
8

POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.

PD.TVZ.HR PD.TVZ.HR

ENHANCING THE PERFORMANCE OF IMAGE PREPROCESSING
FOR CLASSIFICATION AND OBJECT DETECTION

OPTIMIZACIJA PREDPROCESIRANJA SLIKA ZA KLASIFIKACIJU I
DETEKCIJU

Ivan Cesar1, Valentin Solina2, Renata Kramberger1, Tin Kramberger1

1Tehničko veleučilište u Zagrebu, Vrbik 8, 10000 Zagreb, Hrvatska
2Aether-signum, Zleninska 29, 10340 Vrbovec, Croatia

ABSTRACT

The image preprocessing optimization is a
challenging task with numerous applications
including classification and object detection on
which this paper is oriented the most. Enhancing
the performance in terms of processing time for
image preprocessing is crucial to every researcher
engaged into deep learning. A few common
mistakes and practices are presented in this
paper which can greatly impact training time,
alongside practices and tools used for diagnosing
potential pitfalls. In this paper, we evaluate
several common Python libraries which are used
for image preprocessing and analyze the impact
of different augmentation ordering with respect to
central processing unit (CPU) usage.

Keywords: computer vision, deep learning,
training optimization

SAŽETAK

Optimizacija predprocesiranja slike je izazovan
zadatak koji zahvaća u niz područja, od kojih
se ovaj rad fokusira primarno na klasifikaciju
i prepoznavanje objekata na slici. Ubrzavanje
performansi predprocesiranja slika je od iznimne
važnosti istraživačima koji se bave područjem
dubinskog učenja. Kroz ovaj rad prezentirano
je nekoliko pogrešaka koje mogu utjecati na
vrijeme treniranja modela, s naglaskom na metode
dijagnosticiranja potencijalnih zamki. Evaluirano
nekoliko poznatih Python biblioteka koje se
koriste za predprocesiranje slika te je analiziran
utjecaj pojedine popularne augmentacije i
njihovog poretka u kontekstu maksimiziranja
iskoristivosti resursa središnje procesorske
jedinice (CPU).

Ključne riječi: kompjuterski vid, dubinsko učenje,
optimizacija treninga

1. UVOD
1. INTRODUCTION

Deep learning has become one of the most
significant research topics in the area of
computer science. With availability of various
datasets and affordable hardware, deep learning
becomes feasible even on computers with one
or two graphical processing units (GPU) which
do not necessarily have to be very powerful.
However, utilizing GPU processing power for
training can be a challenge in scenarios where
lots of data augmentation is needed which is
especially pronounced in the area of image or
video analysis, regardless if it is a classification
or object detection problem. There are many
pretrained generic models for classification [1]–
[7] and object detection [8]–[12]. However, such
pretrained models often need to be adjusted for
specific purpose using transfer learning [13], or
trained from scratch if a model itself needs to
be adjusted for the specific purpose which could
happen due to performance issues with bigger
models. In the process of finding the model which
has the best performance with respect to a given
problem, many attempts and experiments need
to be conducted, either by searching the neural
architecture space and discovering connections
between convolutional neural network building
blocks, or finetuning model hyperparameters
such as learning rate and optimizer parameters
[14]–[16]. Even if an advanced algorithm for
neural architecture search is applied, the number
of training epochs is still required to find the

DOI: 10.19279/TVZ.PD.2020-8-1-12

9

POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.

PD.TVZ.HR PD.TVZ.HR

most optimal architecture [17], [18]. Therefore,
optimizing the training process can greatly impact
the amount of time needed to find the optimal
convolutional neural network architecture. In this
paper, we analyze some of the common pitfalls
in terms of GPU utilization and present methods
which can help identify training time bottlenecks,
alongside the extensive experiment on several
Python libraries commonly used for image
preprocessing, a necessary step for successful
model training.

2. MATERIALS AND METHODS
2. MATERIJALI I METODE

Building a successful artificial neural network
model consists of finding the appropriate network
structure and hyperparameters which produce
the best result on the test dataset. As it can be
seen from previous works [2], [4], [11], [18],
[19], searching for the best model often consists
of experimenting with various combinations of
parameters which is a process that is lengthy and
mostly consists of initiating the training procedure
and evaluating results after several epochs or
several hundreds of iterations, modifying the
hyperparameters accordingly, and initiating the
training again. By optimizing the training time, a
larger space of parameters can be searched which
can increase the likelihood of finding a more
performant model.

One training iteration roughly consists of loading
a batch of images or frames, applying a series
of data augmentations [20]–[22] which can be
referred to as preprocessing, porting images
to GPU, evaluating network output and finally
updating weights based on the chosen optimizer
for backpropagation. Batch size directly depends
on the amount of available GPU units, GPU
memory on each unit, network size and input
resolution. Handling randomized image loading,
parallelization among several GPU units as
well as backpropagation is often a task for deep
learning frameworks like PyTorch. Regardless
of the chosen framework and architecture, it is
important to note that not all operations will be
done on the GPU. Sometimes, CPU processing
can be the bottleneck, impeding the maximum
GPU utilization.

The focus of this paper is on optimizing the entire
process, thus improving the GPU utilization.

Low GPU utilization during the training process
can be spotted easily by checking the GPU
statistics through a tool like nvidia-smi, combined
with the watch command and lowering the refresh
frequency, assuming that the training is done on
a CUDA capable device using a Linux operating
system. The mentioned process would not give
the exact measurement but could indicate if the
training is not utilizing the GPU processing power
to its maximum.

More detailed information can be obtained
through more sophisticated tools available in the
Nvidia developer tools suite. Figure 1 shows an
example of how GPU utilization can appear over
time during training with utilization peaks clearly
indicating low GPU utilization, leaving a spot for
possible improvement in the training process.

Without digging into the details of the code, one
could assume that the problem lies within image
preprocessing and augmentation. However, other
steps are needed to pinpoint the bottlenecks
causing the low GPU utilization. This applies
to machines with high-end computing power,
as well as inexpensive configurations, since a
high-performance GPU requires more data to be
supplied for full utilization.

The PyTorch framework defines Dataset and
DataLoader classes which provide data to the
training process. By extending the Dataset class
with a specific implementation, a developer is
obliged to perform all necessary data processing
in terms of loading the images or augmentations
and serve the resulting image to the pipeline. In
general, augmentations are performed on-the-
fly, with random probability whenever a training
pipeline requests the next image. Common
augmentations used in classification and object
detection problems are horizontal flipping,
jittering – adjusting the brightness and contrast,
random cropping, and rotation [1], [4], [8]. In
some cases, padding the image can be useful to
enable detection of smaller objects in the scene
[8]. Performing the above operations is not
necessarily cheap in terms of resource utilization,
especially when the input image is large.

10

POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.

PD.TVZ.HR PD.TVZ.HR

Therefore, it is important to recognize the
structure of the dataset, as well as the final
augmentation size (e.g. what image size is
required as a neural network input). Most of
the mentioned augmentations are performed on
a CPU and can slow down the entire training
process if not optimized correctly. Training
process optimizations, as well as any performance
optimization, cannot be done thoughtlessly. It is
important to correctly evaluate the performance
and pinpoint the bottlenecks considering the entire
process. For instance, the Tesla V100 GPU is not
going to benefit the training performance if the
processing power does not match it and cannot
supply enough preprocessed images in time. Our
experiment showed that training an SSD-300
detector with a mobilenet [6] backbone required
12 processor cores to be able to fully utilize
both GPU and CPU and achieving top training
performance of 160 epochs on the VOC dataset in
total of 4h, measured on Google GPU cloud, with
V100, 12 core processor and SSD hard disk.

Several options exist in Python in terms of
common image augmentation tasks. However,
the common ones are using the Pillow library,
OpenCV or simply applying some of the available
transformations through the commonly used
numpy library.

We have evaluated Pillow, OpenCV and numpy
libraries for the following augmentation tasks:
resizing, cropping, rotation, jittering, and
horizontal flip. Since numpy does not support
rotation, resize, and jittering, we used the OpenCV
library for those tasks specifically. For resize, we
measured both resizing to dimensions of 300x300
and 1000x1000, therefore combined time for both
resize actions were measured and presented as
a separate augmentation part of the benchmark.
Also, we consider ordering of the augmentations
and benchmark the entire augmentation
performance based on different ordering, as well
as each augmentation by itself. We have used
3 images for our benchmark, one image from
COCO dataset [23] (640x427px) , and two from
the Open Images dataset [24] (2000x1500px and
3000x5000px). We have run the experiment for
10 iterations and noted the total execution time
for each augmentation separately, and the total
execution time for all augmentations applied
consecutively. Images were stored on a SSD hard
disk with 500MB/s reading speed and loading of
images was included into the results since loading
the image into memory is also a part of the model
training procedure. The processor model was
i7-6700HQ, 3.5Ghz, on a Windows 10 operating
system. Code used for benchmarking is available
on https://github.com/yohney/augs-benchmark.

Figure 1 Shows example GPU utilization parsed from the GPU monitoring tool. The y-axis denotes GPU utilization in
percentage, while the x-axis represents time. In this example, GPU utilization is low between frames 00:00.2 and 00:00.3.

Slika 1 Pokazuje primjer iskorištenja GPU resursa dobivenih iz alata za promatranje GPU performansi. Vertikalna os (y)
označava iskoristivost GPU resursa u postotku, dok x-os predstavlja vremensku komponentu. U gornjem primjeru, iskorištenje
GPU resursa je niska između vremenskih točaka 00:00.2 i 00:00.3.

https://github.com/yohney/augs-benchmark

11

POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.

PD.TVZ.HR PD.TVZ.HR

3. RESULTS
3. REZULTATI

In general, the Pillow image library proved to be
the best in terms of performance and usability,
with a considerable performance improvement in
terms of execution time on jittering (brightness/
contrast) augmentation, and minor improvement
on cropping augmentation.

Additionally, we were able to speed up
preprocessing used in training Single Shot
Detector (SSD) by analyzing preprocessing code
with the kernprof line analyzer for Python. The
experiment is focused on evaluating different
augmentation implementations.

Figure 2 shows results for each augmentation
performed separately, with jittering augmentation
being most expensive, and cropping, flipping and
rotation being least expensive in terms of CPU
utilization.

Figure 3 shows the entire augmentation chain
applied in order: horizontal flip, rotation, jitter,
crop, and resize. Each line is increasing since
at each augmentation we measured total time
expired up to that augmentation, keeping the order
as specified.

Figure 2 Augmentation libraries benchmark results for 10 iterations (in seconds

Slika 2 Rezultati mjerenja augmentacijski biblioteka kroz 10 iteracija (u sekundama)

Figure 3 Augmentation libraries benchmark results for 10 iterations (in seconds), each augmentation is applied in chain as
indicated on the horizontal axis.

Slika 3 Rezultati evaluacije augmentacijskih biblioteka za 10 iteracija (u sekundama), gdje je svaka augmentacija lančano
nadovezana na prošlu kako je prikazano na osi-x.

12

POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.

PD.TVZ.HR PD.TVZ.HR

Figure 4 shows different augmentation ordering
which yields better overall results when the
dataset contains larger images, since cropping and
resizing is done first and rest of the augmentations
work with much smaller images.

4. DISCUSSION
4. DISKUSIJA

The experiment and result analysis revealed
domain-specific bottlenecks which improved the
training speed. In some cases, it came down to
using a better optimized function from another
library, in some cases it was a matter of series
of small optimizations which lead to better
performance. We strongly recommend running
such analysis on the entire preprocessing code
since potentially minor fixes can greatly impact
the training time and redeem already after few
model trainings. Resize appears somewhat more
expensive, nevertheless the cost is high due the
fact that execution times of resizing to 300x300
and 1000x1000 were measured and combined
since we were primarily interested in relation
between benchmarked libraries and not exact
times of execution. Based on the results shown in
figure 3 we can note that the Pillow library is the
fastest of the three, being up to 25% faster than
numpy and OpenCV, which ranked similarly. The
results for OpenCV are somewhat expected since
OpenCV uses numpy for most of its algorithm
implementations.

Based on results shown in figure 4 we find
that such approach can be up to 4x faster than
the initial one, indicating that ordering of the
augmentations can be crucial in optimizing the
image preprocessing.

5. CONCLUSION
5. ZAKLJUČAK

Optimizing the preprocessing procedure seems
like a marginal task compared to training and
model architecture, but in the long run it ensures
full utilization of resources which in turn enables
experimenting with models more efficiently
and therefore, increasing the probability of
finding the optimal artificial neural network
model. In this paper we presented some insights
regarding spotting the possible bottlenecks in
the training process as well as guidelines for
data augmentation optimizations which proved
to be essential for any high-performant deep
neural network, especially in the computer vision
area. Within this paper, a simple experiment
was conducted comparing the Numpy, OpenCV
and PIL libraries which are used in image
preprocessing. The obtained research results show
that different libraries for image preprocessing
provide different results in terms of processing
times.

Figure 4 Augmentation libraries benchmark results for 10 iterations (in seconds), each augmentation is applied in chain as
indicated on the horizontal axis

Slika 4 Rezultati evaluacije augmentacijskih biblioteka za 10 iteracija (u sekundama), gdje je svaka augmentacija lančano
nadovezana na prošlu kako je prikazano na osi-x.

13

POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.

PD.TVZ.HR PD.TVZ.HR

6. REFERENCES
6. REFERENCE

[1.] A. Krizhevsky, I. Sutskever, and G. E.
Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks.” pp.
1097–1105, 2012, DOI: 10.1145/3065386.

[2.] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
Residual Learning for Image Recognition.”
pp. 770–778, 2016, DOI: 10.1109/
CVPR.2016.90.

[3.] C. Szegedy, S. Ioffe, V. Vanhoucke, and A.
A. Alemi, “Inception-v4, Inception-ResNet
and the Impact of Residual Connections on
Learning,” Thirty-First AAAI Conf. Artif.
Intell., Feb. 2017.

[4.] C. Szegedy et al., “Going Deeper With
Convolutions,” in CVPR, 2015, pp. 1–9,
DOI: 10.1109/CVPR.2015.7298594.

[5.] K. Simonyan and A. Zisserman, “Very
Deep Convolutional Networks for Large-
Scale Image Recognition,” CORR, vol.
abs/1409.1, Sep. 2014.

[6.] A. G. Howard et al., “MobileNets: Efficient
Convolutional Neural Networks for
Mobile Vision Applications,” ArXiv, vol.
abs/1704.0, Apr. 2017.

[7.] M. Sandler, A. Howard, M. Zhu,
A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and
Linear Bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and
Pattern Recognition, 2018, DOI: 10.1109/
CVPR.2018.00474.

[8.] W. Liu et al., “SSD: Single Shot MultiBox
Detector,” 2016, pp. 21–37, DOI:
10.1007/978-3-319-46448-0_2.

[9.] R. Girshick, J. Donahue, T. Darrell, and
J. Malik, “Rich Feature Hierarchies for
Accurate Object Detection and Semantic
Segmentation,” in 2014 IEEE Conference
on Computer Vision and Pattern
Recognition, 2014, pp. 580–587, DOI:
10.1109/CVPR.2014.81.

[10.] R. Girshick, “Fast R-CNN,” in 2015 IEEE
International Conference on Computer
Vision (ICCV), 2015, pp. 1440–1448, DOI:
10.1109/ICCV.2015.169.

[11.] G. Ghiasi, T.-Y. Lin, R. Pang, and Q.
V. Le, “NAS-FPN: Learning Scalable
Feature Pyramid Architecture for Object
Detection,” Apr. 2019.

[12.] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and
P. Dollar, “Focal Loss for Dense Object
Detection,” in 2017 IEEE International
Conference on Computer Vision (ICCV),
2017, pp. 2999–3007, DOI: 10.1109/
ICCV.2017.324.

[13.] L. Torrey and J. Shavlik, “Transfer
Learning,” in Handbook of Research
on Machine Learning Applications and
Trends, IGI Global, 2010, pp. 242–264,
DOI: 10.4018/978-1-60566-766-9.ch011.

[14.] J. Bergstra, D. Yamins, and D. D. Cox,
“Making a science of model search:
Hyperparameter optimization in hundreds
of dimensions for vision architectures,”
in ICML’13 Proceedings of the 30th
International Conference on International
Conference on Machine Learning - Volume
28, 2013, no. PART 1, pp. 115–123.

[15.] J. S. Bergstra, R. Bardenet, Y. Bengio, and
B. Kégl, “Algorithms for Hyper-Parameter
Optimization,” in 25th Annual Conference
on Neural Information Processing Systems
(NIPS 2011), 2011, pp. 2546–2554.

[16.] J. Bergstra and Y. Bengio, “Random Search
for Hyper-Parameter Optimization,” J.
Mach. Learn. Res., vol. 13, no. Feb, pp.
281–305, 2012.

[17.] H. Zhu, Z. An, C. Yang, K. Xu, and Y. Xu,
“EENA: Efficient Evolution of Neural
Architecture,” ArXiv, vol. abs/1905.0, May
2019.

[18.] T. Elsken, J. H. Metzen, and F. Hutter,
“Neural Architecture Search: A Survey,” J.
Mach. Learn. Res., vol. 20, pp. 55:1-55:21,
Aug. 2018.

[19.] N. Wang, Y. Gao, H. Chen, P. Wang, Z.
Tian, and C. Shen, “NAS-FCOS: Fast
Neural Architecture Search for Object
Detection,” ArXiv, vol. abs/1906.0, Jun.
2019.

[20.] P. Y. Simard, D. Steinkraus, and J. C. Platt,
“Best practices for convolutional neural
networks applied to visual document
analysis,” in Seventh International

14

POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.POLYTECHNIC & DESIGN Vol. 8, No. 1, 2020.

PD.TVZ.HR PD.TVZ.HR

Conference on Document Analysis and
Recognition, 2003. Proceedings., 2003,
vol. 1, pp. 958–963, DOI: 10.1109/
ICDAR.2003.1227801.

[21.] D. C. Cireşan, U. Meier, J. Masci, L.
M. Gambardella, and J. Schmidhuber,
“High-Performance Neural Networks for
Visual Object Classification,” ArXiv, vol.
abs/1102.0, Feb. 2011.

[22.] D. Ciresan, U. Meier, and J. Schmidhuber,
“Multi-column deep neural networks
for image classification,” in 2012 IEEE
Conference on Computer Vision and
Pattern Recognition, 2012, pp. 3642–3649,
DOI: 10.1109/CVPR.2012.6248110.

[23.] T.-Y. Lin et al., “Microsoft COCO:
Common Objects in Context,” Springer,
Cham, 2014, pp. 740–755, DOI:
10.1007/978-3-319-10602-1_48.

[24.] A. Kuznetsova et al., “The Open Images
Dataset V4: Unified image classification

AUTHORS ‧ AUTORI

● Ivan Cesar - biograpgy can be found in the
Polytechnic & Design Vol. 7, No. 2, 2019.
Correspondence ‧ Korespondencija
icesar@tvz.hr

● Valentin Solina
Valentin earned his BCS in 2013. Since then he
has been working on GPU accelerated Computer
Vision applications focused on high-performance
video stream processing, built an Augmented
Reality framework for mobile devices, started a
company and earned a sport pilot's license.
Korespondencija ‧ Correspondence
valentin.solina@aether-signum.hr

● Renata Kramberger - biograpgy can be
found in the Polytechnic & Design
Vol. 5, No. 1, 2017.
Correspondence ‧ Korespondencija
rkramberg@tvz.hr

● Tin Kramberger - biograpgy can be found in
the Polytechnic & Design Vol. 5, No. 1, 2017.
Correspondence ‧ Korespondencija
tkramberg@tvz.hr

