednim funkcijama oblika. Minimiziranjem ukupne
energije vrpCastog elementa formirane su matrice krutosti i matrice masa.
U svrhu ubrzanja konvergencije rjeSenja razvijen je vrpCasti element vi-
Seg reda s tri ¢vora. Prikazanom metodom rijeSen je problem zatvorene
torusne ljuske. Dobiveni rezultati usporedeni su s rezultatima Rayleigh-
Ritzove metode i metode kona¢nih elemenata.

Nadalje, razmatrane su fleksijske i torzijske vibracije rotirajuceg pr-
stena. Fleksijske vibracije se sprezu sa rasteznim vibracijama, a torzijske
sa savojnim vibracijama. Odgovarajuée jednadzbe gibanja izvedene su iz
teorije vibracija torusne ljuske. U prvom slucaju prsten je promatran kao
vrsni segment torusne ljuske, a u drugom slucaju kao bo¢ni segment. Po-
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kazano je da rotacija prstena dovodi do bifurkacije fleksijskih prirodnih
frekvencija, a ne i torzijskih frekvencija. Teorija vibracija prstena ocjenje-
na je usporedbom rezultata analize vibracija jednog prstena s rezultatima
metode konac¢nih elemenata i metode vrpcastih elemenata, te izmjerenim

vrijednostima dostupnim u literaturi.

Kljuéne rijeci: torusna ljuska; vibracije; izvijanje; tlak; rotacija;
Rayleigh-Ritzova metoda; metoda vrpcastih elemenata.
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