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SQUARE-FULL PRIMITIVE ROOTS IN SHORT INTERVALS

Pinthira Tangsupphathawat, Teerapat Srichan and Vichian
Laohakosol

Abstract. Using the character sum method of Shapiro and the work
of Liu based on the exponent pair technique, an asymptotic formula for
the number of square-full primitive roots modulo a prime in short intervals
is obtained.

1. Introduction

Throughout, let p be an odd prime, let ε denote a fixed sufficiently small
positive constant, let φ(n) be the Euler’s totient function, let µ(n) be the
Möbius function, and let ω(n) denote the number of distinct prime divisors
of n ∈ N.

An integer n > 1 is called square-full, if in its prime factorization each
prime appears with exponent ≥ 2; the integer 1 is square-full by convention.
Let Q2(x) denote the number of square-full integers n ≤ x. The investigation
of the distribution of square-full integers was originated by Erdös and Szekeres
[6] who proved that

Q2(x) = ζ(3/2)
ζ(3) x1/2 +O(x1/3).(1.1)

Bateman and Grosswald [1] in 1958 improved upon (1.1) by showing that

Q2(x) = ζ(3/2)
ζ(3) x1/2 + ζ(2/3)

ζ(2) x1/3 +O
(
x1/6 exp(−C(log x)3/5(log log x)−1/5)

)
,

for some absolute constant C > 0. Any improvement on the exponent 1/6
would imply that ζ(s) 6= 0 for <(s) > σ (1/2 ≤ σ < 1). There are many other
works on the improvement of the error terms under the Riemann Hypothesis,
see e.g. [3], [4], [5], [9], [13], [16] and [17].

Concerning the distribution of square-full integers which are primitive
roots, Shapiro [12] proved that the number of square-full integers which are
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primitive roots modulo an odd prime p, and not exceeding x is equal to

φ(p− 1)
p− 1

(
cx1/2 +O(x1/3p1/6(log p)1/32ω(p−1))

)
,(1.2)

where the constant c = 2 (1− 1/p)
∑

(q|p)=−1 µ
2(q)/q3/2 with (q|p) being the

Legendre’s symbol. In [10], Liu and Zhang improved upon (1.2) with the
error term O(x1/4+εp9/44+ε) by using Perron’s formula. In 2018, Munsch and
Trudgian [11] further refined the result of Liu and Zhang by showing that
(1.2) can be replaced by

φ(p− 1)
p− 1

((
1 + 1

p
+ 1
p2

)−1
Cpx

1/2

ζ(3) +O(x1/3(log x)p1/9(log p)1/62ω(p−1))
)
,

(1.3)

where Cp � p−1/8
√
e. Recently, the second author [15] used the concept of

exponent pair (in the problem of exponential sum estimates) and the lemmas
used in the proof of Theorem 2.1 in [14], to improve the estimate (1.3) with
the following result: for a given odd prime p ≤ x1/5, the number of square-full
integers which are primitive roots mod p and ≤ x is equal to

φ(p− 1)
p

{(
L(3/2, χ0)− L(3/2, χ1)

L(3, χ0)

)
x1/2 +

(
L(2/3, χ0)− L(2/3, χ2

2)
L(2, χ0)

)
x1/3

}(1.4)

+O
(
x1/6φ(p− 1)3ω1,3(p−1)p1/2+ε) .

Here, χ0, χ1 6= χ0, χ2 6= χ0 denote, respectively, the principal, quadratic,
cubic characters mod p, L(s, χ) their corresponding Dirichlet L-functions,
and ω1,3(n) denotes the number of distinct primes q ≡ 1 (mod 3) which are
divisors of n.

Regarding the distribution of primitive roots in an interval, Burgess [2]
proved that in an interval [N,N+H] withH > p1/4+ε, the number of primitive
roots modulo p is

φ(p− 1)
p− 1 H

(
1 +O(p−δ)

)
,

where δ > 0 is a constant depending only on ε. In 2006, Zhai and Liu [18]
studied square-free primitive roots in an interval and proved the existence of
small square-free primitive roots.

It thus seems natural to search for some estimate on the number of square-
full integers which are primitive roots mod p in short intervals. We derive here
such an asymptotic estimate. Our main result reads:

Theorem 1.1. Let T2(n) be the characteristic function of the square-full
integers which are primitive roots modulo an odd prime p. For ε > 0 and θ
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in the range 14
107 + 2ε ≤ θ < 1

6 , we have∑
x<n≤x+x1/2+θ

T2(n) =(1.5)

φ(p− 1)
2p

(L(3/2, χ0)− L(3/2, χ1)
L(3, χ0)

)
xθ(1 +O(2ω(p−1)px−ε/4)),

where χ0 and χ1 denote the principal, respectively, quadratic characters mod
p with L(s, χ) being their corresponding Dirichlet L-functions.

Our approach combines two methods; one is due to Liu [8] based on the
exponent pair technique and the other is the formula for the characteristic
function of primitive roots mod p due to Shapiro [12]. Let us first recall the
notion exponent pair taken from [7, Chapter 2].

Definition 1.2. Let A ≥ 1, B ≥ 1, and suppose that, for all C in [B, 2B],∑
B≤n≤C≤2B

e2πif(n) = O(AκBλ)

for some pair (κ, λ) of real numbers satisfying 0 ≤ κ ≤ 1/2 ≤ λ ≤ 1, and for
any real function

f ∈ C∞[B, 2B]
satisfying, for all r ≥ 1 and for x ∈ [B, 2B]

AB1−r � |f (r)(x)| � AB1−r,

where the constants implied by � depend only on r. Then we call (κ, λ) an
exponent pair.

Lemma 1.3 ([8, Proposition 2]). For x ∈ R, let

ψ(x) = x− bxc − 1
2 ,

where bxc is the integer part, and for β ∈ R, β > 0, let

(1.6) R(x, β) =
∑
n≤xα

ψ
( x
nβ

)
, α = 1

β + 1 .

We have

R(x, β)� xτ(β)+ε.(1.7)

Here

τ(β) =
{

7
11(β+1) if 0 < β ≤ 1,
max(τ1(β), τ2(β)) if β > 1,
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with

τ1(β) = inf
(κ,λ)∈E

( 7(λ− κ)
22λ− (15β + 7)κ+ 7(β − 1)

)
,

τ2(β) = inf
(κ,λ)∈E

( 3λ+ κ

4λ+ (1− β)κ+ 3β + 1

)
,

where
E := E(β) = {(κ, λ)|(κ, λ) is an exponent pair such that λ ≥ βκ},

and the infima are taken over all exponent pairs belonging to E.

Lemma 1.4 ([12, Lemma 8.5.1]). For a given odd prime p, the character-
istic function of the primitive roots mod p is

φ(p− 1)
p− 1

∑
d|p−1

µ(d)
φ(d)

∑
χ∈Γd

χ(n) =
{

1 if n is a primitive root mod p
0 otherwise,

where Γd denotes the set of characters of the character group mod p that are
of order d.

2. Main results

Let our main character sum to be analyzed be

Q(x, χ) =
∑
n≤x

n square-full

χ(n).

Our first auxiliary result, whose proof proceeds along the line similar to [8,
Theorem 1], is:

Lemma 2.1. Let
• χ be a Dirichlet character modulo an odd prime p with χ0 and χ1 being
the principal and quadratic characters, respectively;

• L(s, χ) be the associated Dirichlet L-function;
• R(·, ·) be as defined in (1.6).

If σ ∈ R is such that for any ε > 0 and any y > 1, the following estimates
hold

R(y1/2, 3/2)� yσ+ε, R(y1/3, 2/3)� yσ+ε,(2.1)

then, for any number θ with σ + 2ε < θ < 1
6 , we have

Q(x+ x1/2+θ, χ0)−Q(x, χ0) = p− 1
2p · L(3/2, χ0)

L(3, χ0) xθ(1 +O(x−ε/2)),(2.2)

Q(x+ x1/2+θ, χ1)−Q(x, χ1) = p− 1
2p · L(3/2, χ1)

L(3, χ0) xθ(1 +O(x−ε/2)),(2.3)
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and for χ 6= χ0, χ1,

Q(x+ x1/2+θ, χ)−Q(x, χ) = O(p xθ−ε).(2.4)

Proof. For brevity, let B = xθ−ε and h = x1/2+θ. Since a square-full
integer has a unique representation in the form n = a2b3, where b is square-
free, we have

Q(x+ h, χ)−Q(x, χ) =(2.5) ∑
x<a2b3≤x+h

b≤B

|µ(b)|χ2(a)χ3(b) +
∑

x<a2b3≤x+h
b>B

|µ(b)|χ2(a)χ3(b).

First we bound the second sum in (2.5). We have∣∣∣∣∣∣∣∣
∑

x<a2b3≤x+h
b>B

|µ(b)|χ2(a)χ3(b)

∣∣∣∣∣∣∣∣ ≤
∑

x<a2b3≤x+h
b>B

1 = Σ1 + Σ2 ;

we split the sum into two subsums Σ1 and Σ2 corresponding to b ≤ (x+h)1/5

and b > (x + h)1/5; in Σ2 we have x + h ≥ a2b3 > a2(x + h)3/5 yielding
a < (x+ h)1/5. Thus

Σ1 =
∑

B<b≤(x+h)1/5

∑
(x/b3)1/2<a≤((x+h)/b3)1/2

1,

Σ2 =
∑

a<(x+h)1/5

∑
(x/a2)1/3<b≤((x+h)/a2)1/3

1.

As ∑
α<n≤β

1 = β − α+ ψ(α)− ψ(β),

(x+ h)1/2 − x1/2 = 1
2x

θ(1 +O(xθ−1/2))(2.6)

and

(x+ h)1/3 − x1/3 = 1
3x

θ−1/6(1 +O(xθ−1/2)),

we have

Σ1 =
∑

B<b≤(x+h)1/5

( (x+ h)1/2 − x1/2

b3/2
+ ψ

(x1/2

b3/2

)
− ψ

( (x+ h)1/2

b3/2

))
= R(x1/2, 3/2)−R((x+ h)1/2, 3/2) +O(xθ−ε),
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and

Σ2 =
∑

a<(x+h)1/5

( (x+ h)1/3 − x1/3

a2/3 + ψ
(x1/3

a2/3

)
− ψ

( (x+ h)1/3

a2/3

))
= R(x1/3, 2/3)−R((x+ h)1/3, 2/3) +O(xθ−ε).

From the assumption (2.1), we see that
Σ1 = O(xθ−ε), Σ2 = O(xθ−ε).(2.7)

Returning to the first term of (2.5), we write it as∑
x<a2b3≤x+x1/2+θ

b≤B

|µ(b)|χ2(a)χ3(b) =(2.8)

∑
b≤B

|µ(b)|χ3(b)
∑

(x/b3)1/2<a≤((x+h)/b3)1/2

χ2(a).

For the case of principal character χ0, the right hand side becomes∑
b≤B

|µ(b)|χ3
0(b)

∑
(x/b3)1/2<a≤((x+h)/b3)1/2

χ2
0(a)

=
∑
b≤B

|µ(b)|χ0(b)
∑

(x/b3)1/2<a≤((x+h)/b3)1/2

gcd(a,p)=1

1

=
∑
b≤B

|µ(b)|χ0(b)

 ∑
(x/b3)1/2<a≤((x+h)/b3)1/2

1−
∑

(x/b3)1/2<ap≤((x+h)/b3)1/2

1


=
∑
b≤B

|µ(b)|χ0(b)
(

(x+ h)1/2 − x1/2

b3/2
− (x+ h)1/2 − x1/2

pb3/2
+O(1)

)

= p− 1
p

((x+ h)1/2 − x1/2)
∑
b≤B

|µ(b)|χ0(b)
b3/2

+O(B).

Using (2.6), and∑
b≤B

|µ(b)|χ0(b)
b3/2

=
∞∑
b=1

|µ(b)|χ0(b)
b3/2

+O(B−1/2),
∞∑
b=1

|µ(b)|χ0(b)
b3/2

= L(3/2, χ0)
L(3, χ0) ,

we get

∑
b≤B

χ3
0(b)

∑
(x/b3)1/2<a≤((x+h)/b3)1/2

χ2
0(a) = p− 1

2p xθ
L(3/2, χ0)
L(3, χ0)

(
1 +O(x−ε/2)

)
.

(2.9)

The assertion (2.2) follows from (2.5), (2.7) and (2.9).
The estimate (2.3) is proved in a similar manner.
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Lastly, consider the case where χ 6∈ {χ0, χ1}. From the relation (2.8), we
have∑
b≤B

|µ(b)|χ3(b)
∑

(x/b3)1/2<a≤((x+h)/b3)1/2

χ2(a)

=
∑
b≤B

|µ(b)|χ3(b)

 ∑
a≤((x+h)/b3)1/2

χ2(a)−
∑

a≤(x/b3)1/2

χ2(a)



=
∑
b≤B

|µ(b)|χ3(b)

∑
j≤p

∑
a≤((x+h)/b3)1/2

a≡j mod p

χ2(a)−
∑
j≤p

∑
a≤(x/b3)1/2

a≡j mod p

χ2(a)



=
∑
b≤B

|µ(b)|χ3(b)

∑
j≤p

∑
a≤((x+h)/b3)1/2

a≡j mod p

χ2(j)−
∑
j≤p

∑
a≤(x/b3)1/2

a≡j mod p

χ2(j)



=
∑
j≤p

χ2(j)
∑
b≤B

|µ(b)|χ3(b)

 ∑
a≤((x+h)/b3)1/2

a≡j mod p

1−
∑

a≤(x/b3)1/2

a≡j mod p

1


=
∑
j≤p

χ2(j)
∑
b≤B

|µ(b)|χ3(b)
(⌊

(x+ h)1/2

pb3/2
− j

p
+ 1
⌋
−
⌊
x1/2

pb3/2
− j

p
+ 1
⌋)

=
∑
j≤p

χ2(j)
∑
b≤B

|µ(b)|χ3(b)
(
ψ

(
x1/2

pb3/2
− j

p

)
− ψ

(
(x+ h)1/2

pb3/2
− j

p

)

+(x+ h)1/2 − x1/2

pb3/2

)
=
∑
j≤p

χ2(j)
∑
b≤B

|µ(b)|χ3(b)
(
ψ

(
x1/2

pb3/2
− j

p

)
− ψ

(
(x+ h)1/2

pb3/2
− j

p

))
= O(pxθ−ε),

where the second last equality follows from the identity
∑
j≤p χ

2(j) = 0,
which holds when χ2 6= χ0 . From this bound, (2.5) and (2.7), the assertion
(2.4) follows.

Our second main auxiliary result is:

Lemma 2.2. If σ is a number such that for ε > 0,

R(y1/2, 3/2)� yσ+ε, R(y1/3, 2/3)� yσ+ε for all y > 1,
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then, for any number θ with σ + 2ε < θ < 1/6, we have∑
x<n≤x+x1/2+θ

T2(n) =(2.10)

φ(p− 1)
2p

(L(3/2, χ0)− L(3/2, χ1)
L(3, χ0)

)
xθ +O(2ω(p−1)p xθ−ε/2).

Proof. Since (Lemma 1.4) the characteristic function of the primitive
roots mod p is φ(p−1)

p−1
∑
d|p−1

µ(d)
φ(d)

∑
χ∈Γd χ(n), for t > 0, we see that∑

n≤t

T2(n) = φ(p− 1)
p− 1

∑
d|p−1

µ(d)
φ(d)

∑
χ∈Γd

Q(t, χ).

Separating out the first two values 1 and 2 of d, which correspond to the
characters χ0 and χ1, respectively, we get∑
x<n≤x+x1/2+θ

T2(n) = φ(p− 1)
p− 1

{
Q(x+ x1/2+θ, χ0)−Q(x, χ0)

−Q(x+ x1/2+θ, χ1) +Q(x, χ1)
}

+ φ(p− 1)
p− 1

∑
d|p−1
d>2

µ(d)
φ(d)

∑
χ∈Γd

(
Q(x+ x1/2+θ, χ)−Q(x, χ)

)
.

Using the estimates (2.2) and (2.3) in Lemma 2.1, the first portion on the
right hand side is equal to

φ(p− 1)
p− 1

p− 1
2p xθ

L(3/2, χ0)− L(3/2, χ1)
L(3, χ0)

(
1 +O(x−ε/2)

)
,

and using (2.4) in Lemma 2.1, the second portion is bounded by∣∣∣∣∣∣∣∣
∑
d|p−1
d>2

µ(d)
φ(d)

∑
χ∈Γd

(
Q(x+ x1/2+θ, χ)−Q(x, χ)

)∣∣∣∣∣∣∣∣� 2ω(p−1)pxθ−ε.

The assertion now follows after simple simplifications.

Proof of Theorem 1.1. We follow closely the arguments used in the
proof of [8, Theorem 2]. By Lemma 1.3, we have

R(y1/3, 2/3)� y7/55+ε.

Choosing the pair (2/7, 4/7) ∈ E(3/2), which, by [7, p. 77], is an exponent
pair, we get τ1(3/2) ≤ 28/107 and τ2(3/2) ≤ 28/107 yielding

R(y1/2, 3/2)� y14/107+ε.

Invoking upon Lemma 2.2 with σ = 14/107, Theorem 1.1 follows.
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Kvadratno puni primitivni korijeni u kratkim intervalima

Pinthira Tangsupphathawat, Teerapat Srichan i Vichian Laohakosol

Sažetak. Korištenjem Shapirove metode sume karaktera
te rad Liua zasnovan na tehnici parova eksponenata, dobivena je
asimptotska formula za broj kvadratno punih primitivnih korijena
po prostom modulu u kratkim intervalima.
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