SOME PROPERTIES OF THE EXTENDED ZERO-DIVISOR GRAPH OF THE RING OF GAUSSIAN INTEGERS MODULO n

Basem Alkhamaiseh

Abstract

Recently, Bennis and others studied an extension of the zero-divisor graph of a commutative ring R. They called this extension the extended zero-divisor graph of R, denoted by $\bar{\Gamma}(R)$. The graph $\bar{\Gamma}(R)$ has as set of vertices all the nonzero zero-divisors of $R, Z(R)^{*}$, and two distinct vertices x and y are adjacent if there are nonnegative integers n and m such that $x^{n} y^{m}=0$ with $x^{n} \neq 0$ and $y^{m} \neq 0$. In this paper, we study several properties of the extended zero-divisor graph of the ring of Gaussian integers modulo $n\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)$. We characterize the positive integers n such that $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)=\Gamma\left(\mathbb{Z}_{n}[i]\right)$. The diameter and girth, as well as the positive integers n such that $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is planar or outerplanar, are also determined.

1. Introduction

Throughout this paper, let R be a commutative ring with nonzero identity 1. Beck in [7] originated the concept of the zero-divisor graph by discussing the coloring of a commutative ring. In his graph, Beck used R as the set of vertices. In 1999, D.F. Anderson and Livingston in [5] modified the concept of the zero-divisor graph originated by Beck by restricting the set of vertices to the nonzero zero-divisors of R. They used the notation $\Gamma(R)$ to denote the zero-divisor graph of the ring R. The zero-divisor graph of a commutative ring has been the focus of several researchers [1-4, 6, 10].

Recently, Bennis et al. in [8] studied an extension of the zero-divisor graph of a commutative ring R. They called this extension the extended zerodivisor graph of R, denoted by $\bar{\Gamma}(R)$. The graph $\bar{\Gamma}(R)$ has as set of vertices all the nonzero zero-divisors of $R, Z(R)^{*}$, and two distinct vertices x and y are adjacent if there are nonnegative integers n and m such that $x^{n} y^{m}=0$ with $x^{n} \neq 0$ and $y^{m} \neq 0$. The extended zero-divisor graph has also been studied in [6]. Abu Osba et al. in $[1,2]$ have studied some properties of the zero-divisor

[^0]graph of the ring of Gaussian integers modulo $n, \Gamma\left(\mathbb{Z}_{n}[i]\right)$. Likewise in this paper, we will study some properties of the extended zero-divisor graph of the ring of Gaussian integers modulo $n, \bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$.

In this paper, the set of zero-divisors of R is denoted by $Z(R)$. Also, we denote the set of nilpotent elements of R by $\operatorname{Nil}(R)$. For any $x \in R$, the annihilator of x is $\operatorname{Ann}(x)=\{y \in R: x y=0\}$. For any set X that contains 0 , we use the notation X^{*} to exclude 0 from the set X. In graph theory, the notation $d(a, b)$ is used to express the distance between two distinct vertices a and b, where $d(a, b)$ is the length of a shortest path joining a and b if such a path exists, otherwise $d(a, b)=\infty$. The diameter of a graph G is $\operatorname{diam}(G)=\sup \{d(a, b): a$ and b are distinct vertices of $G\}$. The girth of a graph G, denoted by $\operatorname{gr}(G)$, is the length of a shortest circle in the graph G, if any. Otherwise, $\operatorname{gr}(G)=\infty$. For undefined notations and terminology in ring theory and graph theory, consult [14] and [12], respectively.

$$
\text { 2. WHEN IS } \bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)=\Gamma\left(\mathbb{Z}_{n}[i]\right) \text { ? }
$$

In this section, we characterize the positive integers n such that $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)=$ $\Gamma\left(\mathbb{Z}_{n}[i]\right)$.

First, we provide some results concerninig when $\bar{\Gamma}(R)=\Gamma(R)$ for a commutative ring R. One can find the following propositions in [8].

Proposition 2.1. Let R be a ring. Then $\bar{\Gamma}(R)=\Gamma(R)$ if and only if R satisfies the following conditions:

1. If $\operatorname{Nil}(R) \neq\{0\}$, then every nonzero nilpotent element has index 2 ,
2. For every $x \in Z(R) \backslash N i l(R), \operatorname{Ann}\left(x^{2}\right)=\operatorname{Ann}(x)$.

Proposition 2.2. Let R be a reduced ring. Then $\bar{\Gamma}(R)=\Gamma(R)$.
Proposition 2.3. Let $\left(R_{i}\right)_{1 \leq i \leq k}$ be a finite family of rings with $k \in$ $\mathbb{N} \backslash\{1\}$. Then $\bar{\Gamma}\left(\prod_{i=1}^{k} R_{i}\right)=\Gamma\left(\prod_{i=1}^{k} R_{i}\right)$ if and only if R_{i} is reduced for every $1 \leq i \leq k$.

Next, we use the previous propositions to characterize the positive integers n such that $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)=\Gamma\left(\mathbb{Z}_{n}[i]\right)$.

LEMMA 2.4. Let $n=2^{k}$.
(1) If $k=1$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)=\Gamma\left(\mathbb{Z}_{n}[i]\right)$.
(2) If $k \geq 2$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right) \neq \Gamma\left(\mathbb{Z}_{n}[i]\right)$.

Proof. In [2], the authors proved that $Z\left(\mathbb{Z}_{2^{k}}[i]\right)=\operatorname{Nil}\left(\mathbb{Z}_{2^{k}}[i]\right)=$ $\langle\overline{1}+\overline{1} i\rangle=\{\bar{a}+\bar{b} i: a$ and b are both odd or even $\}$. When $k=1$, $Z\left(\mathbb{Z}_{n}[i]\right)=\{\overline{0}, \overline{1}+\overline{1} i\}$. Then it is clear that $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)=\Gamma\left(\mathbb{Z}_{n}[i]\right)$, and this proves (1). For (2), since $k \geq 2,(\overline{1}+\overline{1} i)$ is a nonzero nilpotent element of index $4 \neq 2$. Hence by Proposition $2.1, \bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right) \neq \Gamma\left(\mathbb{Z}_{n}[i]\right)$.

Lemma 2.5. Let $n=q^{k}, q \equiv 3(\bmod 4)$.
(1) If $k \in\{1,2\}$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)=\Gamma\left(\mathbb{Z}_{n}[i]\right)$.
(2) If $k \geq 3$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right) \neq \Gamma\left(\mathbb{Z}_{n}[i]\right)$.

Proof. From [2], we see that $Z\left(\mathbb{Z}_{q^{k}}[i]\right)=\operatorname{Nil}\left(\mathbb{Z}_{q^{k}}[i]\right)=\langle\bar{q}\rangle$.
(1) For $k=1, \mathbb{Z}_{q}[i]$ is a field, so a reduced ring. Then by Proposition 2.2 $\bar{\Gamma}\left(\mathbb{Z}_{q}[i]\right)=\Gamma\left(\mathbb{Z}_{q}[i]\right)$. For $k=2$, it is clear that every nonzero nilpotent element has index 2 . Hence by Proposition 2.1, $\bar{\Gamma}\left(\mathbb{Z}_{q^{2}}[i]\right)=\Gamma\left(\mathbb{Z}_{q^{2}}[i]\right)$.
(2) For $k \geq 3, \bar{q}$ is a nonzero nilpotent element of index greater than 2. Hence by Proposition 2.1, $\bar{\Gamma}\left(\mathbb{Z}_{q^{k}}[i]\right) \neq \Gamma\left(\mathbb{Z}_{q k}[i]\right)$.

Lemma 2.6. Let $n=p^{k}, p \equiv 1(\bmod 4)$.
(1) If $k=1$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)=\Gamma\left(\mathbb{Z}_{n}[i]\right)$.
(2) If $k \geq 2$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right) \neq \Gamma\left(\mathbb{Z}_{n}[i]\right)$.

Proof. It was shown in [2] that

$$
\mathbb{Z}_{p^{k}}[i] \cong \mathbb{Z}[i] /\left\langle(a+b i)^{k}\right\rangle \times \mathbb{Z}[i] /\left\langle(a-b i)^{k}\right\rangle \cong \mathbb{Z}_{p^{k}} \times \mathbb{Z}_{p^{k}}
$$

where $p=(a+b i)(a-b i)$.
(1) If $k=1$, then $\mathbb{Z}_{p}[i] \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Hence by Proposition 2.3, $\bar{\Gamma}\left(\mathbb{Z}_{p}[i]\right)=$ $\Gamma\left(\mathbb{Z}_{p}[i]\right)$.
(2) For $k \geq 2, \mathbb{Z}_{p^{k}}[i] \cong \mathbb{Z}_{p^{k}} \times \mathbb{Z}_{p^{k}}$. Since $\mathbb{Z}_{p^{k}}$ is not a reduced ring for $k \geq 2$, we deduce from Proposition 2.3 that $\bar{\Gamma}\left(\mathbb{Z}_{p^{k}}[i]\right) \neq \Gamma\left(\mathbb{Z}_{p^{k}}[i]\right)$.

For a positive integer n, we can write its prime power factorization as $n=2^{k} \times \prod_{j=1}^{m} q_{j}^{\alpha_{j}} \times \prod_{s=1}^{l} p_{s}^{\beta s}$, where $q_{j} \equiv 3(\bmod 4)$ for $1 \leq j \leq m$, and $p_{s} \equiv 1$ $(\bmod 4)$ for $1 \leq s \leq l$. Recall that $\mathbb{Z}_{2^{k}}[i]$ is never reduced, and $\mathbb{Z}_{q^{k}}[i]$ and $\mathbb{Z}_{p^{k}}[i]$ are reduced only if $k=1$.

Therefore, we can use Proposition 2.3 to prove the following theorem.
TheOrem 2.7. Suppose that $n=2^{k} \times \prod_{j=1}^{m} q_{j}^{\alpha_{j}} \times \prod_{s=1}^{l} p_{s}^{\beta_{s}}$. Then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)=$ $\Gamma\left(\mathbb{Z}_{n}[i]\right)$ if and only if $n=\prod_{j=1}^{m} q_{j} \times \prod_{s=1}^{l} p_{s}$. That is, if $k \geq 1, \alpha_{j} \geq 2$ for some $1 \leq j \leq m$, or $\beta_{s} \geq 2$ for some $1 \leq s \leq l$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right) \neq \Gamma\left(\mathbb{Z}_{n}[i]\right)$.

3. DiAmeter of $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$

In this section, we find the diameter of the graph $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$.
We start with some results from [8] that are useful to prove the main results in this section.

Proposition 3.1. Let R be a ring. Then $\bar{\Gamma}(R)$ is connected with $\operatorname{diam}(\bar{\Gamma}(R)) \leq 3$.

Proposition 3.2. Let R be a ring. Then there is a vertex x of $\bar{\Gamma}(R)$ that is adjacent to every other vertex if and only if either $R \cong \mathbb{Z}_{2} \times D$, where D is an integral domain, or $Z(R)=\sqrt{\operatorname{Ann}\left(x^{n_{x}-1}\right)}$.

Proposition 3.3. Let R be a ring such that $\bar{\Gamma}(R) \neq \Gamma(R)$. Then $\bar{\Gamma}(R)$ is complete if and only if $Z(R)=\operatorname{Nil}(R)$ and $\bar{Z}(R)^{2}=\{0\}$, where $\bar{Z}(R)=$ $\left\{x^{n_{x}-1}: x \in N i l^{*}(R)\right\}$.

Proposition 3.4. Let R be a ring with $Z(R)=\operatorname{Nil}(R) \neq\{0\}$. Then $\operatorname{diam}(\bar{\Gamma}(R)) \leq 2$ and exactly one of the following three cases must occur.

1. $\left|Z(R)^{*}\right|=1$. Then R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[x] /\left\langle x^{2}\right\rangle$ and $\operatorname{diam}(\bar{\Gamma}(R))=0$.
2. $\left|Z(R)^{*}\right| \geq 2$ and $Z(R)^{2}=\{0\}$. Then $\bar{\Gamma}(R)$ is a complete graph and $\operatorname{diam}(\bar{\Gamma}(R))=1$.
3. $\left|Z(R)^{*}\right| \geq 2$ and $Z(R)^{2} \neq\{0\}$. If $\bar{Z}(R)^{2}=\{0\}$, then $\bar{\Gamma}(R)$ is a complete graph and $\operatorname{diam}(\bar{\Gamma}(R))=1$. If $\bar{Z}(R)^{2} \neq\{0\}$, then $\operatorname{diam}(\bar{\Gamma}(R))=2$.

Proposition 3.5. Let $R=\prod_{i=1}^{n} R_{i}$, where $\left(R_{i}\right)_{1 \leq i \leq n}$ is a finite family of rings with $n \in \mathbb{N} \backslash\{1\}$.
(1) For $n=2$, we have
(i) $\operatorname{diam}(\Gamma(R))=\operatorname{diam}(\bar{\Gamma}(R))=1$ if and only if $R_{1} \cong R_{2} \cong \mathbb{Z}_{2}$.
(ii) If R_{1} and R_{2} are integral domains with $\left|R_{1}\right| \geq 3$ or $\left|R_{2}\right| \geq 3$, then $\Gamma(R)=\bar{\Gamma}(R)$ and diam $(\Gamma(R))=2$. In this case $\Gamma(R)$ is a complete bipartite graph.
(iii) If at least one of R_{1} and R_{2} contains a nonnilpotent zero-divisor, then $\operatorname{diam}(\Gamma(R))=\operatorname{diam}(\bar{\Gamma}(R))=3$.
(iv) If at least one of R_{1} and R_{2} is not an integral domain such that all zero-divisors are nilpotent in each ring with nonzero zero-divisors, then $\operatorname{diam}(\Gamma(R))=3$ and $\operatorname{diam}(\bar{\Gamma}(R))=2$.
(2) For $n \geq 3, \operatorname{diam}(\Gamma(R))=\operatorname{diam}(\bar{\Gamma}(R))=3$.

An obvious relationship between $\bar{\Gamma}(R)$ and $\Gamma(R)$ is $\operatorname{diam}(\bar{\Gamma}(R)) \leq$ $\operatorname{diam}(\Gamma(R))$. It was shown in $[1,2]$ that $\Gamma\left(\mathbb{Z}_{2^{k}}[i]\right) \cong \Gamma\left(\mathbb{Z}_{2^{2 k}}\right)$. This result is also true over $\bar{\Gamma}$ (that is, $\bar{\Gamma}\left(\mathbb{Z}_{2^{k}}[i]\right) \cong \bar{\Gamma}\left(\mathbb{Z}_{2^{2 k}}\right)$). To prove this, we will use some results of [1] and the following theorem.

Theorem 3.6. Let $n=2^{k}$.
(1) If $k=1$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is a complete graph with only one vertex, so $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)=0$
(2) If $k \geq 2$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is a complete graph with $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)=1$.

The proof of part (1) of Theorem 3.6 is trivial. To prove part (2) we need the following lemma.

Lemma 3.7. If x is a zero-divisor of $\mathbb{Z}_{2^{k}}[i]$, then $x=(\overline{1}+i)^{m} \alpha$ for some positive integer m, and α is a unit element of $\mathbb{Z}_{2^{k}}[i]$. Moreover, x and $(\overline{1}+i)^{m}$ have the same nilpotency index.

Proof. From [2], $Z\left(\mathbb{Z}_{2^{k}}[i]\right)=\operatorname{Nil}\left(\mathbb{Z}_{2^{k}}[i]\right)=\langle\overline{1}+i\rangle$. Let $x \in Z\left(\mathbb{Z}_{2^{k}}[i]\right)$. If $x=\overline{0}$, then $x=(\overline{1}+i)^{2 k}$. Hence, suppose that $x \neq \overline{0}$. Thus, $x=(\overline{1}+i) \alpha_{1}$. If α_{1} is a unit, then we done while if α_{1} is a zero-divisor, then $\alpha_{1}=(\overline{1}+i) \alpha_{2}$. Similarily, If α_{2} is unit, then we done while if α_{2} is a zero-divisor, then we can continue in the same manner until we collect all zero-divisors that appeared and put them in a set $S=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{n}\right\}$. It is clear that S is a finite set and $\alpha_{s} \neq \alpha_{t}$ for any distinct $s, t \in\{1,2, \ldots, n\}$. To prove this, let $\alpha_{s}=\alpha_{t}$, for $s<t$. Then $(\overline{1}+i)^{s} \alpha_{s}=x=(\overline{1}+i)^{t} \alpha_{t}$. So, $(\overline{1}+i)^{t} \alpha_{t}\left(\overline{1}-(\overline{1}+i)^{t-s}\right)=\overline{0}$. But $\left(\overline{1}-(\overline{1}+i)^{t-s}\right)$ is a unit since $(\overline{1}+i)^{t-s}$ is nilpotent. Hence, $x=(\overline{1}+i)^{t} \alpha_{t}=\overline{0}$, which is a contradiction. So, $\alpha_{n}=(\overline{1}+i)^{n} \alpha_{n+1}$ and $\alpha_{n+1} \notin S$ (that is, α_{n+1} is a unit). Therefore, $x=(\overline{1}+i)^{n+1} \alpha_{n+1}$ as required. Note that x and $(\overline{1}+i)^{n+1}$ have the same nilpotency index.

Now, we are ready to prove part (2) of Theorem 3.6.
Proof. In [2], it was shown that $\operatorname{diam}\left(\Gamma\left(\mathbb{Z}_{2^{k}}[i]\right)\right)=2$. Therefore, $\left(Z\left(\mathbb{Z}_{2^{k}}[i]\right)\right)^{2} \neq\{0\}$. Let x, y be nonzero nilpotent elements of $\mathbb{Z}_{2^{k}}[i]$, that is, $x=(\overline{1}+i)^{m_{1}} \alpha, y=(\overline{1}+i)^{m_{2}} \beta$, for some $\alpha, \beta \in U\left(\mathbb{Z}_{2^{k}}[i]\right)$. Without loss of generality we can assume that $m_{1} \geq m_{2}$. Hence, $\left(n_{x}-1\right) m_{1}+\left(n_{y}-1\right) m_{2} \geq$ $m_{1}+\left(n_{y}-1\right) m_{2} \geq n_{y} m_{2}$. Since y and $(\overline{1}+i)^{m_{2}}$ have the same nilpotency index n_{y}, then we have

$$
\begin{aligned}
x^{n_{x}-1} y^{n_{y}-1} & =(\overline{1}+i)^{\left(n_{x}-1\right) m_{1}+\left(n_{y}-1\right) m_{2}} \alpha^{n_{x}-1} \beta^{n_{y}-1} \\
& =\overline{0}
\end{aligned}
$$

Thus, $\left(\bar{Z}\left(\mathbb{Z}_{2^{k}}[i]\right)\right)^{2}=\{0\}$. So, from Proposition $3.4, \bar{\Gamma}\left(\mathbb{Z}_{2^{k}}[i]\right)$ is a complete graph with $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{2^{k}}[i]\right)\right)=1$.

To find the diameter of $\bar{\Gamma}\left(\mathbb{Z}_{q^{k}}[i]\right)$, one can use the result, $Z\left(\mathbb{Z}_{q^{k}}[i]\right)=$ $\operatorname{Nil}\left(\mathbb{Z}_{q^{k}}[i]\right)=\langle\bar{q}\rangle$, that appears in [2], and the following lemma (we omit the proof of this lemma, since its proof is analogous to that in Lemma 3.7).

LEMMA 3.8. If x is a zero-divisor of $\mathbb{Z}_{q^{k}}[i]$, then $x=q^{m} \alpha$ for some positive integer m, and α is a unit element of $\mathbb{Z}_{q^{k}}[i]$.

Theorem 3.9. Let $n=q^{k}$, where $q \equiv 3(\bmod 4)$.
(1) If $k=1$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is the null graph.
(2) If $k=2$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)=\Gamma\left(\mathbb{Z}_{n}[i]\right)$ is a complete graph. So, $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)=1$
(3) If $k \geq 3$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is a complete graph with $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)=1$.

Proof. (1) Because $\mathbb{Z}_{q}[i] \cong \frac{\mathbb{Z}_{q}[x]}{\left\langle x^{2}+1\right\rangle}$ which is a field, $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is the null graph.
(2) From Lemma 2.5, $\bar{\Gamma}\left(\mathbb{Z}_{q^{2}}[i]\right)=\Gamma\left(\mathbb{Z}_{q^{2}}[i]\right)$. But in $[2], \Gamma\left(\mathbb{Z}_{q^{2}}[i]\right)$ is a $\operatorname{complete}$ graph. Hence, $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)=1$.
(3) The proof is similar to the proof of part (2) of Theorem 3.6.

From [11], $\mathbb{Z}_{p^{k}}[i] \cong \mathbb{Z}_{p^{k}} \times \mathbb{Z}_{p^{k}}$. Hence, we have
ThEOREM 3.10. Let $n=p^{k}$, where $p \equiv 1(\bmod 4)$.
(1) If $k=1$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is a complete bipartite graph with diam $\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)$ $=2$.
(2) If $k \geq 2$, then $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)=2$.

Proof. Apply Proposition 3.5.
For the general case. Consider the prime power factorization of n as $n=2^{k} \times \prod_{j=1}^{m} q_{j}^{\alpha_{j}} \times \prod_{s=1}^{l} p_{s}^{\beta_{s}}$, where $q_{j} \equiv 3(\bmod 4)$ for all $1 \leq j \leq m$, and $p_{s} \equiv 1$ $(\bmod 4)$ for all $1 \leq s \leq l$. From Proposition 3.5, Theorem 3.6, Theorem 3.9, and Theorem 3.10 we deduce the theorem

Theorem 3.11. Let $n=2^{k} \times \prod_{j=1}^{m} q_{j}^{\alpha_{j}} \times \prod_{i=1}^{l} p_{s}^{\beta_{s}}$, where $q_{j} \equiv 3(\bmod 4)$ for all $1 \leq j \leq m$, and $p_{s} \equiv 1(\bmod 4)$ for all $1 \leq s \leq l$.
(1) $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)=3$, if
(i) $l \geq 2$, or
(ii) $l=1$, and either $k=0$ or $m=0$, but not both, or
(iii) $l=0, k \geq 1$, and $m \geq 2$, or
(iv) $l=0, k=0$, and $m \geq 3$.
(2) $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)=2$, if
(i) $l=1, k=0$, and $m=0$, or
(ii) $l=0, k \geq 1$, and $m=1$, or
(iii) $l=0, k=0$, and $m=2$.
(3) $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)=1$, if
(i) $l=0, k=0, m=1$, and $\alpha_{j} \geq 2$, or
(ii) $l=0, k \geq 2$, and $m=0$.
(4) $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)=0$, if $l=0, k=1$, and $m=0$.
(5) $\operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)$ is not defined if $l=0, k=0, m=1$, and $\alpha_{j}=1$.

4. Girth of $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$

In this section, we study the girth of $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$. First, we introduce some propositions from [8] concerning $\operatorname{gr}(\bar{\Gamma}(R))$.

Proposition 4.1. $\operatorname{gr}(\bar{\Gamma}(R)) \leq \operatorname{gr}(\Gamma(R)) \in\{3,4, \infty\}$. If $\bar{\Gamma}(R) \neq \Gamma(R)$, then $\bar{\Gamma}(R)$ contains a cycle with $\operatorname{gr}(\bar{\Gamma}(R)) \in\{3,4\}$.

Proposition 4.2. Let $R=\prod_{i=1}^{n} R_{i}$, where $\left(R_{i}\right)_{1 \leq i \leq n}$ is a finite family of rings with $n \in \mathbb{N} \backslash\{1\}$.
(1) For $n=2$, the following hold
(i) $\operatorname{gr}(\Gamma(R))=\operatorname{gr}(\bar{\Gamma}(R))=\infty$ if and only if R_{1} and R_{2} are integral domains and at least one is isomorphic to \mathbb{Z}_{2}.
(ii) If R_{1} and R_{2} are integral domains with $\left|R_{1}\right| \geq 3$ or $\left|R_{2}\right| \geq 3$, then $\Gamma(R)=\bar{\Gamma}(R)$ and $\operatorname{gr}(\Gamma(R))=4$.
(iii) If at least one of R_{1} and R_{2} is not an integral domain, then $\operatorname{gr}(\Gamma(R))=$ $\operatorname{gr}(\bar{\Gamma}(R))=3$.
(2) For $n \geq 3$, $\operatorname{gr}(\Gamma(R))=\operatorname{gr}(\bar{\Gamma}(R))=3$.

A reader of [2] can deduce the following proposition.
Proposition 4.3. For a positive integer $n \in \mathbb{N}$, the following statements are true:

1. If $n \neq 2, q, p, q_{1} \times q_{2}, 2 \times q$, then $\operatorname{gr}\left(\Gamma\left(\mathbb{Z}_{n}[i]\right)\right)=3$.
2. $\operatorname{gr}\left(\Gamma\left(\mathbb{Z}_{p}[i]\right)\right)=\operatorname{gr}\left(\Gamma\left(\mathbb{Z}_{q_{1} \times q_{2}}[i]\right)\right)=\operatorname{gr}\left(\Gamma\left(\mathbb{Z}_{2 \times q}[i]\right)\right)=4$.
3. $\operatorname{gr}\left(\Gamma\left(\mathbb{Z}_{2}[i]\right)\right)=\infty$.
4. $\operatorname{gr}\left(\Gamma\left(\mathbb{Z}_{q}[i]\right)\right)$ is not defined.

The following theorem characterizes the girth of $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$.
TheOrem 4.4. For a positive integer $n \in \mathbb{N}$, the following statements are true:

1. If $n \notin\left\{2, q, p, q_{1} \times q_{2}\right\}$, then $\operatorname{gr}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)=3$.
2. $\operatorname{gr}\left(\bar{\Gamma}\left(\mathbb{Z}_{p}[i]\right)\right)=\operatorname{gr}\left(\bar{\Gamma}\left(\mathbb{Z}_{q_{1} \times q_{2}}[i]\right)\right)=4$.
3. $\operatorname{gr}\left(\bar{\Gamma}\left(\mathbb{Z}_{2}[i]\right)\right)=\infty$.
4. $\operatorname{gr}\left(\bar{\Gamma}\left(\mathbb{Z}_{q}[i]\right)\right)$ is not defined.

Proof. From Proposition 4.1 and Proposition 4.3, it is enough to prove $\operatorname{gr}\left(\bar{\Gamma}\left(\mathbb{Z}_{2 \times q}[i]\right)\right)=3$ and $\operatorname{gr}\left(\bar{\Gamma}\left(\mathbb{Z}_{p}[i]\right)\right)=\operatorname{gr}\left(\bar{\Gamma}\left(\mathbb{Z}_{q_{1} \times q_{2}}[i]\right)\right)=4$. We can do that based on Proposition 4.2 and the facts $\mathbb{Z}_{2 \times q}[i] \cong \mathbb{Z}_{2}[i] \times \mathbb{Z}_{q}[i], \mathbb{Z}_{q_{1} \times q_{2}}[i] \cong$ $\mathbb{Z}_{q_{1}}[i] \times \mathbb{Z}_{q_{2}}[i]$, and $\mathbb{Z}_{p}[i] \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
5. When is $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ COMPlete, COMPLETE Bipartite, or Bipartite ?

In this section, we study when is $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ complete, complete bipartite, or bipartite

THEOREM 5.1. The graph $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is complete if and only if $n=2^{k}$ for $1 \leq k$ or $n=q^{k}$ for $2 \leq k$.

Proof. From Theorem 3.6 and Theorem 3.9, if $n=2^{k}$ for $1 \leq k$ or $n=q^{k}$ for $2 \leq k$, then $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is a complete graph. To prove the other direction, suppose that $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is a complete graph with $n \neq 2^{k}$ for $1 \leq k$
and $n \neq q^{k}$ for $2 \leq k$. Then by Theorem $3.11 \operatorname{diam}\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right) \neq 1$, which is a contradiction.

THEOREM 5.2. The graph $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is complete bipartite if and only if $n=p$ or $n=q_{1} q_{2}$.

Proof. In [2], the authors proved that $\Gamma\left(\mathbb{Z}_{n}[i]\right)$ is complete bipartite if and only if $n=p$ or $n=q_{1} q_{2}$. Thus, if $n=p$ or $n=q_{1} q_{2}$, then from Theorem 2.7, $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is a complete bipartite graph. The other direction can be proved by contradiction. Let $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ be a complete bipartite graph with $n \neq p$ and $n \neq q_{1} q_{2}$. Then from Theorem 4.4 we deduce a contradiction. Because any complete bipartite graph is of girth 4 , the possible values of n is $n=p$ or $n=q_{1} q_{2}$.

To answer the question "when is $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ bipartite?", the following proposition from [12, Proposition 1.6.1] will be used.

Proposition 5.3. A graph is bipartite if and only if contains no odd cycle.

THEOREM 5.4. The graph $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is bipartite if and only if $n=p$ or $n=q_{1} q_{2}$.

Proof. Suppose that $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is bipartite graph with $n \neq p$ or $n \neq q_{1} q_{2}$. Then the result is obtained directly using Theorem 4.4 and Proposition 5.3. the other direction is obtained from Theorem 5.2.

6. When is $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ PLANAR OR OUTERPLANAR?

A graph G is called planar if it can be embedded in the plane. A planar graph G is called outerplanar if it can be embedded in the plane such that all vertices of G lie on the same exterior face. In this section, we discuss and characterize the planarity and the outerplanarity of the graph $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$.

The following propositions are attributed respectively to Kuratowski [15] and Chartrand and Harary [9,13]. These propositions are very important to characterize planar and outerplanar graphs.

Proposition 6.1. A graph G is planar if and only if it does not have a subgraph homeomorphic to the graphs K_{5} or $K_{3,3}$.

Proposition 6.2. A graph G is outerplanar if and only if it does not have a subgraph homeomorphic to the graphs K_{4} or $K_{2,3}$, except $K_{4}-x$, where x denotes an edge of K_{4}.

The graph $\Gamma(R)$ is a subgraph of the graph $\bar{\Gamma}(R)$. Since the graphs $\Gamma(R)$ and $\bar{\Gamma}(R)$ share the same set of vertices and the graph $\bar{\Gamma}(R)$ is produced by adding some edges to the graph $\Gamma(R)$, one can deduce the following lemma.

Lemma 6.3. Let R be a ring. Then $\Gamma(R)$ is planar if $\bar{\Gamma}(R)$ is planar.

We now consider an example in which the converse of Lemma 6.3 is not true.

Example 6.4. It was shown in [2] that $\Gamma\left(\mathbb{Z}_{4}[i]\right)$ is planar, but we proved earlier in Theorem 3.6 that $\bar{\Gamma}\left(\mathbb{Z}_{4}[i]\right)$ is a complete graph with 7 vertices. Hence, $\bar{\Gamma}\left(\mathbb{Z}_{4}[i]\right)$ has a subgraph homeomorphic to K_{5}. From Proposition 6.1, $\bar{\Gamma}\left(\mathbb{Z}_{4}[i]\right)$ is not planar.

To characterize when is $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ planar or outerplanar, one can use the following result from [2, Theorem 22].

Proposition 6.5. $\Gamma\left(\mathbb{Z}_{n}[i]\right)$ is planar if and only if n is either 2 or 4.
From Example 6.4 and Proposition 6.5 one can obtain the following theorem.

THEOREM 6.6. The following statements are equivalent for the graph $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$:

1. $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is planar.
2. $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ is outerplanar.
3. $n=2$.

Acknowledgements.

The author would like to thank the referee for the useful and constructive comments, which substantially helped improving the quality of the paper.

References

[1] E. Abu Osba, S. Al-Addasi and B. Al-Khamaiseh, Some properties of the zero-divisor graph for the ring of Gaussian integers modulo n, Glasg. Math. J. 53 (2011), 391-399.
[2] E. Abu Osba, S. Al-Addasi and N. Jaradeh, Zero divisor graph for the ring of Gaussian integers modulo n, Comm. Algebra 36 (2008), 3865-3877.
[3] D. F. Anderson, On the diameter and girth of a zero divisor graph II, Houston J. Math. 34 (2008), 361-371.
[4] D. F. Anderson, M. C. Axtel, and J. A. Stickles, Zero-divisor graphs in commutative rings, in: Commutative Algebra - Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York, 2011, pp. 23-45.
[5] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 3073-3093.
[6] D. F. Anderson and G. McClurkin, Generalizations of the zero-divisor graph, Int. Electron. J. Algebra 27 (2020), 237-262.
[7] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
[8] D. Bennis, J. Mikram and F. Taraza, On the extended zero divisor graph of commutative rings, Turkish J. Math. 40 (2016), 376-388.
[9] G. Chartrand and F. Harary, Planar permutation graphs, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 433-438.
[10] H.-J. Chiang-Hsieh, N. O. Smith and H.-J. Wang, Commutative rings with toroidal zero-divisor graphs, Houston J. Math. 36 (2010), 1-31.
[11] G. Dresden and W. M. Dymàček, Finding factors of factor rings over the Gaussian integers, Amer. Math. Monthly 112 (2005), 602-611.
[12] R. Diestel, Graph Theory, 4th edn., Springer-Verlag, Heidelberg, 2010.
[13] F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969.
[14] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1988.
[15] C. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), 271-283.

Neka svojstva proširenog grafa djelitelja nule u prstenu Gaussovih cijelih brojeva modulo n

Basem Alkhamaiseh

SAžEtak. Nedavno su Bennis i drugi autori proučavali proširenje grafa djelitelja nule u komutativnom prstenu R. To proširenje su nazvali prošireni graf djelitelja nule u R, i označili s $\bar{\Gamma}(R)$. Graf $\bar{\Gamma}(R)$ ima za vrhove sve djelitelje nule, u oznaci $Z(R)^{*}$, u R, a dva različita vrha x i y su susjedna ako postoje nenegativni cijeli brojevi n i m takvi da je $x^{n} y^{m}=0$, gdje je $x^{n} \neq 0$ i $y^{m} \neq 0$. U ovom članku proučavaju se svojstva proširenog grafa djelitelja nule u prstenu Gaussovih cijelih brojeva modulo $n\left(\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)\right)$. Karakteriziraju se prirodni brojevi n takvi da je $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)=\Gamma\left(\mathbb{Z}_{n}[i]\right)$. Također su određeni dijametar i struk, te prirodni brojevi n takvi da je $\bar{\Gamma}\left(\mathbb{Z}_{n}[i]\right)$ planaran.

Basem Alkhamaiseh
Department of Mathematics
Yarmouk university
Irbid, Jordan
E-mail: basem.m@yu.edu.jo
Received: 11.3.2020.
Revised: 3.7.2020.; 28.7.2020.
Accepted: 15.9.2020.

[^0]: 2020 Mathematics Subject Classification. Primary 13A99, 13B99; Secondary 05C25.
 Key words and phrases. Ring of Gaussian integers modulo n, extended zero-divisor graph, diameter and girth, planar graph.

