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Inhibitory effect of terfenadine on Kir2.1 and Kir2.3 channels

Terfenadine is a second-generation H1-antihistamine that 
despite potentially can produce severe side effects it has re-
cently gained attention due to its anticancer properties. 
Lately, the subfamily 2 of inward rectifier potassium chan-
nels (Kir2) has been implicated in the progression of some 
tumoral processes. Hence, we characterized the effects of 
terfenadine on Kir2.x channels expressed in HEK-293 cells. 
Terfenadine inhibited Kir2.3 channels with a strikingly 
greater potency (IC50 = 1.06 ± 0.11 μmol L–1) compared to 
Kir2.1 channels (IC50 = 27.8 ± 4.8 μmol L–1). The Kir2.3(I213L) 
mutant, possessing a larger affinity for phosphatidylinositol 
4,5-bisphosphate (PIP2) than the wild-type Kir2.3, was less 
sensitive to terfenadine inhibition (IC50 = 13.0 ± 2.9 μmol L–1). 
Additionally, the PIP2 intracellular application had largely 
reduced the inhibition of Kir2.1 channels by terfenadine. 
Our data support that Kir2.x channels are targets of terfena-
dine by affecting their interaction with PIP2, which could be 
regarded as a mechanism of the antitumor properties of ter-
fenadine.

Keywords: terfenadine, inward rectifier potassium chan-
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Terfenadine is a non-sedating second-generation H1-antihistamine formerly pre-
scribed to treat allergic rhinitis and urticarial (1). This drug was withdrawn from the mar-
ket (2) due to the risk of fatal arrhythmias (torsades de pointes and ventricular fibrillation) 
(3) by inhibiting several cardiac ion channels, including hERG (4), NaV1.5 (5), hKv1.5 (6), 
and Kir3.1 (IKACh) (7).

Terfenadine has recently attracted attention due to important anticancer properties in 
different experimental models (in vitro and in vivo). This drug suppresses the spontaneous 
growth of neoplastic mast cells by an apoptotic mechanism (8). In addition, terfenadine 
triggers apoptosis in melanoma cells (9) and human hormone unresponsive prostate can-
cer (10). Notably, terfenadine reduces the tumor growth in breast cancer cells, including 
both basal cells and cells resistant to trastuzumab (11), and in resistant non-small cell lung 
cancer when combined with epirubicin (12).
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The Kir2 channels subfamily is composed of four members (Kir2.1- Kir2.4) underlying 
an inwardly rectifying K+ current (13, 14). Kir2.x channels are very important for setting 
and controlling the resting membrane potential of different types of cells (13). Also, these 
channels help to determine the action potential waveform and the excitability of cardiac 
myocytes and neurons (13). Interestingly, it has been shown recently that Kir2.x channels 
are implied in some tumoral processes. To mention a few, the expression of Kir2.1 is in-
creased in stomach cancer cells controlling invasion and metastasis (15) and is associated 
with drug resistance of small-cell lung cancer (16). Kir2.2 is involved in the in vivo progres-
sion of tumors derived from PC3 cells (a human prostate adenocarcinoma) (17). In turn, 
Kir2.3 has been implicated in the growth and metastasis of lung adenocarcinoma (18).

As reported by previous studies, Kir channels are inhibited by several drugs with a 
distinctive structure, the so-called cationic amphiphilic drugs (CADs) (19). These com-
pounds are characterized by their archetypical amphiphilic structure determined by a 
hydrophobic region (aliphatic or aromatic rings) and a hydrophilic moiety that includes an 
amino group charged at physiological pH (19). Therefore, given the terfenadine’s CAD-like 
type of nature (Fig. 1a) and its anti-tumoral properties, as well as the important role of 
Kir2.x channels in carcinogenesis, we have investigated the hypothesis that terfenadine 
inhibits Kir2.x channels and determined the underlying mechanism of action in this 
study.

EXPERIMENTAL

Drug and reagents

Terfenadine (purity > 97.5 %) was purchased from Sigma-Aldrich (USA) and dissolved 
in DMSO to prepare a 10 mmol L–1 stock solution, which was diluted in the extracellular 
(bath) solution to final concentrations as required. L-α phosphatidylinositol 4,5-bisphos-
phate (PIP2, (Avanti Polar Lipids, USA) was aliquoted, dried, and stored at –70 °C. Aliquots 
were diluted to 10 µmol L–1 in the intracellular (pipette) solution and sonicated on ice for 
15 min before application.

Cell culture and cDNA expression

We carried out the experiments in HEK-293 cells that were cultured under standard 
conditions in Dulbecco’s modified Eagle’s medium (Gibco, USA) supplemented with 10 % 
fetal bovine serum (Gibco) and 1 % antibiotic-antimycotic solution (Sigma-Aldrich) at 
37 °C in a humidified incubator (5 % CO2). The Lipofectamine 2000 reagent (Invitrogen, 
USA) was used for transiently transfecting HEK-293 cells with human cDNAs (2 μg) 
encoding Kir2.1, Kir2.3 (provided by C. Vandenberg from the University of California, 
Santa Barbara, CA, USA), or Kir2.3(I213L) channels 24 h before the experiments. The 
QuickChange Site-Directed Mutagenesis kit (Stratagene, USA) was employed to prepare 
the Kir2.3(I213L) mutant channel. DNA sequencing was used to validate the mutation. 
Transfected cells were identified using the green fluorescent protein (GFP), which was 
co-transfected with the Kir2.x cDNAs. 
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Fig. 1. Decrease of Kir2.1 currents produced by terfenadine. a) Chemical structure of terfenadine. 
b) Representative Kir2.1 current traces before and after 30 μmol L–1 terfenadine application. In all fig-
ures containing current traces, the inset shows the voltage protocol used to elicit the currents. Currents 
were normalized to that obtained at –140 mV in control conditions (the holding current is not shown). 
c) Mean data of the normalized current recorded at –140 mV in control conditions and during perfusion 
of 30 μmol L–1 terfenadine, plotted as a function of the perfusion time. d) The concentration-effect rela-
tionship for inhibition of Kir2.1 current at –140 mV by terfenadine. Values of IC50 and Hill slope (H) are 
mentioned in the text; n = 5.

Electrophysiological recordings

Macroscopic current recordings were performed at room temperature (22–24 °C) us-
ing the patch-clamp method in the whole-cell configuration. We employed the pCLAMP 
9 software (Molecular Devices, USA), an Axopatch 200B amplifier (Molecular Devices) and 
a Digidata 1440A interface (Molecular Devices) to acquire data and generate pulses. Cur-
rents were low-pass filtered at 1 kHz and digitized at 5 kHz. Patch electrodes were fabri-
cated from borosilicate glass (World Precision Instruments, USA) in a programmable 
puller (Sutter Instruments, USA). Micropipettes had tip resistances between 1.5 and 2.5 
MΩ after being filled with the intracellular (pipette) solution. The extracellular (bath) solu-
tion without (control) or with terfenadine was applied using a rapid switching device 
(VC-77SP Warner Instruments, USA), and recordings were obtained when reaching steady- 
-state conditions. The intracellular (pipette) solution composition was (in mmol L–1): KCl, 
110; HEPES, 10; K4BAPTA, 5; K2ATP, 5; and MgCl2, 1 (pH was adjusted to 7.2 with KOH). 
The extracellular (bath) solution had the following composition (in mmol L–1): NaCl, 130; 
KCl, 4; CaCl2, 1.8; MgCl2, 1; HEPES, 10; and glucose, 10 (pH was adjusted to 7.4 with NaOH). 
The bath was grounded through an agar-KCl bridge. All current traces are shown as the 
currents sensitive to 2 mmol L–1 BaCl2.

a)                                                          b)

c)                                                          d)
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Data analysis

For analyzing current recordings, we used the software pClamp 10.6 (Molecular De-
vices) and Origin 8 (OriginLab Corp., USA). Concentration-response curves were fitted 
with a Hill equation ( f = 1/{1+ (IC50)/[terfenadine]H}; where f is the fractional block of the 
current and H the Hill coefficient. Statistical analysis (Origin 8; OriginLab Corp.) was per-
formed using the unpaired Student’s t-test after evaluating the normal distribution of data 
with the Shapiro-Wilk test. Results are expressed as mean ± SEM, and the significance of 
the differences was assumed at p < 0.05 (two-tailed).

RESULTS AND DISCUSSION

Terfenadine inhibits the Kir2.1 and Kir2.3 channels

In this study, we examined whether terfenadine affects Kir2.1 and Kir2.3 channels 
and the underlying mechanism of action. To this end, HEK-293 cells were used to express 
Kir2.x channels because they are a good model to study the biophysical properties of exo
genous ion channels in isolation; they are easily transfected and voltage-clamped, and 
their small endogenous currents do not interfere with the analysis of the studied current 
(20). Thus, Kir2.1 and Kir2.3 currents were evaluated using a voltage-ramp protocol (3 s 
duration) from −140 to 0 mV every 15 s and a holding potential of –80 mV. Fig. 1b shows 
representative Kir2.1 current traces in control conditions and after the perfusion of 30 
µmol L–1 terfenadine. The development of the terfenadine effect on Kir2.1 currents was 
slow as depicted in the time course of inhibition (Fig. 1c). Terfenadine inhibition on Kir2.1 
currents increased when augmenting the drug concentration: the concentration-response 
relationship (measured at –140 mV) yielded an IC50 of 27.8 ± 4.8 µmol L–1 and H of 0.56 ± 
0.06 (Fig. 1d). 

In turn, the effect of terfenadine on Kir2.3 currents was strikingly more potent than 
that on Kir2.1, since ~ 50 % of the current was inhibited by 1 µmol L–1 terfenadine (Fig. 2a); 
although the time course was similarly slow (Fig. 2b). The IC50 to inhibit Kir2.3 channels 

Fig. 2. Terfenadine inhibits Kir2.3 channels. a) Illustrative recordings of Kir2.3 currents evoked in con-
trol conditions and after perfusion of 1 μmol L–1 terfenadine. b) Time course of development of Kir2.3 
current inhibition by 1 μmol L–1 terfenadine at –140 mV. c) A concentration-response curve of inhibited 
Kir2.3 current at –140 mV; n = 5. 

a)                                    b)                                   c)



321

M. Delgado-Ramírez et al.: Inhibitory effect of terfenadine on Kir2.1 and Kir2.3 channels, Acta Pharm. 71 (2021) 317–324.

	

was 1.06 ± 0.11 µmol L–1 (H of 1.14 ± 0.14) (Fig. 2c), which is ~ 26-fold lower in comparison 
to that for Kir2.1. The slow time courses of inhibition and the different potency of terfena-
dine to inhibit Kir2.1 and Kir2.3 channels resemble those of CADs, whose mechanism of 
action is to interfere with the Kir channel-PIP2 interaction (21). The effect of terfenadine on 
Kir2.1 and Kir2.3 channels was inversely correlated with the apparent affinity of these 
channels for PIP2 (20), the lower the affinity for PIP2, the greater the potency of terfenadine 
to inhibit the channel. Thus, we next proceeded to test this hypothesis considering the 
CAD-type nature of terfenadine.

Kir2.3(I213L) mutant channel is less sensitive to terfenadine inhibition

Compared to the wild-type Kir2.3, Kir2.3(I213L) mutant channel has a higher appar-
ent affinity for PIP2, and thus, it is less sensitive to inhibitory drugs (21). Hence, we as-
sessed the effect of terfenadine on this mutant channel to investigate the inhibitory mecha
nism of this compound. Terfenadine decreased Kir2.3(I213L) currents with lesser potency 
(10 µmol L–1 terfenadine diminished the current in ~ 50 %) (Fig. 3a) than that for wild-type 
Kir2.3. The time course of the terfenadine effect on Kir2.3(I213L) was also slow (Fig. 3b). An 
IC50 of 13.0 ± 2.9 µmol L–1 (H of 0.77 ± 0.16) was obtained from the concentration-response 
relationship (Fig. 3c), resulting ~12-fold greater than that observed for wild-type Kir2.3 
channels. These data suggest that the interaction between PIP2 and Kir2.x channels is af-
fected by terfenadine.

Terfenadine is a basic compound with a moderate degree of lipophilicity (log D = 2.11, 
pKa = 8.6) that could interact with the hydrophobic and hydrophilic moieties of phospho-
lipids, particularly with those negatively charged (22). Other drugs with the same charac-
teristics inhibit Kir channels by several mechanisms, but it has been shown that such 
drugs mainly affect the interaction of the channels with PIP2 (19). In this regard, it was 
recently reported that terfenadine inhibits Kir3.1 channels by binding to a region below 
the residue F137 (a pore-helix amino acid) and amid the transmembrane helices from two 
contiguous subunits. Binding of terfenadine to this region sterically interferes with the 
PIP2-channel interaction, suggesting that this could be the mechanism of inhibition (7).

Fig. 3. Effects of terfenadine on the mutated channel Kir2.3(I213L). a) Normalized recordings of 
Kir2.3(I213L) current obtained previously and following exposure to10 μM terfenadine. b) Time course 
of inhibition (at –140 mV) of Kir2.3(I213L) channels by 10 μmol L–1 terfenadine. c) Terfenadine concentra-
tion plotted as a function of the Kir2.3(I213L) current inhibition at –140 mV; n = 5.

a)                                       b)                                       c)
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Exogenous PIP2 attenuates the inhibition of Kir2.1 channels by terfenadine

To support the hypothesis that terfenadine’s mechanism of action could be by interfer-
ing with the Kir2.x channel-PIP2 interaction, we performed an additional experiment by 
dialyzing (for 5 min in the patch pipette) exogenous PIP2 before the terfenadine application 
in the extracellular (bath) solution in Kir2.1 expressing cells. Fig. 4a,b depicts the effect of 
30 µmol L–1 terfenadine on Kir2.1 currents in control conditions and after intracellular 
perfusion of 10 µmol L–1 PIP2. When PIP2 was present in the patch pipette, terfenadine 
inhibition was reduced ~ 50 %, since the percentage inhibition at –140 mV was 24.3 ± 1.0 % 
(n = 5), compared to 45.1 ± 1.5 % (n = 6) in cells recorded in the absence of PIP2 (Fig. 4c).

Overall, our data suggest that terfenadine targets the PIP2-channel interaction to in-
hibit the channels. First, the drug inhibited Kir2.x channels with a slow time course, which 
is characteristic of this mechanism of action (19), where the drug probably inserts into the 
lipid membrane. Second, strengthening the interaction of the channel and PIP2 (by using 
the Kir2.3(I213L) mutant channel) decreased the terfenadine inhibition. Third, supplying 
exogenous PIP2 to the intracellular milieu reduced the potency of terfenadine to inhibit 
Kir2.1 channels. Taken together, our results support that Kir2.1 and Kir2.3 channels are 
inhibited by terfenadine due to the interference of the channel interaction with PIP2.

Given the role of K+ channels on tumoral processes, in recent years their pharmaco-
logical inhibition has been considered as a promising strategy against carcinogenesis, ei-
ther by reducing the proliferation and/or decreasing the invasiveness and cell migration 
in different cancer cell types (23–25). Therefore, this work supports the potential applica-
tion of terfenadine derivatives with fewer side effects as a part of anticancer therapy in 
Kir2.x expressing malignant cells, although, further studies (in vitro and in vivo) are need-
ed to elucidate the effect of terfenadine on the malignant proliferation and metastasis of 
these types of tumoral cells.

CONCLUSIONS

Terfenadine was more potent to inhibit Kir2.3 than Kir2.1 channels, and the mutation 
Kir2.3(I213L) decreased the terfenadine effect compared to that on Kir2.3, i.e. the stronger 

Fig. 4. Effect of terfenadine on Kir2.1 currents in the presence of exogenous PIP2. Representative 
Kir2.1 current traces obtained before and after application of 30 μmol L–1 terfenadine: a) without and 
b) with 10 μmol L–1 of PIP2 dialyzed in the pipette solution. c) Fractional block of Kir2.1 channels by 
terfenadine under control conditions (–PIP2) and in the presence (+ PIP2) of exogenous PIP2 in the 
patch pipette (n = 5 and 6 for –PIP2 and + PIP2 groups, respectively), ***p < 0.001.

a)                                         b)                                          c)
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the af﻿finity of the channel for PIP2, the lower the potency of terfenadine to inhibit this 
channel. We also found that the PIP2 intracellular application decreased the potency of 
terfenadine to inhibit Kir2.1 channels. Our results suggest that terfenadine interferes with 
the PIP2-channel interaction. This could be an alternative mechanism contributing to the 
anticancer properties of terfenadine and could have a potential application in tumors 
where Kir2 channels have a relevant role in proliferation and metastasis.
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