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MESHLESS APPROACH AS AN ALTERNATIVE TO FINITE 
ELEMENT METHOD IN SOLID MECHANICS 

NUMERICAL MODELING

Jurica Sorić, Boris Jalušić, Tomislav Jarak

Summary
Meshless approaches enable discretizations of a computational model 

only by a set of nodes, which do not need to be connected to elements. This 
paper presents the meshless local Petrov-Galerkin method, which belongs 
to truly meshless approaches, as it does not require any kind of mesh or 
background cells for either interpolation or integration. Full displacement 
and mixed formulations are presented. The full displacement approach is 
used for the solution of a three-dimensional elasto-static problem, while 
the mixed approach is applied for the modeling of deformation responses 
of shell-like structures. The modeling of material discontinuities is perfor-
med by the mixed meshless local Petrov-Galerkin approach by employing 
the collocation method. The efficiency and accuracy of all the presented 
methods are tested and compared with finite element formulations in nu-
merical examples. It is demonstrated that the meshless approaches may be 
considered an alternative to the well-known finite element method regar-
ding certain problems.

Keywords: meshless method; local Petrov-Galerkin formulation; 
mixed meshless approach; collocation meshless approach. 

1. INTRODUCTION

In the recent years, meshless approaches have been proposed as an alternative to the 
well-known finite element method. These relatively new computational strategies have 
attracted considerable attention due to their capability to solve a boundary value problem 
without a meshing procedure. In contrast to the finite element formulation, computational 
model may be discretized only by nodes, which do not need to be connected to elements. 
Thus, the nodes can be easily added and removed without burdensome remeshing of 
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the entire structure. Furthermore, some issues associated with the mesh-based finite 
element method (FEM), such as a time-consuming mesh generation or element distortion 
problems, may be efficiently overcome by using meshless formulations. On the other 
hand, the derivation of interpolation functions in the meshless formulations is more 
complex than in the finite element approach.

Nowadays, there are a large number of meshless methods as a result of intense 
development over the last two decades. They can be divided into three basic groups 
according to the manner of obtaining and solving the discretized system of equations: 
the strong form; the weak form; and the weak-strong form methods.

The strong form approaches are based on the strong form of differential equations 
and are usually referred to as collocation methods. Herein, the governing equations are 
written and imposed in discretization nodes of the numerical model, and accordingly, 
there is no numerical integration. Some of the representatives of these methods are the 
Finite difference method [1]; and the Radial basis collocation method [2,3]. Although the 
strong form methods possess several attractive characteristics, e.g. a simple algorithm 
for assembling a solvable system of equations, speed and computational efficiency, they 
may have some numerical stability problems that can lead to inaccuracies.

In the weak form methods, the partial differential equations with the accompanied 
natural boundary conditions are expressed in an integral form using different numerical 
approaches. The weak forms are then used to obtain the system of algebraic equations 
through the numerical integration procedure, using predetermined background cells 
that can be defined globally – over the entire problem domain [4] or locally – over a part 
of the computational domain [5]. The operation of integration smudges the error within 
the integrated area; this increases the accuracy and stability of solutions. Integration 
acts as a kind of regularization to stabilize the numerical solution.

The meshless global weak form methods are based on the integration of the global 
Galerkin weighted residual equations and the use of meshless approximations functions. 
The background cells are required over the entire computational domain for the purpose 
of the integration. The Element Free Galerkin (EFG) [4] and the Reproducing Kernel 
Particle Method (RKPM) [6] can be mentioned as representatives of the global weak 
form methods. The meshless local weak form methods are based on the integration of 
the so-called local weak forms of Galerkin equations. Herein, local integration areas 
are often very simple – e.g. spherical, circular, or rectangular in shape. They may mu-
tually overlap, and are automatically built during the calculation process. Some of the 
representatives of these methods are the HP-Cloud method [7] and the Meshless Local 
Petrov-Galerkin (MLPG) method [8]. Numerical integration makes the weak form met-
hods computationally more expensive than the collocation methods.
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The weak-strong form methods have been designed to utilize the advantages of the 
weak and strong methods, and to avoid their disadvantages [9,10]. They have been crea-
ted for the purpose of removing the need for background integration cells as much as po-
ssible, and at the same time to provide stable and accurate solutions, even for problems 
in which the derivative boundary conditions are present. The main idea of this type of 
methods is to create a system of discretized equations, where weak and strong methods 
are used selectively, depending on the placement of the discretization nodes. The weak 
form methods are mostly used at the nodes where the derivative boundary conditions 
(natural boundary conditions) are prescribed. The strong form methods are utilized in 
all the remaining nodes of the computational model.

In this contribution, the MLPG method is applied to solve various physical pro-
blems. In 3-D elasticity, the Boussinesq problem involving concentrated load acting on a 
semi-infinite elastic medium is solved [11]. The mixed MLPG method developed in [12] 
for the analysis of shell-like structures is presented next. Thereby, undesired thickness 
and shear locking phenomena are eliminated in an efficient way. In addition, the mixed 
MLPG method employing the collocation approach [13] is used for the modeling of 
material discontinuity in two-dimensional heterogeneous structures. All the meshless 
approaches considered demonstrate superiority in comparison with the standard finite 
element formulation in terms of accuracy and convergence rates. 

2. MESHLESS FORMULATION FOR THREE-DIMENSIONAL ELASTICITY

According to the three-dimensional solid concept, the equilibrium equations in a 
domain of the volume Ω, which is bounded by the surface Γ, are given by
                                                    σij,j + bi = 0,  in Ω,                                                        (1)
where σij are the stress tensor components and bi denotes the body forces. The indices i, 
j, which take the values 1,2,3, refer to the Cartesian coordinates x, y, z. On the boundary 
Γ, the following boundary conditions are assumed:

ui =  ūi , on Γu ,
				    t

i 
=

  
σ

ij
n

j 
= t

i,  
on 

 
Γ

t 
,                                                    (2)

where ui are the displacement components and ti stands for the surface traction com-
ponents. Γu and Γt are parts of the global boundary with prescribed displacements ūi 
and tractions ti, respectively. nj denotes direction cosines of the outward normal on the 
boundary Γ of the volume Ω.   

-

-
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In the MLPG method, the equilibrium equations may be written in a weak form 
over a local sub-domain ΩI

s defined around a grid node I, which may be expressed in 
the following form:

(3)

Herein, ui is the trial function describing the displacement field, while vi is the test 
function. In the MLPG method applied, the test and trial functions may be chosen from 
different functional spaces. The local sub-domain ΩI

s is a small region inside the do-
main Ω and could be of any geometric shape and size, Fig. 1. Here in the 3D analysis, 
the local sub-domains are taken to be of spherical shape. The local sub-domains may 
overlap, and they cover the whole global domain Ω. ΓI

su is a part of the boundary дΩI
s
 of 

the local sub-domain with the prescribed displacement ūi, and α denotes a penalty para-
meter, α>>1, which is introduced in order to satisfy the geometric boundary conditions.

Fig. 1. Definition of local sub-domain
Sl. 1. Određivanje lokalnog potpodručja

Using the divergence theorem and some mathematical manipulation according to 
[11], the local symmetric weak form (LSWF) for linear elasticity may be expressed as:
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the LSWF (4) may be simplified as 
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As evident from equation (6), there is no domain integration involved in the left-hand side. Under 
the assumption of zero body force, the domain integration is totally eliminated. 

The trial function is chosen to be the moving least square (MLS) approximation [14], defined 
over a number of nodes within the domain of influence. While the local sub-domain I

sΩ  is 
defined as the region over which the integration around node I is carried out, and in this text, it is 
set to be equal to the support of the nodal test function, the domain of influence is defined as the 
region that includes all the nodes whose MLS nodal trial shape functions do not vanish in the 
local sub-domain of the current node I. In other words, the domain of influence contains all the 
nodes that have a non-zero coupling in the stiffness matrix with the current node I as shown in 
Fig. 2. 

 
Fig.	2. MLPG trial and test domain 

sl. 2. Interpolacijsko i testno područje u MLPG (bezmrežnoj lokalnoj Petrov-Galerkinovoj) 
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In Fig. 2, the solid-lined sphere surrounding the node I represents the local sub-
domain, where integration is carried out. The dashed spheres surrounding the nodes J, 
K, L, M… represent the supporting domains of the MLS weight functions of the nodes 
whose weight functions do not vanish in the local sub-domain of the node I. The volume 
surrounded by the dashed curve represents the domain of influence of the node I. 

The MLS method is generally considered to be one of useful interpolation schemes 
that approximate random data with reasonable accuracy. The characteristics of the MLS 
have been widely discussed in literature [15,16]. Accordingly, the displacement distribu-
tion in three-dimensional space may be expressed as 

(7)
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and d stands for the standard three-dimensional elasticity matrix. Using the standard well-known 
numerical procedures, the global set of equations is derived, which is as usually expressed in the 
following matrix form  

KV F ,           (17) 
where K is the stiffness matrix, V is the vector of nodal displacements, and F	 stands for the 
prescribed loading. 
  
Three-Dimensional Boussinesq Problem 

The Boussinesq problem is a classical problem for the study of contact, penetration, and 
impact problems. The problem can be simply described as concentrated load acting on a semi-
infinite elastic medium with no body force. Because of the strong singularity in the Boussinesq 
problem, it is very difficult to get an accurate result using domain discretization methodology 
such as the finite element method. The exact displacement field within the semi-infinite medium 
is given by [18].                                                         
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Three-Dimensional Boussinesq Problem
The Boussinesq problem is a classical problem for the study of contact, penetration, 

and impact problems. The problem can be simply described as concentrated load acting 
on a semi-infinite elastic medium with no body force. Because of the strong singularity 
in the Boussinesq problem, it is very difficult to get an accurate result using domain 
discretization methodology such as the finite element method. The exact displacement 
field within the semi-infinite medium is given by [18].                                                        

Fig. 3. Simulation model for Boussinesq Problem

Sl. 3. Simulacijski model za Boussinesqov problem

A one-eighth of a sphere is used to simulate the semi-infinite continuum. In order 
to avoid direct encounter with the singular loading point, the theoretical displacement 
is applied on a small spherical surface with the radius as low as 2.5% of the total radius 
of the sphere. The symmetric boundary conditions are applied on the surfaces of the 
one-eighth sphere, Fig. 3. An isotropic material of E = 1,000 and v = 0.25 is used in the 
simulation. The 1,177-node MLPG model and 1,159 node FEM model are shown in Figs. 
4 and 5. 

7 
 

 
Fig.	3. Simulation model for Boussinesq Problem 

sl. 3. Simulacijski model za Boussinesqov problem 
 
A one-eighth of a sphere is used to simulate the semi-infinite continuum. In order to avoid direct 
encounter with the singular loading point, the theoretical displacement is applied on a small 
spherical surface with the radius as low as 2.5% of the total radius of the sphere. The symmetric 
boundary conditions are applied on the surfaces of the one-eighth sphere, Fig. 3. An isotropic 
material of E = 1,000 and  = 0.25 is used in the simulation. The 1,177-node MLPG model and 
1,159 node FEM model are shown in Figs. 4 and 5.  

 
 

Fig.	4. MLPG model with 1,177 Nodes for Boussinesq problem [11] 
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Fig.	5. FEM model with 1,159 nodes for Boussinesq problem [11] 

sl. 5. Model metode konačnih elemenata s 1159 čvorova za Boussinesqov problem [11] 
 

The two models have similar nodal distances at the stress-concentrated area. However, it can be 
seen that a lot more nodes need to be added in the FEM model in order to prevent element 
distortion and maintain a reasonable element aspect ratio. In Fig. 6, the relative errors of von 
Mises stress and strain energy for both the MLPG and the FEM method are plotted. It can be seen 
that even with a node number as high as 11,112, the accuracy of the finite element method is still 
far less than the MLPG method.   
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3. MIXED MLPG METHOD FOR THE ANALYSIS OF SHELL-LIKE 
STRUCTURES

An efficient mixed meshless formulation based on the Local Petrov-Galerkin ap-
proach described above has been developed for the analysis of shell-like structures. The 
3-D solid-shell concept used in the finite element formulations [19] and [20] is adopted, 
and the shell geometry, which can be described exactly, is analyzed. Plate structures 
may be considered a special case of the shell geometry defined by the zero value of 
the Gaussian curvature. Discretization is performed by the nodes located on the upper 
and lower surfaces, and the local weak form of the equilibrium over the prismatic local 
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sub-domain, surrounding the couple of nodes positioned on the opposite surfaces, is 
derived. Certain strain and stress components are first approximated independently, but 
their nodal values are eliminated from the discretized equation system locally, yielding 
a global system of equations with only nodal displacements as unknowns [12]. This is 
achieved by enforcing the kinematic relations between approximated strains and dis-
placements at the nodes by means of a collocation approach. Instead of the standard 
MLS interpolation functions, a new modified MLS shape function, proposed in [21] and 
[22], obeying the interpolation condition with high accuracy, is implemented. Thus, a 
penalty approach for imposing the essential boundary conditions is avoided. Further-
more, the thickness and shear locking phenomena are fully suppressed due to the em-
ployed mixed numerical strategy. 

According to the formulation presented in [12], the shell structure is described by 
the curvilinear coordinates θk, k = 1, 2, 3, defined into the global Cartesian space, and 
then mapped into a parametric space, where the curved middle surface is transformed 
into the two-dimensional unit square in the ζ1, ζ2 - parametric plane. ζ1 and  ζ2 are the 
normalized parametric coordinates defined as  ζα =        , and thus their range is 0≤ ζα  ≤ 1 

as shown in Fig. 7. Herein,  θ
α denotes the middle surface convective coordinates, and  θ3 

is the local coordinate in the thickness direction. The nodes are uniformly generated on 
the upper and lower surfaces in the parametric space, and then mapped into the global 
Cartesian coordinates. The prismatic local sub-domains are defined in the parametric 
space around each couple of nodes positioned on the opposite discretized surfaces. All 
interpolations are performed by using the parametric coordinates ζi.

Fig. 7. Parametric representation and discretization of shell geometry

Sl. 7. Parametarski prikaz i diskretizacija ljuskaste geometrije
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The derivation of the governing equation is based on the 3D meshless formulation 
presented in the previous section. Instead of the standard 3D discretization, here the 
nodes are distributed over the opposite surface, forming shell-like structures with arbi-
trary thickness as shown in Fig. 7. Accordingly, the test function is approximated over 
the thickness, and here the linear distribution is assumed as

 (18)
with c0 and c1 as arbitrarily chosen real constants. Using the procedure described in the 
previous section, the governing equations for the local sub-domain ΩI

s are derived in 
the following form:

			 
   (19)

		   
(20)

Here, all tensor and vector components are defined in the Cartesian coordinates, 
i.e. σ = σij ei ⊗ej , t = ti ei, n = ni ei. However, the integration over the local sub-domain 
is performed in the parametric coordinates, where the volume element is expressed as 

			          
 (21)

Herein, Gi are the base vectors defined by Gi = Gk        with Gk =         , where X is 
the position vector. As known in the theory of shells, the base vectors describe the shell 
geometry [23]. As evident from (19) and (20), a set of six equations for each local sub-
domain ΩI

s is obtained. 
The next step is the discretization of the governing equations. In contrast to the 

standard displacement based formulation, here the displacement field, the strain com-
ponents consisting of the three in-plane and the two transversal shear components, and 
the transversal normal stress component are approximated independently, by using the 
same in-plane interpolation functions. Linear polynomials are used for the distribu-
tion over the thickness, and the approximation in the in-plane directions is performed 
by means of the MLS functions. The displacement components are written in the di-
rections of the Cartesian coordinates, u = ui ei, while the strain and stress tensors are 
expressed in the parametric space as ε = εij Gi ⊗ Gj and σ = σij Gi ⊗ Gj. The undesired 
shear locking effect in the thin structural limit is suppressed by using the strain interpo-
lation, and the transversal stress interpolation is applied for elimination of the thickness 
locking phenomena. 
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As mentioned above, the modified MLS shape function with the interpolation prop-
erty is used for the discretization. The Kronecker delta property is fulfilled with high 
accuracy; therefore, the penalty approach for imposing the displacement boundary con-
ditions is not required. The interpolation condition is achieved by the modification of the 
weight function, which is now expressed in the following form:

		    

									         (22)
As evident, the weight function is computed as a product of the two functions, wSJ 

and wRJ, where wSJ stands for the 4th-order spline function:
		         

 (23)

and wRJ  denotes the regularized weight function expressed as
	     

 (24)

In the above relations,                        is the distance between the node couple J and 
the current sample point in the parametric space, while rJ  represents the support domain 
of the weight function. ε is the regularization parameter, which should be very small and 
here it is assumed to be ε = 10-5.   

Analogous to relation (10), the MLS nodal shape function is now expressed in the 
parametric plane as

			     
 (25)

The matrices A and B are also derived in the in-plane parametric space. Using rela-
tion (25) and employing the linear polynomial interpolation in the ζ3 direction, the 3D 
shape function matrix 

             
for the strain and the stress tensor components, as well as 

the matrix 
          

 for the displacement components, are derived. In the derivation pro-
cedure, which is described in detail in [12], the nodal strain values are computed by the 
well-known kinematic relations, and then expressed in terms of the nodal displacement 
components, in order to obtain a closed global system of equation with only the nodal 
displacements as unknown variables. After relatively complicated mathematical mani-
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pulations, the following final discretized form of the governing equations on the domain 
of influence level is obtained:
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where KJB  is the matrix containing derivatives of the 3-D shape functions; it is analo-
gous to the standard strain-displacement matrix [24]. c  is the material matrix, σt is the 
transformation matrix between the parametric space and the global Cartesian coordi-
nates, and ˆ Jv  is the vector of the unknown displacement components in the directions 
of the global Cartesian coordinates at the upper and lower surface, respectively. N is 
the matrix containing the components of the outward unit normal vector i in=n e  on 
the local sub-domain boundary, and ∇d  comprises the derivatives of 3ξ  with respect 
to the global Cartesian coordinates. Jn  denotes the number of nodes in the domain of 
influence of the node couple J. The closed global system of equations on the structural 
level is derived by using well-known numerical node-by-node assemblage procedures. 
The body forces are usually neglected in engineering computations, and therefore, all 
terms containing the body force vector b can be omitted.

 
Cylindrical shell subjected to uniform line load

As an example, a horizontal thin cylindrical shell subjected to the uniform line load 
of 1q =   along the upper and lower generatrix is analyzed as shown in Fig. 8. The ma-
terial data are the Young’s modulus 210000E =  and the Poisson’s ratio 0.3ν = . The 
shell thickness is 0.9h = , with the radius to thickness ratio of / 100R h = . The length 
of the cylinder is 300L = . Due to symmetry, only one octant of the shell is discretized 
by a uniform grid.
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As an example, a horizontal thin cylindrical shell subjected to the uniform line load of 1q    
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Fig. 8. Geometry and discretization of cylindrical shell

Sl. 8. Geometrija i diskretizacija cilindrične ljuske

The computation is performed by the proposed mixed formulation, using the se-
cond- and third-order polynomial bases of the MLS function. The convergence of the 
vertical displacement at the shell middle surface under the line load, which is norma-
lized by the analytical solution from [18], is presented in Fig. 9. The results are again 
compared with the values obtained by the full displacement approach taken from [24], 
as well as with the parabolic 3D finite elements from the MSC/NASTRAN program 
package [25]. As obvious from Fig. 9, the mixed meshless formulation is superior to 
other formulations displayed. The fifth-order basis function in the MLS interpolation 
has to be used in the full displacement approach in order to achieve the convergence, 
which significantly decreases numerical efficiency as mentioned before. Furthermore, 
it is again to note that the computation by the means of the third-order MLS basis func-
tion in the mixed approach yields the exact displacement values, even for the relatively 
coarse discretization.
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Fig.	8. Geometry and discretization of cylindrical shell 
sl. 8. Geometrija i diskretizacija cilindrične ljuske 

 
The computation is performed by the proposed mixed formulation, using the second- and 

third-order polynomial bases of the MLS function. The convergence of the vertical displacement 
at the shell middle surface under the line load, which is normalized by the analytical solution 
from [18], is presented in Fig. 9. The results are again compared with the values obtained by the 
full displacement approach taken from [24], as well as with the parabolic 3D finite elements from 
the MSC/NASTRAN program package [25]. As obvious from Fig. 9, the mixed meshless 
formulation is superior to other formulations displayed. The fifth-order basis function in the MLS 
interpolation has to be used in the full displacement approach in order to achieve the 
convergence, which significantly decreases numerical efficiency as mentioned before. 
Furthermore, it is again to note that the computation by the means of the third-order MLS basis 
function in the mixed approach yields the exact displacement values, even for the relatively 
coarse discretization. 

                  Pogreška! Izvor reference nije pronađen. 
Fig.	9. Convergence of vertical displacement under line load for cylindrical shell 

sl.	9. Konvergencija vertikalnog pomaka pod linijskim opterećenjem za cilindričnu ljusku 
 

Furthermore, the sensitivity of the mixed approach to the shear locking effect has been tested 
by increasing the shell radius to thickness ratio, and the results are shown in Fig. 10. As evident, 
by using the second order MLS polynomial basis, the shear locking is again completely 
eliminated, even if very thin shells are considered. 
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Fig. 9. Convergence of vertical displacement under line load for cylindrical shell

Sl. 9. Konvergencija vertikalnog pomaka pod linijskim opterećenjem za cilindričnu ljusku

Furthermore, the sensitivity of the mixed approach to the shear locking effect has 
been tested by increasing the shell radius to thickness ratio, and the results are shown in 
Fig. 10. As evident, by using the second order MLS polynomial basis, the shear locking 
is again completely eliminated, even if very thin shells are considered.

                                

Fig. 10. Vertical displacement under line load vs. radius to thickness ratio for cylindrical shell

Sl. 10. Vertikalni pomak pod linijskim opterećenjem u odnosu na omjer polumjera i debljine 
stijenke za cilindričnu ljusku
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Fig.	10. Vertical displacement under line load vs. radius to thickness ratio for cylindrical shell 

sl. 10. Vertikalni pomak pod linijskim opterećenjem u odnosu na omjer polumjera i debljine 
stijenke za cilindričnu ljusku 

 
4.	ModEling	MatErial	discontinuitY	BY	thE	MEans	oF	thE	MEshlEss	

collocAtIon Method 
The collocation mixed MLPG method is applied here for the modeling of material 

discontinuity. Instead of the previously described weak formulations, here the Dirac delta 
function is used as the test function in the local weak form. Each homogeneous region is 
discretized by using independent interpolations of both displacements and stress components. 
The MLS shape functions with interpolation property are used, which allows for a simple and 
direct imposition of the displacement and traction boundary conditions at the discretization nodes 
positioned on the global boundary, as well as the imposition of appropriate conditions at the 
nodes stationed at the material interface. No additional treatment or parameter determination at 
the material interface is needed. The final closed global system of discretized governing 
equations with the displacements as unknown variables is obtained through the kinematic and 
constitutive relations, similar as in the previous section. The details of this approach are given in 
[13]. 

A two-dimensional heterogeneous structure representing the global domain, which consists of 
two homogeneous parts   (     ) bounded by the global outer boundary   
(     ), is considered as shown in Fig. 11. The boundary s  represents the interface 

between two homogeneous isotropic materials, represented by domains    i  , with different 
linear elastic material properties, while n  and n  denote unit outward normal vectors on their 
outer boundaries,     and   , and on the interface boundary s . 
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4. MODELING MATERIAL DISCONTINUITY BY THE MEANS OF THE 
MESHLESS COLLOCATION METHOD

The collocation mixed MLPG method is applied here for the modeling of material 
discontinuity. Instead of the previously described weak formulations, here the Dirac 
delta function is used as the test function in the local weak form. Each homogeneous re-
gion is discretized by using independent interpolations of both displacements and stress 
components. The MLS shape functions with interpolation property are used, which 
allows for a simple and direct imposition of the displacement and traction boundary 
conditions at the discretization nodes positioned on the global boundary, as well as the 
imposition of appropriate conditions at the nodes stationed at the material interface. No 
additional treatment or parameter determination at the material interface is needed. The 
final closed global system of discretized governing equations with the displacements as 
unknown variables is obtained through the kinematic and constitutive relations, similar 
as in the previous section. The details of this approach are given in [13].

A two-dimensional heterogeneous structure representing the global domain, which 
consists of two homogeneous parts Ω  ( Ω Ω Ω+ −= ∪ ) bounded by the global outer 
boundary Γ  ( Γ Γ Γ+ −= ∪ ), is considered as shown in Fig. 11. The boundary sΓ  
represents the interface between two homogeneous isotropic materials, represented by 
domains Ω +and Ω − , with different linear elastic material properties, while +n  and −n  
denote unit outward normal vectors on their outer boundaries, Γ +   and Γ − , and on the 
interface boundary sΓ .

Fig. 11. Heterogeneous structure consisting of two homogeneous materials

Sl. 11. Heterogena struktura koja se sastoji od dva homogena materijala
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The strong form of elasto-static governing equations can be defined for each homo-
geneous material separately, and accordingly the equilibrium equation for the homoge-
neous domain Ω +  may be written as  

				  
    (28)
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The discretization of the global computational domain Ω  is performed by two 
different sets of nodes, 1,2,...,I N=  and 1,2,...,M P= , where N and P indicate the 
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According to the standard collocation approach, the strong form equilibrium equa-
tions at the discretization nodes are expressed as follows:

			 
		   (33)

			    (34)

The associated boundary and interface conditions can be written analogously. Like 
in the mixed approach proposed in [26], the displacement and stress components are 
chosen as the unknown field variables which are approximated separately within the 
homogeneous materials Ω +  and Ω − , using the same field approximation functions. 
Hence, for the homogeneous material Ω +  the approximated fields can be written as

		

(35)

		   (36)

where Jφ  represents the nodal value of the two-dimensional shape function for node J, 

s
NΩ  stands for the number of nodes within the approximation domain, while ( )ˆi J

u+  and 
( )ˆij J
σ +  denote the nodal values of displacement and stress components. The displace-

ment and stress components over the material domain Ω −  are analogously approxima-
ted. The MLS approximation scheme with the interpolation property is used, which has 
already been described in the previous section.

According to the mixed MLPG paradigm, the equilibrium collocation equations 
(33) and (34) are first discretized by the stress approximations leading to the system of 
equations with the stress nodal variables, as presented in [13]. Then, in order to obta-
in the closed system of the governing equations with the displacement components as 
unknown nodal variables, the nodal stress components are expressed by means of the 
constitutive relations and the kinematic equations. Accordingly, for one homogeneous 
region Ω +  the following matrix relation may be derived:

			 
   

 (37)
where +d  denotes the elasticity matrix, and JL

+B  is the matrix composed of first-order 
spatial derivatives of the nodal shape functions for the Jth node influencing the approxi-
mation at node L . ˆ L

+u  stands for the nodal values of displacements. Analogous relations 
are derived for another homogeneous region Ω − .
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where d  denotes the elasticity matrix, and JL
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Finally, the discretized system of equations can be written for the nodes of each 
homogeneous domain Ω +  and Ω −  as 

		
(38)

	  

(39)

where IJ
+K  and MJ

−K  are the nodal stiffness matrices, while I
+r  and M

−r  stand for the 
nodal force vectors. The discretized displacement boundary conditions can be written 
simply as

(40)

	
(41)

and the discretized traction boundary conditions are computed as
			 

 (42)
			    

(43)

where I
+n  and M

−n  denote the matrices containing outward unit normal vector compo-
nents to tΓ +  or tΓ − . The following discretized interface boundary conditions may be 
written as 

				      
  (44)

			 

 (45)
The global system of equations for the entire heterogeneous structure is obtained by 

looping through all the nodes belonging to the material sub-domains Ω +  and Ω −  using 
the standard well-known procedure.

Plate with circular inclusion
As an example, a rectangular square plate with dimensions 2 2L L×  and the circu-

lar inclusion with radius 1R =  subjected to the unit horizontal traction 0t  is considered 
as depicted in Fig. 12.
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where J  represents the nodal value of the two-dimensional shape function for node J, 
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stands for the number of nodes within the approximation domain, while  ˆi J

u  and  ˆij J
   denote 

the nodal values of displacement and stress components. The displacement and stress components 
over the material domain    are analogously approximated. The MLS approximation scheme 
with the interpolation property is used, which has already been described in the previous section. 

According to the mixed MLPG paradigm, the equilibrium collocation equations (33) and (34) 
are first discretized by the stress approximations leading to the system of equations with the stress 
nodal variables, as presented in [13]. Then, in order to obtain the closed system of the governing 
equations with the displacement components as unknown nodal variables, the nodal stress 
components are expressed by means of the constitutive relations and the kinematic equations. 
Accordingly, for one homogeneous region    the following matrix relation may be derived: 

1

ˆ ˆ , within ,
sN

J JL L
L



    



 σ D B u          (37) 

where d  denotes the elasticity matrix, and JL
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where IJ
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r  and M
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The global system of equations for the entire heterogeneous structure is obtained by looping 
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Fig.	12. Plate with circular inclusion subjected to uniform traction 

sl. 12. Ploča s okruglim umetkom podvrgnuta jednolikom istezanju 
17 

 

where IJ
K  and MJ

K  are the nodal stiffness matrices, while I
r  and M

r  stand for the nodal force 
vectors. The discretized displacement boundary conditions can be written simply as 

1

ˆ , on ,
sN

I L L u
L



   



 u u           (40) 

1

ˆ , on
sN

M L L u
L



   



u u ,          (41) 

and the discretized traction boundary conditions are computed as 

1

ˆ , on ,
sN

I I IL L t
L



     



 t n d B u          (42) 

1

ˆ , on ,
sN

M M ML L t
L



     



 t n d B u          (43) 

where I
n  and M

n  denote the matrices containing outward unit normal vector components to t   
or t  . The following discretized interface boundary conditions may be written as  

1 1

ˆ ˆ , on ,
s sN N

L L L L s
L L

 

   

 

 u u           (44) 

1 1

ˆ ˆ , on .
s sN N

I IL L M ML L s
L L

 

       

 

 n d B u n d B u          (45) 

The global system of equations for the entire heterogeneous structure is obtained by looping 
through all the nodes belonging to the material sub-domains    and    using the standard well-
known procedure. 
 
Plate with circular inclusion 

As an example, a rectangular square plate with dimensions 2 2L L  and the circular inclusion 
with radius 1R   subjected to the unit horizontal traction 0t  is considered as depicted in Fig. 12. 

 
Fig.	12. Plate with circular inclusion subjected to uniform traction 

sl. 12. Ploča s okruglim umetkom podvrgnuta jednolikom istezanju 

17 
 

where IJ
K  and MJ

K  are the nodal stiffness matrices, while I
r  and M

r  stand for the nodal force 
vectors. The discretized displacement boundary conditions can be written simply as 

1

ˆ , on ,
sN

I L L u
L



   



 u u           (40) 

1

ˆ , on
sN

M L L u
L



   



u u ,          (41) 

and the discretized traction boundary conditions are computed as 

1

ˆ , on ,
sN

I I IL L t
L



     



 t n d B u          (42) 

1

ˆ , on ,
sN

M M ML L t
L



     



 t n d B u          (43) 

where I
n  and M

n  denote the matrices containing outward unit normal vector components to t   
or t  . The following discretized interface boundary conditions may be written as  

1 1

ˆ ˆ , on ,
s sN N

L L L L s
L L

 

   

 

 u u           (44) 

1 1

ˆ ˆ , on .
s sN N

I IL L M ML L s
L L

 

       

 

 n d B u n d B u          (45) 

The global system of equations for the entire heterogeneous structure is obtained by looping 
through all the nodes belonging to the material sub-domains    and    using the standard well-
known procedure. 
 
Plate with circular inclusion 

As an example, a rectangular square plate with dimensions 2 2L L  and the circular inclusion 
with radius 1R   subjected to the unit horizontal traction 0t  is considered as depicted in Fig. 12. 

 
Fig.	12. Plate with circular inclusion subjected to uniform traction 

sl. 12. Ploča s okruglim umetkom podvrgnuta jednolikom istezanju 



53

J. Sorić, B. Jalušić, T. Jarak: Meshless approach as an alternative to finite element method in ...

Fig. 12. Plate with circular inclusion subjected to uniform traction

Sl. 12. Ploča s okruglim umetkom podvrgnuta jednolikom istezanju

Due to the symmetry, only one quarter of the plate consisting of the two sub-doma-
ins Ω −  and Ω +  has been discretized as shown in Fig. 13. As obvious, the symmetry 
boundary conditions are used along the left and bottom edges, while the tractions a

xt  and 
a
yt , taken from the analytical solution [27], are prescribed on all outer edges. The materi-

al properties of the plate are 1000E + = , 0.25ν + = , while the values  of 10000E − =  
and 0.3ν − =  have been chosen for the inclusion. 

Fig. 13. Computational model of plate with circular inclusion with boundary conditions

Sl. 13. Računalni model ploče s okruglim umetkom i rubnim uvjetima
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Fig.	12. Plate with circular inclusion subjected to uniform traction 

sl. 12. Ploča s okruglim umetkom podvrgnuta jednolikom istezanju 

18 
 

 
Due to the symmetry, only one quarter of the plate consisting of the two sub-domains    and 
   has been discretized as shown in Fig. 13. As obvious, the symmetry boundary conditions are 
used along the left and bottom edges, while the tractions a

xt  and a
yt , taken from the analytical 

solution [27], are prescribed on all outer edges. The material properties of the plate are 
1000E  , 0.25   , while the values  of 10000E   and 0.3    have been chosen for the 

inclusion.  

 
Fig.	13. Computational model of plate with circular inclusion with boundary conditions 

sl. 13. Računalni model ploče s okruglim umetkom i rubnim uvjetima 
 

The computation is performed by using the MLS interpolation functions employing the 
second- and third-order basis (IMLS2, IMLS3). The accuracy of the numerical solutions is again 
compared to the analytical solutions [27]. The distributions of the strain components x  and the 
stress component x  for 0x   are presented in Figs 14 and 15. The results obtained by the 
proposed mixed formulation by using the second- (IMLS2-M) and third-order (IMLS3-M) 
functions are also compared with the solutions obtained by the full displacement (primal) 
approach [5], using the same order basis (IMLS2-P and IMLS3-P). The superiority of the 
proposed mixed approach is evident. 
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The computation is performed by using the MLS interpolation functions employing 
the second- and third-order basis (IMLS2, IMLS3). The accuracy of the numerical so-
lutions is again compared to the analytical solutions [27]. The distributions of the strain 
components xε  and the stress component xσ  for 0x =  are presented in Figs 14 and 15. 
The results obtained by the proposed mixed formulation by using the second- (IMLS2-
M) and third-order (IMLS3-M) functions are also compared with the solutions obtained 
by the full displacement (primal) approach [5], using the same order basis (IMLS2-P 
and IMLS3-P). The superiority of the proposed mixed approach is evident.

Fig. 14. Plate with circular inclusion – distribution of strain xε   za 0x =
Sl. 14. Ploča s okruglim umetkom – raspodjela deformacije xε  za 0x =

Fig. 15. Plate with circular inclusion – distribution of stress xσ  for 0x =
Sl. 15. Ploča s okruglim umetkom – raspodjela naprezanja xσ  za 0x =
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Finally, the numerical efficiency of the proposed collocation formulation has been 
tested by investigating the convergence rate and computational time, and the results 
have been compared to those obtained by the FEM. The global stress convergence rates 
are portrayed in Fig. 16. Herein, the results obtained by the first-order triangular (CPS3), 
the first-order quadrilateral (CPS4), the second-order triangular (CPS6) and the quadri-
lateral (CPS8) elements from the ABAQUS [28] are compared to those computed by the 
proposed mixed MLPG collocation utilizing the second- and third-order MLS functions 
(IMLS2 and IMLS3, respectively). The available analytical solutions from [27] are used 
as the referent values. The discretized L2 norm expressed as  

	

(46)
is used as error indicator computed at all nodes of the numerical models considered. 
Here, xσ  and yσ  are normal stress components, while xyτ  

represents the shear stre-
ss. The superscript NUM denotes numerical solutions, obtained either by FEM or by 
MLPG approach. The superscript ANAL stands for the analytical solutions. N denotes 
the number of nodes.

                       
Fig. 16. Plate with circular inclusion – comparison of numerical stress accuracy with FEM

Sl. 16. Ploča s okruglim umetkom – usporedba točnosti naprezanja s FEM (metodom 
konačnih elemenata)
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Fig.	14. Plate with circular inclusion – distribution of strain x   za 0x   

sl. 14. Ploča s okruglim umetkom – raspodjela deformacije x  za 0x   

 
Fig.	15. Plate with circular inclusion – distribution of stress x  for 0x   

sl. 15. Ploča s okruglim umetkom – raspodjela naprezanja x  za 0x   
Finally, the numerical efficiency of the proposed collocation formulation has been tested by 

investigating the convergence rate and computational time, and the results have been compared to 
those obtained by the FEM. The global stress convergence rates are portrayed in Fig. 16. Herein, 
the results obtained by the first-order triangular (CPS3), the first-order quadrilateral (CPS4), the 
second-order triangular (CPS6) and the quadrilateral (CPS8) elements from the ABAQUS [28] 
are compared to those computed by the proposed mixed MLPG collocation utilizing the second- 
and third-order MLS functions (IMLS2 and IMLS3, respectively). The available analytical 
solutions from [27] are used as the referent values. The discretized L2 norm expressed as   
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     

  

    


 
        (46) 

is used as error indicator computed at all nodes of the numerical models considered. Here, x  and 

y  are normal stress components, while xy  represents the shear stress. The superscript NUM 
denotes numerical solutions, obtained either by FEM or by MLPG approach. The superscript 
ANAL stands for the analytical solutions. N denotes the number of nodes. 
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It can be seen from Fig. 16 that the meshless approach is superior to the above-men-
tioned finite element formulations with respect to the convergence rates and the nume-
rical accuracy. The computational time for the meshless method is shorter than for the 
FEM, especially for the model with fewer nodes, indicating that the presented approach 
could be a potentially interesting alternative to the FEM in solving similar problems. It 
is important to emphasize that a further careful optimization of the developed meshless 
code is necessary in order to make a more trustworthy assessment about the numerical 
efficiency of the present approach.

5. CONCLUSIONS

Three different formulations of the meshless local Petrov-Galerkin approach are 
presented. The three-dimensional full displacement formulation is derived and applied 
for the solution of the elasto-static problem. It is evident that this approach is highly 
efficient in solving strongly singular problems, such as the Boussinesq problem. The 
presented method achieves significantly higher accuracy with only one-third as many 
nodes as compared to the finite element method. An efficient mixed meshless formu-
lation based on the local Petrov-Galerkin approach for the analysis of plate and shell 
structures has been displayed. Here, the superiority of the mixed formulation in compa-
rison to the standard full displacement approach is demonstrated. Using the strain and 
stress approximations, the undesired thickness and shear locking phenomena, which are 
a well-known drawback of the shell finite element formulations, are efficiently elimi-
nated. The results also show that the accuracy and convergence of the mixed meshless 
formulation are better than that of the finite element used. The third meshless formu-
lation is based on the mixed collocation approach. Therein, the deformation responses 
of heterogeneous structures are modeled. The discontinuities in the strain and stress 
fields due to the material heterogeneity are captured accurately. Again, the numerical 
efficiency of the proposed method is estimated by comparison to the FEM with respect 
to accuracy, convergence rates and computational time. The present method yields con-
vergence rates, which are larger or comparable to those obtained by the FEM, while at 
the same time, it is more accurate for the same number of degrees of freedom. On the 
other hand, the FEM method is still faster for equal number of the degrees of freedom. 
Nevertheless, as the collocation method needs fewer nodes to achieve the same level of 
global accuracy as the FEM, the computational time required for solving an engineering 
problem might be shorter or comparable to that of the FEM.

It is to note that the construction of meshless shape functions is rather complex 
in nature in comparison to the polynomial functions within the mesh-based methods. 
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Thus, the number of integration points required for an exact calculation of the integrals 
in the meshless methods based on the weak forms may be higher than in the FEM, be-
cause the shape functions are often not of polynomial character.
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BEZMREŽNI POSTUPAK KAO ALTERNATIVA METODI KONAČNIH 
ELEMENATA PRI NUMERIČKOM MODELIRANJU U MEHANICI 

ČVRSTIH TIJELA

Sažetak

Bezmrežni postupak omogućuje diskretizaciju računalnog modela 
samo s čvorovima koji ne trebaju biti povezani s konačnim elementima. U 
ovom članku prikazuje se lokalna Petrov-Galerkinova formulacija koja u 
potpunosti spada u bezmrežne postupke jer ne zahtijeva niti jednu vrstu 
mreže ili  tzv. popratnih ćelija, kako za interpolaciju tako i za integraciju. 
Prikazane su puna formulacija pomaka i mješovita formulacija. Postupak 
punog pomaka se primjenjuje za rješavanje trodimenzijskog elasto-statič-
kog problema, dok se mješovita formulacija koristi za modeliranje defor-
miranja ljuskastih konstrukcija. Modeliranje materijalnog diskontinuiteta 
se provodi mješovitim bezmrežnim lokalnim Petrov-Galerkinovim po-
stupkom koji uključuje kolokacijsku metodu. U numeričkim primjerima, 
učinkovitost i točnost svih prikazanih metoda je testirana i uspoređena s 
formulacijama metode konačnih elemenata. Pokazano je da se bezmrežni 
postupci mogu smatrati alternativom za dobro poznatu metodu konačnih 
elemenata.

Ključne riječi: Bezmrežna metoda; lokalna Petrov-Galerkinova for-
mulacija; mješoviti bezmrežni postupak; kolokacijski bezmrežni postu-
pak.
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