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Abstract
This paper presents a new numerical model for the analysis of beam 

type structures. The model uses two-noded rotation free finite elements 
and takes into account material non-linearity, finite displacements, finite 
rotations and finite strains. The presented numerical model has been im-
plemented into the open source ‘Yfdem’, which is based on the Combined 
Finite Discrete Element Method. The performance of the new numerical 
model was demonstrated on simple benchmark tests, by a comparison 
with known experimental and analytical results.
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1. Introduction

Beam type structural elements, which are constituent elements of many construc-
tions, are elements in which the length is considerably more pronounced than the width 
and the height of the cross-section. Beam elements can be flat, supporting transverse 
load through bending, or curved, supporting transverse loads trough a combined action 
of bending and axial force.

Throughout history, a number of numerical models have been developed for the 
analysis of beam structures, most of which are based on the finite element method 
(FEM). The finite element method formulation of the problem results in a system of al-
gebraic equations. To solve the problem, it subdivides a large domain into smaller parts 
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that are called finite elements. The method yields approximate displacement field over 
finite elements at the finite number of points by using shape functions. Simple equations 
obtained over these finite elements are assembled into a larger system of equations that 
models the entire problem. Solving a large system of equations, especially if material 
non-linearity, finite rotations and finite displacements are taken into account, can become 
computationally very demanding and time-consuming, causing additionally problems 
due to numerical instabilities. 

Due to its long tradition, a number of numerical models based on FEM have been 
developed and are distinguished in type of finite elements, the structure of which is dis-
cretized, and in type of constitutive law of materials that can be linear and non-linear.

The simplest element formulations, which use lower order polynomial as shape 
functions for approximating node displacement, result in overly stiff behaviour known as 
the locking phenomenon. This phenomenon arises due to an inability of the formulations 
to describe a pure bending deformation. The solution to this problem has emerged in the 
form of a coupled polynomial, mixed trigonometric polynomial and in higher-order-pol-
ynomial shape functions for approximating displacement field over finite elements [1-6]. 
Finite elements proposed so far are mainly dependent on the shape of the beam element. 
They are usually not established or are even found deficient for different beam configura-
tions. In search for better computational efficiency, there has also been development in 
rotation-free finite elements [7-11]. These elements manage to remove rotational degrees 
of freedom by increasing the interpolation domain outside of the area of integration do-
main, and therefore achieve significant simplification of the initial problem.

The main purpose of this paper is to present a simple, robust and computationally 
efficient numerical model for the analysis of beam type structures. The model is based on 
two-noded rotation free finite elements taking into account non-linear material behaviour, 
finite displacements, finite rotations and finite strains. The discretization of the structure 
with a detailed description of the axial and bending carrying mechanism of finite elements 
are presented. Proposed numerical algorithms have been implemented into the open 
source ‘Yfdem’, which is based on combined finite discrete element method (FDEM) 
presented by Munjiza [12-15]. Subsequently, verification and validation of the proposed 
numerical model have been performed on several examples by comparing the obtained 
numerical results with the known analytical and experimental results from literature.

2. Proposed numerical model

This chapter presents a numerical algorithm for the analysis of beam type struc-
tures, which, inter alia, takes into account material non-linearity, finite displacement and 
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finite rotations. Detailed information regarding the discretization of the structure and the 
calculation of nodal forces due to the bending and axial deformation are shown below.

2.1. Discretization of the structure

Within the presented numerical model, the structure has been discretized with two-
noded finite elements. The mass of the structure is concentrated in the finite element 
nodes as shown in Fig. 1.

Fig. 1. Discretization of structure

Sl. 1. Diskretizacija konstrukcije

2.2. Calculation of nodal forces due to axial and bending carrying 
mechanisms

For the purposes of calculating the axial and bending deformation and the calcula-
tion of nodal forces, the observed node B is considered together with its two neighbour-
ing nodes – A and C – as shown in Fig. 2.

Based on the known coordinates of the nodes at any time step, it is possible to 
calculate the radius of the curvature of the circle passing through the nodes A, B and C 
according to the relation:

	 (1)

Here, d and φ are the length between the adjacent nodes and the angle between the 
finite elements in the node B, respectively (see Fig. 2.).

ϕsin2
dr =
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Fig. 2. Observed finite element node together with two neighbouring nodes
Sl. 2. Promatrani čvor konačnog elementa zajedno sa susjednim čvorovima

Based on the known radius of curvature of the circle and the distance between adja-
cent nodes, it is possible to calculate the angles α0, α1 and α (see Fig. 2.) at any time step 
according to the following relations:

	
	

(2)
Within the presented numerical algorithm, the cross-section has been divided into 

layers as shown in Fig. 3. For each layer, it is possible to calculate its length li at any time 
step in accordance with the following relation:

	 (3)

Fig. 3. Cross-section of the structures with layers
Sl. 3. Uslojeni poprečni presjek
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In the previous relation, yi is the distance between the centre of the layer and the bottom of the cross, while h is the 
height of the cross-section as shown in Fig. 3. Based on the length of the layers in initial li,i and current li,c 
configuration, it is possible to calculate the strain of the layer according to the following relation: 
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Taking into account the constitutive law of material given in relation between stress and strain, based on 
the known strain εi, it is possible to obtain stress σi in the centre of the layer. It is important to note that an 
arbitrary relation can be chosen between strain and strain. Differential force dni acting at the centre of the layer 
can be obtained according to the following relation: 

 ii dhbdn   (6) 

Here, b and dh are the width and the thickness of the layer, respectively (see Fig. 3.). Total axial force acting on 
the centre of the gravity of the cross-section in the node B (see Fig. 4.) is obtained according to: 
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Here, index n in the summation relates to the number of layers.  
The procedure described above is repeated for the nodes A and C, which yields axial force in node A nA and axial 
force in node C nC as shown in Fig. 4a. Finally, axial forces in finite elements 0 and 1 are given by: 
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respectively. 
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Taking into account the constitutive law of material given in relation between stress 
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Here, b and dh are the width and the thickness of the layer, respectively (see Fig. 3.). 
Total axial force acting on the centre of the gravity of the cross-section in the node B (see 
Fig. 4.) is obtained according to:

	
(7)

Here, index n in the summation relates to the number of layers. 
The procedure described above is repeated for the nodes A and C, which yields axial 
force in node A nA and axial force in node C nC as shown in Fig. 4a. Finally, axial forces 
in finite elements 0 and 1 are given by:

		
(8)

respectively.

The moment at the centre of the gravity of the cross-section in the node B (see Fig. 
4b.) is obtained according to relation:

	
	

(9)
Here, h is the height of the cross-section.
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Here, h is the height of the cross-section. 
 

 
Fig.	4. (a) Axial forces in nodes A, B and C and (b) moment in node B 

sl. 4. (a) Uzdužne sile u čvorovima A, B i C i (b) moment u čvoru B 

Axial forces in finite elements 0 and 1 are transferred in the form of equivalent nodal forces in nodes A, B 
and C as shown in Fig. 5a, while the moment in observed node B is transferred in the form of pair of forces in 
nodes A, B, and C as shown in Fig. 5b. 
 

 
Fig.	5. Equivalent nodal forces due to: (a) axial force in finite elements 0 and 1; (b) moment in 

node B 

sl. 5. (a) Ekvivalentne čvorne sile uslijed: (a) uzdužne sile u konačnom elementu 0 i 1; (b) momenta u 
čvoru B 

If node A is boundary node, axial force in node A equals nB. Finally, if node C is boundary node, axial force in 
node C equals nC. Equivalent nodal forces due to axial force in finite elements 0 and 1 in case when node A and C 
are boundary nodes are shown in Fig. 6a and Fig. 6b, respectively. The procedure described above is repeated for 
all nodes. 
 

 
Fig.	6. Equivalent nodal forces due to axial force in finite elements 0 and 1 in case where boundary node 

is: (a) node A; (b) node B 

sl. 6. (a) Ekvivalentne čvorne sile uslijed uzdužne sile u konačnim elementima 0 i 1 u slučaju kada je 
krajnji čvor: (a) čvor A; (b) čvor B 

2.3. Clamped boundary condition 

In the context of the FDEM, based on which the presented numerical model has been developed, nodes 
only have translational degrees of freedom. Taking this fact into account, the question is how to achieve clamped 
boundary condition. In actual implementation, the clamped boundary condition, for example in node B (see Fig. 
7.), can be achieved by implementing fictive node near the clamped boundary as shown in Fig. 7. As the fictive 
node, which lies in the tangent on the structure at the clamped boundary, tends to the clamped boundary, the 
tangent on the circle passing through nodes A, B and C converges to the tangent on the structure at clamped 
boundary as shown in Fig. 7. In the current configuration, there are some discrepancies between theoretical and 
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Fig. 4. (a) Axial forces in nodes A, B and C and (b) moment in node B

Sl. 4. (a) Uzdužne sile u čvorovima A, B i C i (b) moment u čvoru B

Axial forces in finite elements 0 and 1 are transferred in the form of equivalent nod-
al forces in nodes A, B and C as shown in Fig. 5a, while the moment in observed node 
B is transferred in the form of pair of forces in nodes A, B, and C as shown in Fig. 5b.

Fig. 5. Equivalent nodal forces due to: (a) axial force in finite elements 0 and 1; 
(b) moment in node B

Sl. 5. (a) Ekvivalentne čvorne sile uslijed: (a) uzdužne sile u konačnom elementu 0 i 1; 
(b) momenta u čvoru B

If node A is boundary node, axial force in node A equals nB. Finally, if node C is bound-
ary node, axial force in node C equals nC. Equivalent nodal forces due to axial force in 
finite elements 0 and 1 in case when node A and C are boundary nodes are shown in Fig. 
6a and Fig. 6b, respectively. The procedure described above is repeated for all nodes.

Fig. 6. Equivalent nodal forces due to axial force in finite elements 0 and 1 in case where 
boundary node is: (a) node A; (b) node B

Sl. 6. (a) Ekvivalentne čvorne sile uslijed uzdužne sile u konačnim elementima 0 i 1 u slučaju 
kada je krajnji čvor: (a) čvor A; (b) čvor B
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2.3. Clamped boundary condition

In the context of the FDEM, based on which the presented numerical model has 
been developed, nodes only have translational degrees of freedom. Taking this fact into 
account, the question is how to achieve clamped boundary condition. In actual imple-
mentation, the clamped boundary condition, for example in node B (see Fig. 7.), can be 
achieved by implementing fictive node near the clamped boundary as shown in Fig. 7. As 
the fictive node, which lies in the tangent on the structure at the clamped boundary, tends 
to the clamped boundary, the tangent on the circle passing through nodes A, B and C 
converges to the tangent on the structure at clamped boundary as shown in Fig. 7. In the 
current configuration, there are some discrepancies between theoretical and calculated 
curvature, since the tangent on the structure at the boundary node does not coincide with 
the tangent of the circle passing through the fictive node A, and nodes B and C. It can be 
shown that if the length of the fictive element 0 (see Fig. 7) is over one thousand times 
smaller than the length of the finite element 1 (see Fig. 7), the discrepancy is smaller 
than 0.01 %.

Fig. 7. Clamped boundary in actual implementation

Sl. 7. Upeti rubni uvjet u stvarnoj implementaciji

2.4. Nodal forces due to dumping

In the proposed numerical model, a viscous type of damping is adopted, in which 
the damping forces, whose intensity is proportional to the velocity and damping coef-
ficient μ, are linearly distributed over the finite elements. The proposed numerical model 
differentiates the dumping forces, which act in direction of the construction line, and 
damping forces, which act in direction normally on the construction. For the purpose 
of calculating equivalent nodal forces due to dumping, the velocity of the nodes of the 



68

Rad 536. Tehničke znanosti knj. 19(2018), str. 61-79

finite element has been split into the components in direction tangential and orthogonal 
to the finite element as shown in Fig. 8. Equivalent nodal forces in nodes A and B are 
thus given by:

(10)

Here, μnor and μtan are normal and tangential dumping coefficients.

Fig. 8. Normal and tangential component of node velocity

Sl. 8. Normalna i tangencijalna komponenta brzine u čvoru

The procedure described above is repeated for all finite elements.

2.5. Time integration of equation of motion

The shape of a beam element and its position in space at any time step is given by 
the current coordinates of the finite element nodes xi, where i is associated with the de-
gree of freedom. Similarly, the velocity field and acceleration field have been defined by 
nodal velocities vi and nodal accelerations ai, respectively [12].

In the context of the FDEM, a time integration scheme in an explicit form is ap-
plied to each node and each degree of freedom. Nodal forces resulting from axial car-
rying mechanism, bending carrying mechanism, external loads and dumping forces are 
all added together, and a total nodal force fi associated with each degree. The dynamic 
equilibrium for each degree of freedom is therefore given by:

		
(11)

Here, mi is the mass associated with each degree of freedom.
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Here, μnor and μtan are normal and tangential dumping coefficients. 
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The procedure described above is repeated for all finite elements. 

2.5. Time integration of equation of motion 

The shape of a beam element and its position in space at any time step is given by the current coordinates 
of the finite element nodes xi, where i is associated with the degree of freedom. Similarly, the velocity field and 
acceleration field have been defined by nodal velocities vi and nodal accelerations ai, respectively [12]. 

In the context of the FDEM, a time integration scheme in an explicit form is applied to each node and each 
degree of freedom. Nodal forces resulting from axial carrying mechanism, bending carrying mechanism, external 
loads and dumping forces are all added together, and a total nodal force fi associated with each degree. The 
dynamic equilibrium for each degree of freedom is therefore given by: 

 iii fam =  (11) 

iii fam =
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For the integration of the above equation, a central difference time integration 
scheme based on explicit integration of the governing equation for each degree of free-
dom has been employed. The scheme can be formulated as follows:

		
(12)

Here, Δt is a time step.
A schematic flowchart that describes the overall numerical procedure has been 

shown in Fig. 9. It is worth pointing out that the proposed numerical procedure does not 
require either stiffness or mass matrices to be assembled, which makes it suitable for 
parallel programming.

Fig. 9. A schematic flowchart of the overall numerical procedure
Sl. 9. Shematski dijagram prethodno opisanog numeričkog postupka
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Here, Δt is a time step. 
A schematic flowchart that describes the overall numerical procedure has been shown in Fig. 9. It is worth 

pointing out that the proposed numerical procedure does not require either stiffness or mass matrices to be 
assembled, which makes it suitable for parallel programming. 
 

 
Fig.	9. A schematic flowchart of the overall numerical procedure 

sl.	9. Shematski dijagram prethodno opisanog numeričkog postupka 

3. Validation of the FDEM numerical model 

The model described above has been implemented into the open source FDEM package – Yfdem [12]. The 
validation of the model has been performed on several examples by comparing the obtained results with the 
known analytical and experimental results obtained in the literature.  

3.1. Cantilever exposed to bending moment at the free end 

The cantilever beam exposed to bending moment at the free end as shown in Fig. 10a, has been chosen in 
order to investigate the relative error of calculated moment in cross-section in dependence on the number of 
subdivisions per high of the cross-section. 
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The cantilever was discretized with four finite elements and five nodes as shown in 
Fig. 9b. The finite element 0 of length 1∙10-6 m with hinged nodes 0 and 1 has been used 
for modelling the clamped boundary condition in node 1, while the finite element 3 of 
length 0.05 m with a pair of forces in nodes 3 and 4 has been used for modelling of the 
bending moment in node 3, which equals:
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The relation between the moment at the free end and curvature in node 2 obtained with the proposed 
numerical model for a different number of subdivisions n per height of the cross-section has been shown in Fig. 
11. From the presented results, it can be seen that by increasing the number of subdivisions per height of the 
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Relative error in calculating the moment in node 2 in comparison with the analytical solution obtained 
according to the following relation: 
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has been shown in Fig. 12. It can be seen that in a number of subdivisions higher than 30, relative error is less than 
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3.2. A simply supported beam under self-weight 

A simply supported beam under self-weight, whose geometry has been shown in Fig. 13, has been chosen 
to analyse relative error in numerical solution obtained with presented numerical model in dependence of the 
number of finite elements per beam length. The width of the cross-section equalled 100 cm, while the height of 
cross-section varied in the amounts of 50 mm and 200 mm. The modulus of beam elasticity equalled E = 210 GPa, 
while the density ρ and gravity constant g were adopted in the amounts of 7,850 kg/m3 and 10 m/s2, respectively. 
 

 
Fig.	13.	Simply supported beam under self-weight 

sl. 13. Jednostavna greda opterećena vlastitom težinom 

The discretization of the beam was performed by using 2, 4, 8 and 16 finite elements, which means that the 
lengths l of the finite elements were L/2, L/4, L/8 and L/16, respectively. Starting from an initially flat geometry, 
the beam oscillates due to its self-weight, and subsequently, as a result of damping, finds an equilibrium position 
as shown in Fig. 14. 
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coefficient μnor= μtan =10000 kNm2/s. 

sl. 14. Progib centra grede u vremenu za diskretizaciju od 16 konačnih elemenata i prigušenje μnor= μtan =10000 
kNm2/s. 
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3.2. A simply supported beam under self-weight

A simply supported beam under self-weight, whose geometry has been shown in 
Fig. 13, has been chosen to analyse relative error in numerical solution obtained with 
presented numerical model in dependence of the number of finite elements per beam 
length. The width of the cross-section equalled 100 cm, while the height of cross-section 
varied in the amounts of 50 mm and 200 mm. The modulus of beam elasticity equalled 
E = 210 GPa, while the density ρ and gravity constant g were adopted in the amounts of 
7,850 kg/m3 and 10 m/s2, respectively.
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The discretization of the beam was performed by using 2, 4, 8 and 16 finite ele-
ments, which means that the lengths l of the finite elements were L/2, L/4, L/8 and L/16, 
respectively. Starting from an initially flat geometry, the beam oscillates due to its self-
weight, and subsequently, as a result of damping, finds an equilibrium position as shown 
in Fig. 14.

0

5

10

15

20

25

0 5 10 15 20 25 30 35

re
la

tiv
e 

er
ro

r 
/ %

n

 8 

 100
m

error relative
an




 anmm  (17) 

has been shown in Fig. 12. It can be seen that in a number of subdivisions higher than 30, relative error is less than 
0.1 %. 
 

0

5

10

15

20

25

0 5 10 15 20 25 30 35

re
la

tiv
e 

er
ro

r 
/ %

n  
Fig.	12.	Relative error of the moment in node 2 in comparison with analytical solution 

sl. 12. Relativna pogreška momenta u čvoru 2 u usporedbi s analitičkim rješenjem 

3.2. A simply supported beam under self-weight 

A simply supported beam under self-weight, whose geometry has been shown in Fig. 13, has been chosen 
to analyse relative error in numerical solution obtained with presented numerical model in dependence of the 
number of finite elements per beam length. The width of the cross-section equalled 100 cm, while the height of 
cross-section varied in the amounts of 50 mm and 200 mm. The modulus of beam elasticity equalled E = 210 GPa, 
while the density ρ and gravity constant g were adopted in the amounts of 7,850 kg/m3 and 10 m/s2, respectively. 
 

 
Fig.	13.	Simply supported beam under self-weight 

sl. 13. Jednostavna greda opterećena vlastitom težinom 

The discretization of the beam was performed by using 2, 4, 8 and 16 finite elements, which means that the 
lengths l of the finite elements were L/2, L/4, L/8 and L/16, respectively. Starting from an initially flat geometry, 
the beam oscillates due to its self-weight, and subsequently, as a result of damping, finds an equilibrium position 
as shown in Fig. 14. 
 

-30

-25

-20

-15

-10

-5

0
0.0 0.5 1.0 1.5 2.0 2.5

D
ef

le
ct

io
n 

/ m
m

Time / s  
Fig.	14.	Time-midspan deflection response for beam discretized with 16 finite elements and damping 

coefficient μnor= μtan =10000 kNm2/s. 

sl. 14. Progib centra grede u vremenu za diskretizaciju od 16 konačnih elemenata i prigušenje μnor= μtan =10000 
kNm2/s. 



73

A. Mihanović, H. Smoljanović, B. Trogrlić, A. Munjiza: A new robust and computationally efficient ...

Fig. 14. Time-midspan deflection response for beam discretized with 16 finite elements and 
damping coefficient μnor= μtan =10000 kNm2/s.

Sl. 14. Progib centra grede u vremenu za diskretizaciju od 16 konačnih elemenata i prigušenje 
μnor= μtan =10000 kNm2/s.

The equilibrium deflections at the midspan of the beam obtained with presented nu-
merical model together with numerical solutions obtained by the ABAQUS programme 
package have been shown in Table 1. The numerical solutions from ABAQUS have been 
obtained by using 100 three-noded quadratic beam finite elements. Relative errors of the 
numerical results obtained with the proposed numerical model in comparison with the 
numerical solutions obtained by ABAQUS have been shown in Table 2.

Table 1
Deflection at the midspan of the beam in (mm)

Beam thickness 50 mm 200 mm
FDEM (l=L/2) 279.73 17.538
FDEM (l=L/4) 244.84 15.346
FDEM (l=L/8) 236.12 14.798
FDEM (l=L/16) 233.94 14.661
ABAQUS 232.999 14.601

From the presented results, it can be observed that as the number of the finite ele-
ments increases, the numerical solutions converge to those obtained by ABAQUS and 
the error of approximation decreases with l2. It has also been observed that the influence 
of beam thickness on error is negligible, which indicates that the presented numerical 
model does not suffer from the locking phenomenon related to the length to thickness 
ratio of the beam.
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Table 2
Relative error of the beam in comparison with numerical solution 
obtained by ABAQUS in (%)

Beam thickness 50 mm 200 mm
FDEM (l=L/2) 20.06 20.11
FDEM (l=L/4) 5.08 5.10
FDEM (l=L/8) 1.36 1.35
FDEM (l=L/16) 0.40 0.41

3.3. Reinforced concrete beams

Reinforced concrete beams exposed to monotonic increasing loading condition, 
with the known experimental results taken from literature [16], have been used for ad-
ditional validation of the presented numerical model. The experimental programme con-
ducted by Alca et al. [16] included 12 reinforced concrete beams subjected to a four-
point bending test as shown in Fig. 15. Three depths of beams have been used: namely 
230 mm (small beam); 360 mm (medium beam); and 515 mm (large beam). These have 
been combined with two concrete strengths: lower strength concrete (cylinder strength 
of 50 MPa), and higher strength concrete (cylinder strength of 90 MPa).

Fig. 15. Reinforced concrete beams exposed to monotonic increasing loading 
condition with cross-sections

Sl. 15. Jednostavna armirano betonska greda izložena monotono rastućem opterećenju 
sa poprečnim presjecima



75

A. Mihanović, H. Smoljanović, B. Trogrlić, A. Munjiza: A new robust and computationally efficient ...

In this work, only four beams were used, namely SL1, SH1, LL1 and LH1. Two 
letters and a number designate each beam. The first letter S or L refers to small or large 
beam. The second letter L or H refers to low or high strength concrete. The geometric 
characteristic of these beams have been summarised in Table 3.

Alca et al. [16] have tested two beams of each type to failure (letter 1 or 2). Material 
properties for the first set of beams have been presented in Table 4.

Table 3
Beam geometry

Beam ∅ / mm b /mm d / mm h / mm L / mm

SL1 16 150 230 282 3740

SH1 16 150 230 302 3740

LL1 35.7 335 515 630 8380

LH1 35.7 335 515 630 8380

Table 4
Beam material properties

Beam fc´ / MPa fy /MPa ρ / %

SL1 51.1 410 2.32

SH1 90.1 410 4.64

LL1 54.2 409 2.32

LH1 90.3 406 4.64

For the purpose of numerical analysis with the presented numerical model, the 
structure has been discretized with 28 finite elements as shown in Fig. 16. The beams 
have been modelled from support to support, and the overhang beyond the supports has 
been ignored. 

Fig. 16. Discretization of small and large reinforced concrete beams. 
Values in brackets corresponds to large beam

Sl. 16. Diskretizacija velike i male armirano betonske grede. Vrijednosti u zagradi 
odgovaraju velikoj gredi



76

Rad 536. Tehničke znanosti knj. 19(2018), str. 61-79

For all beams, the following approximation for the stress–strain curve for concrete 
has been adopted (as shown in Fig. 17a):

		
(14)

Here, σ is stress, ε is strain, while fs is compression strength of concrete, which is adopted 
in amount of 44.77 MPa for lower strength beams and 76.70 MPa for higher strength 
beams. Stress in each of the bars has been obtained from strain using the bilinear stress–
strain curve for steel as shown in Fig. 17b.

Fig. 17. Adopted stress strain curves for: (a) concrete; (b) reinforcing bars
Sl. 17. Usvojene krivulje naprezanje-deformacija za: (a) beton; (b) armaturne šipke

Fig. 18 shows the comparison of numerical results obtained with presented numeri-
cal model with experimental results from Alca et al. [16] for small and large beams, for 
both lower and higher strength concrete. 

Fig. 18. Comparison of experimental and numerical moment-rotation curves
Sl. 18. Usporedba numeričke i eksperimentalne veze moment-rotacija
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Here, σ is stress, ε is strain, while fs is compression strength of concrete, which is adopted in amount of 44.77 MPa 
for lower strength beams and 76.70 MPa for higher strength beams. Stress in each of the bars has been obtained 
from strain using the bilinear stress–strain curve for steel as shown in Fig. 17b. 
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For both experimental and numerical results, the bending moment at midspan versus 
total angle change has been shown. For all beams, the total angle change in both experi-
mental and numerical results has been measured over a length of 3.7d. In both cases, 
good agreement can be seen between the two sets of results. This applies to both bending 
moments and ultimate rotations.

4. Conclusions

This paper presents a new robust numerical model for the two-dimensional analysis 
of beam type structures. The model uses two-noded rotation free finite elements. De-
tailed information related to axial and bending carrying mechanism has been presented 
in the paper in brief, together with numerical procedure for the time integration of equa-
tion of motion. The proposed algorithms have been implemented into the existing open-
source ‘Yfdem.’ Package, based on a combined finite-discrete element method. The per-
formance of the model has been demonstrated on simple benchmark tests by comparing 
the results obtained by the proposed numerical model with known analytical, numerical 
and experimental results available from literature.

Based on the proposed numerical algorithms and presented benchmark tests, con-
cluding remarks can be drawn as follows:

•	 The model is based on two-noded rotation free finite elements, which enables 
efficient representation of any arbitrary geometry.

•	 The model enables the analysis of flat beams and beams with large initial cur-
vature.

•	 The proposed model takes into account arbitrary non-linear material model, and 
is also suitable for the analysis of reinforced concrete structures.

•	 Due to defined local coordinate systems in the initial and current configuration, 
the proposed numerical model takes into account finite displacements, finite rota-
tions and geometrical non-linearity.

•	 The main advantage of the presented model lies in the simplicity of its formula-
tion. The presented numerical model requires neither stiffness nor mass matrices 
to be assembled; this makes it suitable for parallel programming.

•	 The results obtained by the presented numerical model show good agreement 
with the analytical, numerical and experimental results available from literature. 

Furthermore, the model is easily upgradable for the analysis of three structures and 
parallel programming, which is yet another advantage of using the FDEM model.
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Sažetak

U ovom radu prezentiran je novi numerički model za analizu grednih 
konstrukcija. Model koristi dvočvorne konačne elemente sa translacijskim 
stupnjevima slobode u svakom čvoru i pri tome uzima u obzir materijalnu 
nelinearnost, velike pomake, velike rotacije i velike deformacije. Prezenti-
rani numerički model je implementiran u numerički paket ‘Yfdem’ koji se 
bazira na kombiniranoj metodi konačnih i diskretnih elemenata. Prednosti 
novog numeričkog modela demonstrirane su na jednostavnim primjerima 
usporedbom rezultata s poznatim analitičkim i eksperimentalnim rješe-
njima iz literature.

Ključne riječi: numerički model, gredne konstrukcije, kombinirana 
metoda konačnih i diskretnih elemenata
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