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COMBINATORIAL EXTENSIONS OF POPOVICIU’S
INEQUALITY VIA ABEL-GONTSCHAROFF POLYNOMIAL
WITH APPLICATIONS IN INFORMATION THEORY

SAAD IHSAN BUTT, TAHIR RASHEED, DIiLDA PECARIC AND JOSIP
PECARIC

ABSTRACT. We establish new refinements and improvements of
Popoviciu’s inequality for n-convex functions using Abel-Gontscharoff in-
terpolating polynomial along with the aid of new Green functions. We
construct new inequalities for n-convex functions and compute new upper
bounds for Ostrowski and Griiss type inequalities. As an application of our
work in information theory, we give new estimations for Shannon, Relative
and Zipf-Mandelbrot entropies using generalized Popoviciu’s inequality.

1. INTRODUCTION AND PRELIMINARY RESULTS

Popoviciu result has received a great deal of attention and many improve-
ments and extensions have been obtained. Two easy extensions of Popoviciu’s
inequality that escaped unnoticed refer to the case of convex functions with
values in a Banach lattice and that of semiconvex functions (i.e., of the func-
tions that become convex after the addition of a suitable smooth function).
Popoviciu’s inequality has widely studied and many refinements and exten-
sions have been obtained.

In 1965, T. Popoviciu [27] gives the following characterization of convex
function:

THEOREM 1.1. Letn > 3 and k is a positive integers where 2 < k <n—1.
Suppose X is continuous on I, then \ is convez iff

(L.1)
3 Zx% k(Z‘ )( _1ZA +m% w)

1<i1<...<ix<n
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holds for all ©1,2x9, -z, € I.

THEOREM 1.2 ([25]). Let A : [B1,82] — R be convex. Then for each
x,Yy, 2z € [B1, B2] and all p,q,r > 0, it holds

(1.2)
1;+q+T)/\<IW) - (Q+r)x\<qy+m> - (r+p)A(T2+px)

ptq+r q+tr T+p

= A (P @)+ ads) 4 7A) 20,
p+q

An axiom of convex function which was proved by T. Popoviciu in [27] is
widely studied these days (see [25] and references with in). In 2016, M. V. Mi-
hai introduced new extensions of Popoviciu’s inequality (see [19]). In 2010,
M. Bencze et al. in [2] gave Popoviciu’s inequality for functions of several
variables. C. P. Niculescu in 2009 gave the integral version of Popoviciu’s in-
equality (see [21]). In 2006, C. P. Niculescu also gave refinement of Popoviciu’s
inequality in [22].

This form of Popoviciu’s inequality was given by Vasi¢ and Stankovié (see
[25, page 173]):

THEOREM 1.3. Let m,k € N, m > 3, 2 < k < m—1, [81,02] C R,
X = (&1, .00y Tm) € [B1, B2]™, a = (q1, ..., Gm) be positive m-tuple in such a way

that > q; = 1. Also let X : [81,52]) = R . Then
i=1

k
> €%,

k
i w2

k-1 1<ij<..<ig<m \j=1 Z g
=1
m—k w— E—1_
—— ;%/\(Jﬁi) + m)\(; qii)
or
m m — m m
(1.4) Pl (asA) < —— PlM(asA) + 7P (@5 ),
where
k
1 k Z qijxij
m m j=1
P (a; A) = P (a; M) = om1 Z ai; | A Jki
k=1 1<ij<..<ip<m \j=1 Z @,

is linear w.r.t. A.
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For two point right focal problem, the Abel-Gontscharoff theorem (see
[1]) is given as

THEOREM 1.4. Letn,s €N, n>2 0<s<n-—2and f e C"([p1,s]).
Then

~ (z—p)"

u!

£ (B1)

-2 v (x — 51)s+1+u(51 _ 52)v—u (s "
i r [Z (s+14u)(v—u)! }f D (8,)

B2
+/ AG () (z,w) ™) (w)dw,
where AG (ny(x,w) is defined by
(1.6) AG(n)(m,w) =

(e e et s
u=0

(=1 Z (nul)uﬂl)“(ﬂlw)"“v rEws

u=s+1

Further, for 5, < w, = < (3 the following inequalities hold
A

0" AG () (z,w) -0

Oz -7

p— 8“AG(H) (.’L‘, w)
(1.8) (-1) g

As a special choice for “two-point right focal” the Abel-Gontscharoff polyno-
mial is given as:

(1.7) (—1)nst 0<u<s,

>0, s+1<u<n—1.

B2

(1.9) Ax) = A(B1) + (& — B)N (Ba) + /AG(Z)(JU’ W)\ (w)dw,
B1

where

(1.10) Gi(z,w) = AG(z)(w, w) = { Egi _ 7dxu){’ glggww;ﬁ?

In [18], authors gave the following new types of Green functions G4 :
[B1, B2] X [B1,52] — R, (d = 2,3,4,) considering Abel-Gontscharoff Green
function for ’ two-point right focal problem’:

(1.11) Go(z,w) = { Efv:ﬂﬁz))’, flggwwggﬁj?
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e (GR) RATE

(1.13) Gz, w) = { Egz : Z:)),’ flggwwggﬁjf

The Green functions Gy, (d =1,2,3,4) are symmetric and continuous. More-
over, with respect to both the variables x and w, all the functions are convex.
In the following lemma, they introduced new identities by using new Green
functions:

LEMMA 1.5 ([18]). Let X : [f1,082] — R be twice differentiable, G4 (d =
1,2,3,4) represents the new Green functions defined above. Then along with
(1.9), the following identities hold:

B2
(1.14) A(z) = A(B2) + (B2 — )X (B) + / G, w)” (w)duw,
B1
B2
(115) A@) = A(Ba) — (Ba—Bu)X (B2) + (e — BN (Br) + / G, w)\' (w)dw,
B1
B2
(116) A@) = A(B)+(Ba— BN (B1) — (Ba—)N (Ba) + / Gale, W)\ (w)dw.
B1

The known Cebysev functional given for Fy,Fy : [31, f2] — R as
B2 B2 B2

1 1 1
C(Fq,Fy) = /IF F d—i/F d€. /IF dg,
(1) = > [ @R~ 5— [Fi@de 5= [Fa(oic
B1 B1 B1
is extremely helpful to construct some new upper bounds.
Cerone and Dragomir in [6] utilized Cebysev functional to established the

following inequalities of Griiss and Ostrowski type:

THEOREM 1.6. Let Fy € L[B1, 2] and Fo : [B1, 52] — R be absolutely
continuous with (. — B1)(B2 — .)[F4)? € L[B1, B2). Then, inequality

(117) [CfF )| < [M} : (7@ — B1)(Ba - x)[wg<z>12dx)é7

1

holds with == be most appropriate constant.

V2
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THEOREM 1.7. Let Fy : [81, f2] = R be absolutely continuous function for
Fi € Loo[B1, B2] , Fa : [B1, B2] = R is nondecreasing and monotonic. Then

B2
/Yw—ﬂan—mﬂ&@x

B1

||F4]oo
(1.18) |C(F,IFy)| < m

is valid, where % is the best possible constant.

In this paper we will formulate new refinements and generalizations of
Popoviciu’s inequality for n-convex functions using Abel-Gontscharoff inter-
polating polynomial and compute new upper bounds for Ostrowski and Griiss
type inequalities. We will also give new upper bounds for Shannon, relative
and Zipf-Mandelbrot entropies.

2. NEW GENERALIZATIONS OF POPOVICIU’S INEQUALITY

Before giving our main results, we consider the following assumptions:

Ay X : |1, B2] — R such that A € C™([B1, B2])
Az mkeN,m=32<k<m—1x€|[B,B"
k
Zqijmij
As Forany 1 <ij < ... < iy <m, =0—— € [y, Ba].

qi,;

j=

1
Ay For any f € AC([81,52]) = f : [P1, 52] — R that is absolutely continu-
ous.

k
THEOREM 2.1. Consider the assumptions Ay, Az, A3 and ) q;; # 0 for
j=1

any 1 <iy <..<ipr <mand ) g =1. Also forn >4, let AG (-, w) and
i=1
Ga(,w) (d=1,2,3,4) be defined in (1.6) and (1.10)—~(1.13). If X\ is n-convex
function and
m—k k-1
2.1 — P"(q; — P (q; — P (q; >
( ) (m 1 (qud)+m_1 m(and) k(qud)>—O
holds, provided that (n = even, s = odd) or (n = odd, s = even), then

m ok k-1 ~ A (5)
. __ pm . T pm . _ m . > A WML
(22) —— Pl (@A) + —— P A) = B (@ A) 7u§:0: X
7 m—k k-1
m — m — m " N
/ (m_ PP (@Ga) + S P (@ Ga) = P (a; Gd)>(w — B1)"dw
B1
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n—s—2 v )\(5+1+u)(ﬂ2)(51_52)v7u
* Z L:o (s+14u)(v—u)! }X

v=0
/ k k—1
m — m _ . n ) )
/ (m—lpl (q; Gd) + mpm (q; Gd) — Pk (q; Gd)) (w _ /31) 14 dw,
B1
where

(23) F"(a;Ga) = B (q; Ga(, w)) :=

k
1 k qi; T
j=1
W Z qi; Ga Y W,
k=1 1<ij<..<ix<m \j=1 > qi,
=1
for the function Gg : [B1,P2] X [B1,02] = R and 2 <k <m.
PROOF. For fixed d = 4, using (1.4) in (1.16) , we get
m—k k—1
2.4) —P™(q; A —— P (q; \) — P (q; A
( ) m— 1 1(q7)+m_1 m(qv) k(qv)
7 k k-1
m— m _ m m "
= / (,’n_lpl (a;Ga) + e (q; G4) — P (a; G4))/\ (w)dw.
B1

Applying “two-point right focal” Abel-Gontscharoff polynomial for A", we get

S

(2.5) N'(z) = Z w/\(u+2) (B1)

u=0

" [Se (= BT — By) (s+3+v)
' vz:;) LZ_% (s+14+u)!(v—u)! ])‘ ) ()

B2
- / AG 9y (z, w)A™ (w)dw.

Now, using (2.5) in (2.4), we get the generalized Popoviciu identity in-
volving “two-point right focal” Abel-Gontscharoff polynomial

m—k .. k-1 _.. - A2 ()
(2.6) mﬂ (q,)\)+mpm(q7)\)—Pk (Q»A)—Zi

u!
u=0

B2
m—k_ . k-1 _,. m u
X/<m_1pl (@;Ga) + —— Pri(a5 Ga) — Py (Q;G4)) (w = Br)"dw
B1
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n—s—2 v )\(3+1+u)(52)(51_52)v7u
+ Z { (s+14+u)(v—u)! }

v=0 u=0
7 k k-1
m— m B m m s u
X / (m—lPl (q;Ga) + um (q; G4) — P*(q; G4)> (w— B1) T dw
B1
B2 B2 k; K1
m— m B m m
+// (m 10 (a; Ga) + ml’m(q;@) - B (Q§G4)>
B1 B

X AG(n_g) (w,t))\”(t)dwdt.
Now from (1.7), we get (—1)""5"3AG (,,_9)(w,t) > 0. Hence utilizing our

assumptions (n = even, s = odd) or (n = odd, s = even), we get
AG (—2y(w,t) > 0. Now applying n-covexity of the function A\ and using
(2.1), we get (2.2). We can treat d = 1,2, 3 analogously. |

Now we relax the conditions on the weights to be positive and give gen-
eralization of Popoviciu’s inequality for n-convex functions.

COROLLARY 2.2. If the conditions of Theorem 2.1 are satisfied with ad-
m
ditional conditions that qi, ..., qm s a nonnegative tuple such that > q; =1,

i=1
then for X\ : [B1, B2] — R being n-convex, we obtain the following results:

(a) For (n = even, s = odd) or (n = odd, s = even) (2.2) holds.
(b) For

CLUEDY %W) (B1)

u=0

n—s—4 v
(w— Br)* (B — Bo)V ™ (s43+v)
i ;) LZ_; (s+1+u)(v—u)! AETE (By) > 0,

the right side of (2.2) is non negative, particularly

m—k k—1
) m  Mpemy . A = L TP _ pmy. > 0.

PROOF.

(a) We have assumed positive weights and Gg4(-,w), (d = 1,2,3,4) are
convex. Thus by applying Popoviciu’s inequality for convex function
Ga(-,w), (d =1,2,3,4), (2.1) is established. Since A is n-convex, so
by using Theorem 2.1, we get (2.2).

(b) Now taking into account the positivity of (2.7) and Popoviciu’s in-
equality for convex function Gg4(-,w), (d = 1,2,3,4) in (2.2), we get

(2.8). -
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In the next results, we use above theorem in order to form some novel
estimates for Griiss and Ostrowski type inequalities using generalized identity
(2.6). In what follows we let t € [B1, 52], for (d =1,2,3,4),

29) W00 =

7 ko, k-1

[ (B=tpraca + o PG - P @i ) AG-a w0
B1

THEOREM 2.3. With the hypothesis of Theorem 2.1, suppose |(AN™M|" :
[81, B2] — R is R-integrable, where n > 4 while r,r’ € [1,00] and % + % =1.
Then we have

m—k k-1 m m : )‘(u+2)(/81)
(2.10) mﬂ (a 7)\)+71Pm( a;A) — B (q; ) —u:OT
B2
m— k m k — pm u
X ( Gd) + 71Pm (q7 Gd) (q.a Gd) (’LU - ﬁl) dw
B1

- )\(5+1+u)(52)(51 ﬂ2>’u—u
g [ (s+1+u)(v—u) }

m—k k—1
X/ (mpl (q;Ga) + mpfg(% Ga) — Pi"(q; Gd)> (w — 51)S+1+udw‘

52 7"/ 1/7‘/
< ||A<">|,-( / ‘%(t) dt)
B

where Aq(t) (d = 1,2,3,4) is defined in (2.9). The constants on the right
hand side of (2.10) are good when 1 < r < oo while most appropriate choice
isr=1.

PrOOF. We rearrange identity (2.6) in such a way that

s )\(u+2)(51)

k=1 _., o
1) B aN) + PR ) - P - -

u=0
B2

< J (B PG + PR G - PP sG) ) (= 1)

B1
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" AEHIFO(By)(By — B2)" "
Bl Z {Z (s+1+u)!(v—u) }

w=0 u=0
B2 ) -
m
X/ (MP1 (q§ Gd) + 71P,,:':(q; Gd) — P]zn(q; Gd)) (w _ 51)s+1+udw‘
B1

6o
= ’/Qld(t))\(”) (t)dt’.
b

Using Holder’s inequality on right hand side of (2.11) we obtain (2.10). For
sharpness, the proof is same as that of Theorem 3.5 in [4] (see also [3]).
O

We now give some upper bounds of the Griiss type inequality.

THEOREM 2.4. With the assumptions of Theorem 2.1 and absolute con-
tinuity of A" while (. — B1)(Ba — JANTV]2 € L[B1,Ba] such that Ag,
(d=1,2,3,4) are defined in (2.9), the remainders Rem(By, Ba, Aaq, \™), given
in the following identity

m—k m k — m m - )\(u+2)(ﬂ1)
@12 BELRP@) + ) - e - 3 2
7 k k-1
m— _
X / <m_1P1m(Q; Gd)+mPnT(Q;Gd) — P (q; Gd)) (w— B1)"dw
B1

n—s—2 v )\(5+1+u (ﬂQ)(51_52)U_u
> { < (s+1+u)!(v-u)! }

k k—1
< [ (B=Erpa 6 + P 6o - PG ) (w0 = )44

B2
AT (E) - A5 o
B (52 _ /61) /Qld(t)dt—i_Rem(ﬁl?BQan(h)\ )’

B1

satisfy the bound
|Rem(ﬁ1, ﬁ27 Q[d7 A(n))| S

B2 — B1)

B2 1
et B [ gy - o0 o

B1
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Proor. Using Cebysev functional for F; = 2y, (d = 1,2,3,4), Fy = A(™)
and by comparing (2.12) with (2.6), we have

Rem(ﬁla ﬂ27 mda )\(n)) = (/82 - ﬁl)(c(md, A(n))
Using Theorem 1.6 the desired bound can be obtained. ]

THEOREM 2.5. Consider assumptions of Theorem 2.1, while \"+1) >
0 on [B1,Be] with Aq (d = 1,2,3,4) given by (2.9). Then in (2.12)
Rem(By, Ba, Aq, \™) fulfills estimation
(2.13)  [Rem(By, B2, Aa, A™)| < (B2 — B1)|1Ay] |

ATD(Ba) + ATD(B1) A2 (B) — A2 ()
2 B2 — B1 ’

PRrROOF. We have established
Rem(ﬁh ﬁ?v Qlda )\(n)) = (ﬂQ - Bl)C(md, )\(n))
Now using Theorem 1.7, for F; — g , Fo — A", gives

|Rem (By, B2, Aa, A™)| = (B2 — B1)|C(Aa, A™))]

X

B2
Ao n
(214) < Bl e g - 9100
B1
Using the right hand side of (2.14), (2.13) is obtained. |

3. NEw ENTROPIC BOUNDS IN INFORMATION THEORY

As Jensen’s inequality plays a key role in information theory to construct
bounds for some notable inequalities, here we will use Popoviciu’s inequality
to make connections between inequalities in information theory.

Let A : (0,00) — (0,00) be convex, let p := (p1,...,pm) and q :=
(q1---,Gm) represent positive probability distributions. Then A-divergence
functional is defined as follows

- pi
L(p,a) =) ¢\ ()
i=1 L
L. Horvéth et al. in [10] defined a new Csiszdr divergence functional:

DEFINITION 3.1. Let A : I — R be a function with I an interval in R. Let
P:=D1,-sPm),q:=(q1,--,qm) € R™, such that
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Then we define

(3.1) L\(p,q) = Zqz (>

We now give the first application of Theorem 2.1:

THEOREM 3.1. Under the assumptions of Theorem 2.1, let m,k € N,
m>3,2<k<m-1,p:=®1,--,Pm), 4d:=(q1,---,qm) € R™, such that

%e[ﬁhﬁﬂv qz#o izlv"'7m

If X : [B1, B2] = R is an n-convex function, then we obtain the following bound
for our new Csiszdr divergence functional:

k-1 (1)

; - 7 PnL
k(q7p1>\) m—k)\( )+

(3.2) Li(p,q) > y
u=0 '

Bz
- Pi k-1 m—1
. v - - P T rm . _ u
J (S a6a (Bew) + S atPw) ~ F g piGo ) -y
B1 =

n—s—2 v /\(q+1+u)(62)(ﬁ1 52)11—11
+ Z [ (s+ 14+ u)(v—u)! }X

v=0 u=0
T k-1 1
. pi o _ M Mg b
/(z;qud (qiaw>+m_k_Gd(Pmaw) m_k(ck (qapaGd)>
B1 =

X (w - Bl)SJrlJrudwa

where Y p; = Py, and

i=1

Z i,

63 Cf@pN =i Y Sa | 2

k
k=1 1<ij<..<ig<m \j=1 Z

PrOOF. By taking into account the assumptions of Theorem 2.1, write
(2.2) in explicit form as:

(3.4)

m—k - k-1 1 k J;qz']-xij
T 2o @A g ot > g, || E—
j=1

i=1 i=1 k=1 1<ij<..<ip<m

\%
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) B2
- A(u+2)(61) m_k m k_l m m u
Z ] / e (%Gd)‘f‘mpm (q; Ga) — P (q; Ga) | (w—p1)"dw
u=0 B1
n—s—2 v
ACHIF (85) (81 — B2)" "
+ 3 | g
B2
—k m k—1 m m s u
/ <Z P (@ Ga) + g P (a3 Ga) — P (q;Gd)) (w = B1)™ M dw,
B1
where

P'(q;Gq) = P (q; Ga(z,w)) :=

k
1 k Z qi; Ti;
Z Jj=1
Cm71 - qij Gd k 7w

k=1 1<ij<...<ix<m \j= ZQZ”
J
j=1

Now replacing x; — 2’—? in (3.4), after some calculations we get required result
(3.2). d

The next result is the application of the Corollary 2.2 for positive proba-
bility distributions.

COROLLARY 3.2. Under the assumptions of Corollary 2.2 for (n =
even, s = odd) assume that (2.7) holds. If X : [B1, 2] — R is an n-convex
function, then the above bound (3.2) takes the shape

m—1 k—1 ~
. —C : - < .

PRrROOF. It is the direct consequence of Corollary 2.2 by substituting x; =
Bt in (2.8). O

Shannon entropy and the measures related to it are frequently applied
in fields like population genetics and molecular ecology, information theory,
dynamical systems and statistical physics (see [7,16]). For positive n-tuple
q = (q1,...,qm) such that >, ¢; = 1, the Shannon entropy is defined by

(3.6) S(a) = —Z% Ing;.

Some recent bounds for Shannon entropy can be seen in [10,13]. We propose
the following results:

COROLLARY 3.3. Let m,ke N, m>3,2<k<m-—1.
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(a) If q :=(q1,---,qm) € (0,00)™ and n is even, then for d =1,2,3,4

(3. 7)

m—1 k— 1 u+2U+1)
Zqzln qz _m—k’(Ck (qv]-v*ln())+m ki +Z Bl u+2 X

/(Zlqzcd (qlw> + A Gl ,w>§:,1<c21(q,1;cd))<wﬂl)“dw
B1 =
n—s—2 )s+1+v(ﬁl ,62)1)7“
+ — |:Z 62 5+1+”(8+1+u)(1}—u)':|x

B2 m

1 k-1 m—1 . .
/<z;qicd <qi,w>—|—m_kGd(m,w)—m_ka (q,l,Gd)>
B1 =

x (w— B1) T dw.

(b) If q == (q1, ... ,qm) is a positive probability distribution and n is even,
then we get the following bounds for Shannon entropy of q:

-1, (=D)" P (u+1)
k ) Z 51 w2z X

e
e
IN
I
~—
3|3
@
Ead
8
+

= 1 E—1 m—1 ., N
(z;qicd (qi,w> t+ —— Ga (m,w) — ——C] (q,l,Gd))(w—,Bl) dw

(DB = )
) [Z (B PTG+ 1 ) —u)!} :

v=0

/(Z%Gd (qu )—I—:@:iGd(m,w)—Z:; k(q71§Gd)>

B1

x (w— B1)* T dw.
If n is odd, then (3.7) and (3.8) hold in reverse directions.

PROOF.

(a) Using A(z) := —Ilnz, and p := (1,1,...,1) in Theorem 3.1, we obtain
the desired results.
(b) It is a special case of (a).
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REMARK 3.4. Using positive probability distributions along with the func-
tion A(z) := —Inx in (3.5), we get the bound

(3.9) S(q) < - (Zcm(q p;—In()) + Zlh In (p; > :

The second case is corresponding to the relatlve entropy also known as
Kullback-Leibler divergence between the two probability distributions. One
of the most famous distance functions used in information theory, mathe-
matical statistics and signal processing is Kullback-Leibler distance. The
Kullback-Leibler distance [15] between the positive probability distributions
a=(q,-,qn) and p = (p1, ..., Pm) is defined by

(3.10) D(a | ) zqv In (q)

Some recent bounds for relative entropy can be seen in [10,13]. We propose
the following results:

COROLLARY 3.5. Let m,ke N, m>3,2<k<m-—1.

(a) Ifq := (q1,---sqm)sP = (P1,---,Pm) € (0,00)™ and n is even, then
ford=1,2,3,4

(3.11)

S

Zqi In (]Z) > MLy (q,pi— () A (P Y D,

m — (By)r

k-1 1 .
/(E qud< ,w>+Gd (P, w) — ———C} (Q:p§Gd)>(w_Bl) dw
m m—k
1

)s+1+u(51 /Bz)vfu
+ |:Z (B2 S+1+”(s+1+u)(v—u)':|><

v=0 u=0

B2 m
. Di k—1 m—1 m . s+1+4+u
/ (Z%Gd (%7w> + mGd (Prmsw) — — ka (q,p,Gd)>(w—B1) dw
B1 i=1
where Z pi = Py,.

(b) If q := (ql, cesqm), P = (P1,- .-, Dm) are positive probability distribu-
tions and n is even, then we have the following bound for Kullback-
Leibler distance

m—1 1) 2 (u+1
(3.12) D(ql p)> ka allp Z yut2 )X
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B2 m

i k-1 —1 m u
/ (Z%Gd (ZﬂU) + 7 Ga(lw) - :Z— - Cr (q>P;Gd))(w - B1)"dw
B1 =t

" (DTG = Ba)
[Z (Bo) H (s + L+ u)(v — u)!} 8

v=0 u=0

- k-1 —1 m st1tu
(Z%Gd <p,w> +——Ga(l,w) - 27 -Ci'(a, p; Gd)) (w = B1)" ' dw,

_|_

k
1 k Z:1 s
Flallp) = o= > Sa, || &

k=1 1<ii<..<ig<m \j=1 S pi,
J
Jj=1

If n is odd, then (3.11) and (3.12) hold in reverse directions.

PROOF.

(a) Using A(z) := —Inz, in Theorem 3.1, we obtain the desired results.
(b) It is a special case of (a).

O
REMARK 3.6. Using positive probability distributions along with the func-
tion A(x) := —Inz in (3.5), we get the bound
m—1
3.13 — D" <D .
(313) "= D'l p) < Dia p)

One of the basic laws in information sciences, which is excessively applied
in linguistics is Zipf’s law [26] named by George Zipf (1932), who discovered
the counting problem of each word appearing in the text. Besides the ap-
plication of this law in linguistics and information science, Zipf’s law has a
mythical impact in economics, where its distribution is called Pareto’s law,
which analyze the distribution of the wealthiest members in the community
([8], p- 125). Although in mathematical sense these two laws are same, but
they are utilized in a different way ([9, p. 294]).

For m € {1,2,...}, t > 0 and w > 0 the Zipf-Mandelbrot law (probability
mass function) is stated as

1

(3.14) Ylism, tw) = G T

i=(1,2,...,m)

where
m

1
Hm w = T N
it Z (] +t)w

Jj=1
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The probability mass function can be given as in (3.14) and H,, ;. which
can also be taken as a generalization of a harmonic number. In the formula,
i represents rank of the data, ¢ and w are parameters of the distribution. In
the limit as m approaches infinity, this becomes the Hurwitz zeta function
¢(w,t). For finite m and ¢t = 0 the Zipf-Mandelbrot law becomes Zipf’s law.
For infinite m and ¢ = 0 it becomes a Zeta distribution.

Let m € {1,2,...}, t > 0, w > 0, then Zipf-Mandelbrot entropy can be
given as

w In(i + t)
3.15 Z(H,t,w) = 0 (H,p ).
(313) () Hm,t,w; e+
Consider
1
(3.16) qi = Y(i;m,t,w) =

((l + t)w m,t,w) .

Application of Zipf-Mandelbrot law can be found in linguistics [17, 20, 26],
information sciences and also is often applicable in ecological field studies
[17]. Some of the recent study regarding Zipf-Mandelbrot law can be seen in
the listed references (see [10,11,13,14]). Now we state our results involving
entropy introduced by Mandelbrot Law for positive probability distributions:

THEOREM 3.7. Let m,k € N, m >3,2<k<m—1 and q be as defined
in (3.16) by Zipf-Mandelbrot law with parameters t > 0, w > 0. For n even,
the following holds

(3.17)  S(q) = Z(H,t,w) < — Z Z+tw

i=1

m—1| 1 ¢ ! 2 TGO )
_m-1 | =
wi g L 2\ G )" :

k=1 1<ij<..<ip<m \j=1 Zpij
j=1

) In (p;)

m,t,w

PROOF. Substituting ¢; = Wll{t) in Remark 3.4, we get the de-

sired result. It is interesting to see that Y ¢; = 1. Moreover using above g;
i=1
in Shannon entropy (3.6), we get Mandelbrot entropy Z(H,t,w) (3.15). O
The next result establishes the relationship of Mandelbrot entropy (3.15)
with Kullback-Leibler distance (3.10).

REMARK 3.8. Let m,k € Nym > 3,2 <k < m—1, t1,t5 € [0,00),
wi, w2 > 0, Hyy gy, = and Hp, ty,0, = ﬁ Then using ¢; =
1
and p; =

(i + tl)wl m,t1,wy (Z + t2)w2 m,ta, w2

1
(i+t1)®1

in Remark 3.6, we get
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m

w2 ln((i+t2))
(3 8) (q H p) ( 5 1aw1) > Hm,tl,wl ; (Z +t1)w1 + n( Jta, 2)

m—1
_ T o pm =
——Di'(allp)

M=

1
(ij+t1)w1 Hm,,tl ,wq

<.
Il
-

=3

k
m—1 1 1
- m—1 . w

m =k Ckzl 1§i1<;ikﬁm<; (ZJ T tl) le’tl’wl ) 1

(ij+t2) U2 Hpm, tg,we

M=

<.
Il
i

4., MONOTONICITY OF JENSEN TYPE LINEAR FUNCTIONALS

Now we present related results for the class of n-convex functions at a
point introduced in [24] which is more general class of n-convex functions.

DEFINITION 4.1. Let I C R, c € I° andn € N. A function A : I — R
is called (n + 1)-convex at point ¢ if there exists a constant X. so that the
function

X
(4.1) T(z) = Mz) — —a"
n!
is n-concave on I N (=00, c| and n-conver on IN[c,00). A function X is called

(n + 1)-concave at point c if the function —X is (n + 1)-convex at point c.

A function is (n+1)-convex on an interval if and only if it is (n+1)-convex
at every point of the interval (see [24]). Pecari¢, Praljak and Witkowski in
[24] studied the conditions which are necessary and sufficient on two linear
functionals Q4 : C([f1,¢]) = R and Ay : C([c, B2]) — R, for d = 1,2,3,4,
so that the inequality Qg(\) < Ag(A) is valid for every function A which is
(n + 1)-convex at point c. For the particular linear functionals obtained from
the inequalities in the previous section, we shall introduce inequalities of such
type in this section section . Suppose o; represents the monomials o;(x) = 2,
i € Ng. For the remaining part of the present section, 24(A) and Ag()\) will
represent the linear functionals which we get by taking the difference of the left
hand size and right hand side of the inequality (2.2), applied to the intervals
[81, c] and [c, Bs] respectively, i.e., for x € [B1,¢]™, q € R™, y € [¢, B2]™ and
qcR™ also ford=1,2,3,4 let

m—k m k-1 m m . A(u+2)(ﬁ1)
T P (@) o P ) = P ) - ) S

(4.2) Qa(N) =

u=0
c

/ (m — 2P (@3 G, w)) + S P G, w) — P G, w))) (w=60)"dw

m—1
B1
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A ()8, — )
- Z LZ Gritwl(v—u) }X

m-—=k _. k=1 m o
/(m_1P1 (@ Ga(@, w)) + —— P (q; Ga(z, w)) — P’ (as Gd(%ﬂ))))
B1
X (w— B1)"  duw,
S F—1 _— —~ A ()
(4.3)  Aa(N) :ﬁpl (@GN + = 1 m(%/\)_PE (Q§)‘)_Z%TX
B2

/ (’m” —2 P (@ Galy, w)) + = PR Galy, w)) — P (@ Galy, w))) (w=0)"duw

- n§2 |: v A(S+1+u)(62)(67 ﬂQ)vu:| y

(s+1+uw)l(v—u)!

v=0
B2 _

J (5=t @ Guton +

c

Nl

%Pg‘(ﬁ; Ga(y, w)) — P{(@; Ga(y, w)))

S

X (w—¢)* T duw.

It is significant to observe that by giving the new linear functionals Q4())
and Ag(N), for (d =1,2,3,4) identity (2.6) applied to the respective intervals
[B1,c] and [c, B2] takes the shape:

(4.4) Qa(A //(m “p (a3 Ga(z, w))+LPm(q;Gd(ﬂc,w>)

1 m
B1 B1

P Gd<x,w>>)Aam_g)(w,tw(t)dwdt,

B2 B2 _
45) M) = [ [ (BRI @ Galyw) + P Gty

- P (a@; Galy, w))) AG(n—g)(w, )A" (t)dwdt.

For the inequalities involving (n + 1)-convex function at a point, we now
state the following theorem:
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THEOREM 4.1. Suppose x € [B1,c]™, q € R™, y € [c,f2]™ and q € R™
so that

(1.6)
(B8P @ Gt ) + 2 PGt )~ PP Gt ) ) = 0
(4.7)

(’;"fa (@ Galy) + =L P2 @ Gty >>—P,:?<q;ad<y,w>>) >0

provided that (n = even, s = odd) or (n = odd, s = even), and

/ / (e o)+ P e i)~ e G )
B1 B1
X AG (n—2)(w, t)dwdt
B2 B2

- [ [ (5= @ cum + @Gt - @sGatn))

X AG(n_Q) (w, t)dwdt7

where Qq(N), Ag(N), for d =1,2,3,4, be the linear functionals given by (4.2)
and (4.3). If \q : [B1,B2] = R is (n+ 1)-convex at point c, then the following
monotonicity is obtained

(4.9) Qa(A) < Ag(N).

By reversing the inequalities in (4.6) and (4.7), (4.9) is established with the
reversed sign of inequality.

ProOOF. With the help of Definition 4.1, we construct function Y(z) =
A(z) — 20, so that the function Y is n-concave on [, c] and n-convex on
[c, Ba]. Applymg Theorem 2.1 to T on the interval [5y, c], we get

Xe

(4.10) 02 Qq(T) = Qa(A) = —rQa(on).

Similarly, by applying Theorem 2.1 to T on the interval [e, 83], we obtain
Xe

(4.11) 0 < Ag(T) =Ag(N) — FAd(a").

Also, by applying the identities (4.4) and (4.5) to the function o™, for d =
1,2,3,4, we get

(112) Q4(0") = n! / / (B8P (e G w) + 2= PR Gt )

B1 B
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P Gd<x,w>>)AG<n2><w,t>dwdt,

B2 B2 _ _
(113) Asem=nt [ [ (f;j’fpfﬂ(q; Caly w) + L P2 (G Galy, w)

- Pih(q’ Gd(y7 U)))) AG(n—Q) (’LU, t)dwdt

Hence the assumption (4.8) is equivalent to
Qd(a") = Ad(an).
Therefore from (4.10) and (4.11), we get the required result. |

REMARK 4.2. In the proof of Theorem 4.1, for (d = 1,2,3,4) we have
shown that

Qd()\) S %Qd(an) = %Ad(dn) S Ad()\)

It is also significant to observe that the inequality (4.9) remains valid on
replacing assumption (4.8) with a weaker assumption that is X.(Ag(c") —
Qd(dn)) Z 0.

We give the following remark to conclude our paper.

REMARK 4.3. We may form non-trivial examples for exponentially con-
vex functions and n-exponentially for positive linear functional for n-convex
function coming form the difference of the left hand side and right hand side of
(2.2), with the help of n-exponentially techniques given by Pecari¢ et al. in [12]
and [23] (see also [5], [4] and [3]). Most importantly, it is known that Jensen
inequality has an elegant connection with its applications in information the-
ory. But we are also able to find applications of our generalized Popoviciu’s
inequality in information theory as we define new divergence functional and
can employ it to give new combinatorial bounds for different entropies, spe-
cially the famous Shannon, Kullback and Mandelbrot etc.
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