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ESTIMATES OF THE LOGARITHMIC DERIVATIVE NEAR
A SINGULAR POINT AND APPLICATIONS

Saada Hamouda

Abstract. In this paper, we will give estimates near z = 0 for the
logarithmic derivative

∣∣∣ f(k)(z)
f(z)

∣∣∣ where f is a meromorphic function in a

region of the form D (0, R) = {z ∈ C : 0 < |z| < R} . Some applications on
the growth of solutions of linear differential equations near a singular point
are given.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notation of the Nevanlinna value dis-
tribution theory of meromorphic function on the complex plane C and in the
unit discD = {z ∈ C : |z| < 1} (see [11,17,21]). The importance of this theory
has inspired many authors to find modifications and generalizations to differ-
ent domains. Extensions of Nevanlinna Theory to annuli have been made by
[2, 13, 15, 16, 18]. Recently in [5, 10], Hamouda and Fettouch investigated the
growth of solutions of a class of linear differential equations
(1.1) f (k) +Ak−1 (z) f (k−1) + ...+A1 (z) f ′ +A0 (z) f = 0
near a singular point where the coefficients Aj (z) (j = 0, 1, ..., k − 1) are
meromorphic or analytic in C \ {z0} and for that they gave estimates of
the logarithmic derivative

∣∣∣ f(k)(z)
f(z)

∣∣∣ for a meromorphic function f in C \
{z0} ,

(
C = C ∪ {∞}

)
. A question was asked in [5] as the following: can we

get similar estimates near z0 of
∣∣∣ f(k)(z)
f(z)

∣∣∣ where f is a meromorphic function
in a region of the form Dz0 (0, R) = {z ∈ C : 0 < |z − z0| < R}? Naturally,
this allows us to study the solutions of (1.1) with meromorphic coefficients
in Dz0 (0, R) . The same question was asked in [10] for another problem con-
cerning the case when the coefficients of (1.1) are analytic in C \ {z0} , the
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100 S. HAMOUDA

solutions may be non analytic in C \ {z0}. In this paper, we will answer this
question and give some applications. Without loss of generality, we will study
the case z0 = 0 and for z0 6= 0 we may use the change of variable w = z − z0.

Throughout this paper, we will use the following notation:

D (R) = {z ∈ C : |z| < R} ,

D (R1, R2) = {z ∈ C : R1 < |z| < R2} ,
D [R1, R2] = {z ∈ C : R1 ≤ |z| ≤ R2} .

Analogously, we can define D [R1, R2) , D (R1, R2]. We recall the appropriate
definitions [5,16,18]. Suppose that f (z) is meromorphic in D (0,+∞]. Define
the counting function near 0 by

(1.2) N0 (r, f) = −
r∫
∞

n (t, f)− n (∞, f)
t

dt− n (∞, f) log r,

where n (t, f) counts the number of poles of f (z) in the region

{z ∈ C : t ≤ |z|} ∪ {∞}

each pole according to its multiplicity; and the proximity function by

(1.3) m0 (r, f) = 1
2π

2π∫
0

ln+ ∣∣f (reiϕ)∣∣ dϕ.
The characteristic function of f is defined by

(1.4) T0 (r, f) = m0 (r, f) +N0 (r, f) .

For a meromorphic function f (z) in D (0, R) , we define the counting function
near 0 by

(1.5) N0 (r,R′, f) =
R′∫
r

n (t, f)
t

dt,

where n (t, f) counts the number of poles of f (z) in the region

{z ∈ C : t ≤ |z| ≤ R′} (0 < R′ < R) ,

each pole according to its multiplicity; and the proximity function near the
singular point 0 by

(1.6) m0 (r, f) = 1
2π

2π∫
0

ln+ ∣∣f (reiϕ)∣∣ dϕ.
The characteristic function of f is defined in the usual manner by

(1.7) T0 (r,R′, f) = m0 (r, f) +N0 (r,R′, f) .
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In addition, the order of growth of a meromorphic function f (z) near 0 is
defined by

(1.8) σT (f, 0) = lim sup
r→0

log+ T0 (r,R′, f)
− log r .

For an analytic function f (z) in D (0, R) , we have also the definition

(1.9) σM (f, 0) = lim sup
r→0

log+ log+M0 (r, f)
− log r ,

where M0 (r, f) = max {|f (z)| : |z| = r} .
If f (z) is meromorphic in D (0, R) of finite order 0 < σT (f, 0) = σ <∞,

then we can define the type of f as the following:

τT (f, 0) = lim sup
r→0

rσT0 (r,R′, f) .

If f (z) is analytic in D (0, R) of finite order 0 < σM (f, 0) = σ <∞, we have
also another definition of the type of f as the following:

(1.10) τM (f, 0) = lim sup
r→0

rσ log+M0 (r, f) .

Remark 1.1. The choice of R′ in (1.2) does not have any influence in
the values σT (f, 0) and τT (f, 0) . In fact, if we take two values of R′, namely
0 < R′1 < R′2 < R, then we have

R′2∫
R′1

n (t, f)
t

dt = n log R
′
2

R′1
,

where n designates the number of poles of f (z) in the region

{z ∈ C : R′1 ≤ |z| ≤ R′2}

which is bounded. Thus, T0 (r,R′1, f) = T0 (r,R′2, f) + C where C is a real
constant. So, we can write briefly T0 (r, f) instead of T0 (r,R′, f) .

Example 1.2. Consider the function f (z) = exp
{
z2 + 1

z2

}
. We have

T0 (r, f) = m0 (r, f) = 1
π

(
r2 + 1

r2

)
,

then σT (f, 0) = 2, τT (f, 0) = 1
π . Also we have

M0 (r, f) = exp
{
r2 + 1

r2

}
,

then σM (f, 0) = 2, τM (f, 0) = 1.
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In the usual manner of the complex plane case [1, 14], we define the iter-
ated order near 0 as follows:

(1.11) σn,T (f, 0) = lim sup
r→0

log+
n T0 (r, f)
− log r ,

(1.12) σn,M (f, 0) = lim sup
r→0

log+
n+1M0 (r, f)
− log r ,

where log+
1 x = log+ x = max {log x, 0} and log+

n+1 x = log+ log+
n x for n ≥ 1.

Remark 1.3. It is shown in [5] that σM (f, 0) = σT (f, 0); and then for
any integer n ≥ 1 we have σn,T (f, 0) = σn,M (f, 0). So, we can use the
notation σn (f, 0) in the two cases. For n = 2, σ2 (f, 0) is called hyper-order.

We recall the following definitions. The linear measure of a set E ⊂
(0,∞) is defined as

∞∫
0
χE (t) dt and the logarithmic measure of E is defined

by
∞∫
0

χE(t)
t dt where χE (t) is the characteristic function of the set E.

The main tool we use throughout this paper is the decomposition lemma
of G. Valiron.

Lemma 1.4 ([18, 20] (Valiron’s decomposition lemma)). Let f be mero-
morphic function in D (R1, R2) , and set R1 < R′ < R2. Then f may be
represented as

f (z) = zmφ (z)µ (z)
where

a) The poles and zeros of f in D (R1, R
′) are precisely the poles and zeros

of φ (z). The poles and zeros of f in D (R′, R2) are precisely the poles
and zeros of µ (z).

b) φ (z) is meromorphic in D (R1,∞) and analytic and nonzero in
D [R′,∞].

c) φ (z) satisfies ∣∣∣∣∣φ′
(
ξeiθ

)
φ (ξeiθ)

∣∣∣∣∣ = O

(
1
ξ2

)
, ξ →∞.

d) µ (z) is meromorphic in D (R) and analytic and nonzero in D (R′) .

e) m ∈ Z.
Remark 1.5. Let f be a non-constant meromorphic function in D (0, R)

and f (z) = zmφ (z)µ (z) is a Valiron’s decomposition. Set φ̃ (z) = zmφ (z) .
It is easy to see that
(1.13) T0 (r, f) = T0

(
r, φ̃
)

+O (1) .
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If f be a non-constant analytic function in D (0, R) , then φ̃ (z) is analytic in
D (0,∞] and by [5] and (1.13), we obtain that σn,T (f, 0) = σn,M (f, 0) for
n ≥ 1.

Now, we provide estimates near 0 of the logarithmic derivative for a mero-
morphic function in D (0, R) .

Theorem 1.6. Let f be meromorphic function in D (0, R) with a singular
point at the origin. Let k be a positive integer and α > 1 be given real constant;
then

(i) there exists a set E∗1 ⊂ (0, R′) (0 < R′ < R) that has finite logarithmic
measure and a constant C > 0 such that for all r = |z| satisfying
r ∈ (0, R′) \E∗1 , we have

(1.14)
∣∣∣∣f (k) (z)
f (z)

∣∣∣∣ ≤ C [1
r
T0

( r
α
, f
)

logα
(

1
r

)
log T0

( r
α
, f
)]k

;

(ii) there exists a set E∗2 ⊂ [0, 2π) that has a linear measure zero such
that for all θ ∈ [0, 2π) \E∗2 there exists a constant r0 = r0 (θ) > 0 such
that(1.14) holds for all z satisfying arg z ∈ [0, 2π) \E∗2 and r = |z| < r0.

The following two corollaries are consequences of Theorem 1.6 and have
independent interest.

Corollary 1.7. Let f be a non-constant meromorphic function in
D (0, R) with a singular point at the origin of finite order σ (f, 0) = σ < ∞;
let ε > 0 be a given constant and k be a positive integer. Then the following
two statements hold.

i) There exists a set E∗1 ⊂ (0, R′) that has finite logarithmic measure such
that for all r = |z| satisfying r ∈ (0, R′) \E∗1 , we have

(1.15)
∣∣∣∣f (k) (z)
f (z)

∣∣∣∣ ≤ 1
rk(σ+1+ε) .

ii) There exists a set E∗2 ⊂ [0, 2π) that has a linear measure zero such that
for all θ ∈ [0, 2π) \E∗2 there exists a constant r0 = r0 (θ) > 0 such that
for all z satisfying arg (z) ∈ [0, 2π) \E∗2 and r = |z| < r0 the inequality
(1.15) holds.

Corollary 1.8. Let f be a non-constant meromorphic function in
D (0, R) with a singular point at the origin of finite iterated order σn (f, 0) =
σ < ∞ (n ≥ 2); let ε > 0 be a given constant and k be a positive integer.
Then the following two statements hold.

i) There exists a set E∗1 ⊂ (0, R′) that has finite logarithmic measure such
that for all r = |z| satisfying r ∈ (0, R′) \E∗1 , we have∣∣∣∣f (k) (z)

f (z)

∣∣∣∣ ≤ expn−1

{
1

rσ+ε

}
.
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ii) There exists a set E∗2 ⊂ [0, 2π) that has a linear measure zero such that
for all θ ∈ [0, 2π) \E∗2 there exists a constant r0 = r0 (θ) > 0 such that
for all z satisfying arg (z) ∈ [0, 2π) \E∗2 and r = |z| < r0 the inequality
(1.15) holds.

As applications of Theorem 1.6, we have the following results.

Theorem 1.9. Let A0 (z) 6≡ 0, A1 (z) , ..., Ak−1 (z) be analytic functions
in D (0, R). All solutions f of

(1.16) f (k) +Ak−1 (z) f (k−1) + ...+A1 (z) f ′ +A0 (z) f = 0
satisfy σn+1 (f, 0) ≤ α if and only if σn (Aj , 0) ≤ α for all (j = 0, 1, ..., k − 1),
where n is a positive integer. Moreover, if q ∈ {0, 1, ..., k − 1} is the largest
index for which σn (Aq, 0) = max

0≤j≤k−1
{σn (Aj , 0)} then there are at least k− q

linearly independent solutions f of (1.16) such that σn+1 (f, 0) = σn (Aq, 0) .

Similar result to Theorem 1.9 in the unit disc has been proved in [12,
Theorem 1.1].

Corollary 1.10. Let A0 (z) 6≡ 0, A1 (z) , ..., Ak−1 (z) be analytic func-
tions in D (0, R) satisfying σn (Aj , 0) < σn (A0, 0) < ∞ (j = 1, ..., k − 1) .
Then, every solution f (z) 6≡ 0 of (1.16) satisfies σn+1 (f, 0) = σn (A0, 0).

Corollary 1.11. Let b 6= 0 be complex constants and n be a posi-
tive integer. Let A (z) , B (z) 6≡ 0 be analytic functions in D (0, R) with
max {σ (A, 0) , σ (B, 0)} < n. Then, every solution f (z) 6≡ 0 of the differential
equation

(1.17) f ′′ +A (z) f ′ +B (z) exp
{
b

zn

}
f = 0,

satisfies σ2 (f, 0) = n.

Example 1.12. Every solution f (z) 6≡ 0 of the differential equation

(1.18) f ′′ + exp
{

1
(1− z)m

}
f ′ + exp

{
1
zn

}
f = 0,

satisfies σ2 (f, 0) = n, where m and n are positive integers.

Similar equations to (1.17) and (1.18) with analytic coefficients in the
unit disc are investigated in [8].

Now, we will study the case when σ (Aj , 0) = σ (A0, 0) for some j 6= 0.

Theorem 1.13. Let A0 (z) 6≡ 0, A1 (z) , ..., Ak−1 (z) be analytic functions
in D (0, R) satisfying 0 < σ (Aj , 0) ≤ σ (A0, 0) <∞ and

max {τM (Aj , 0) : σ (Aj , 0) = σ (A0, 0)} < τM (A0, 0) (j = 1, ..., k − 1) .
Then, every solution f (z) 6≡ 0 of (1.16) satisfies σ2 (f, 0) = σ (A0, 0).
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The analogs of this result in the complex plane and in the unit disc are
investigated in [9, 19].

Theorem 1.14. Let a, b 6= 0 be complex constants such that arg a 6= arg b
or a = cb (0 < c < 1) and n be a positive integer. Let A (z) , B (z) 6≡ 0 be
analytic functions in D (0, R) with max {σ (A, 0) , σ (B, 0)} < n. Then, every
solution f (z) 6≡ 0 of the differential equation

(1.19) f ′′ +A (z) exp
{ a

zn

}
f ′ +B (z) exp

{
b

zn

}
f = 0,

satisfies σ2 (f, 0) = n.

Similar results to Theorem 1.14 are established in different situations in
[3, 5, 8].

Example 1.15. By Theorem 1.14, every solution f (z) 6≡ 0 of the differ-
ential equation

f ′′ + exp
{

i

z (z + 1)

}
f ′ + exp

{
1

z (z − 1)2

}
f = 0,

satisfies σ2 (f, 0) = 1 and σ2 (f, 1) = 2.

2. Preliminary lemmas

To prove these results we need the following lemmas.
Lemma 2.1 ([6]). Let g be a transcendental meromorphic function in C

and k be a positive integer. Let α > 1 and ε > 0 be given real constants; then
i) there exists a set E1 ⊂ (1,∞) that has a finite logarithmic measure

and a constant c > 0 that depends only on k and α such that for all
R = |w| satisfying R /∈ [0, 1) ∪ E1, we have

(2.1)
∣∣∣∣g(k) (w)
g (w)

∣∣∣∣ ≤ c [T (αR, g) logα (R)
R

log T (αR, g)
]k

;

ii) there exists a set E2 ⊂ [0, 2π) that has a linear measure zero such that
for all θ ∈ [0, 2π) \E2 there exists a constant R0 = R0 (θ) > 0 such that
(2.1) holds for all z satisfying arg z ∈ [0, 2π) \E2 and r = |z| > R0.

Lemma 2.1 is valid also for rational meromorphic functions but as ex-
plained in [6, page 1]: for rational functions one can get better results than
those of transcendental meromorphic functions case.

Lemma 2.2. [5] Let φ be a non-constant meromorphic function in
D (0,∞] and set g (w) = φ

( 1
w

)
. Then, g (w) is meromorphic in C and we

have
T

(
1
r
, g

)
= T0 (r, φ) ,

and so σ (f, 0) = σ (g).
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Lemma 2.3. Let f be a non-constant analytic function in D (0, R) of finite
order σ (f, 0) = σ > 0 and a finite type τ (f, 0) = τ > 0. Then, for any given
0 < β < τ there exists a set F ⊂ (0, 1) of infinite logarithmic measure such
that for all r ∈ F we have

logM0 (r, f) > β

rσ
,

where M0 (r, f) = max {|f (z)| : |z| = r}.

Proof. By the definition of τ (f, 0) , there exists a decreasing sequence
{rm} → 0 satisfying m

m+1rm > rm+1 and

lim
m→∞

rσm logM0 (rm, f) = τ.

Then, there exists m0 such that for all m > m0 and for a given ε > 0, we
have

(2.2) logM0 (rm, f) > τ − ε
rσm

.

There exists m1 such that for all m > m1 and for a given 0 < ε < τ − β, we
have

(2.3)
(

m

m+ 1

)σ
>

β

τ − ε
.

By (2.2) and (2.3), for all m > m2 = max {m0,m1} and for any r ∈[
m
m+1rm, rm

]
, we have

logM0 (r, f) > logM0 (rm, f) > τ − ε
rσm

>
τ − ε
rσ

(
m

m+ 1

)σ
>

β

rσ
.

Set F =
∞⋃

m=m2

[
m
m+1rm, rm

]
; then we have

∞∑
m=m2

rm∫
m
m+1 rm

dt

t
=
∑
m>m2

log m+ 1
m

=∞.

By the same method of the proof of Lemma 2.3, we can prove the following
lemma.

Lemma 2.4. Let f be a non-constant analytic function in D (0, R) of order
σ (f, 0) > α > 0. Then there exists a set F ⊂ (0, 1) of infinite logarithmic
measure such that for all r ∈ F we have

logM0 (r, f) > 1
rα
.
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Lemma 2.5 ([10, Theorem 8]). Let f be non-constant analytic function
in C \ {z0} . Then, there exists a set E ⊂ (0, 1) that has finite logarithmic
measure such that for all j = 0, 1, ..., k, we have

f (j) (zr)
f (zr)

= (1 + o (1))
(
Vz0 (r)
zr − z0

)j
,

as r → 0, r /∈ E, where Vz0 (r) is the central index of f and zr is a point in
the circle |z0 − z| = r that satisfies |f (zr)| = max

|z0−z|=r
|f (z)| .

Lemma 2.6. Let f be a non-constant analytic function in C \ {z0} of
iterated order σn (f, z0) = σ (n ≥ 2), and let Vz0 (r) be the central index of f.
Then

(2.4) lim sup
r→0

log+
n Vz0 (r)
− log r = σ.

Proof. Set g (w) = f
(
z0 − 1

w

)
. Then g (w) is entire function of iterated

order σn (g) = σn (f, z0) = σ, and if V (R) denotes the central index of g,
then Vz0 (r) = V (R) with R = 1

r . From [4, Lemma 2], we have

(2.5) lim sup
R→+∞

log+
n V (R)
logR = σ.

Substituting R by 1
r in (2.5), we get (2.4).

Lemma 2.7. Let Aj (z) (j = 0, ..., k − 1) be analytic functions in D (0, R)
such that 0 is a singular point for at least one of the coefficients Aj (z) and
σn (Aj , 0) ≤ α <∞. If f is a solution of the differential equation

(2.6) f (k) +Ak−1 (z) f (k−1) + ...+A1 (z) f ′ +A0 (z) f = 0,
then σn+1 (f, 0) ≤ α.

Proof. Let f 6≡ 0 be a solution of (2.6). It is clear that f is analytic
in D (0, R) . Let f (z) = zmφ (z)µ (z) be a Valiron’s decomposition and set
φ̃ (z) = zmφ (z) . By Valiron’s decomposition lemma and since f (z) is analytic
function in D (0, R), φ̃ (z) is analytic in D (0,∞] . By Lemma 2.5, there exists
a set E ⊂ (0, 1) that has finite logarithmic measure, such that for all j =
0, 1, ..., k, we have

(2.7) φ̃(j) (zr)
φ̃ (zr)

= (1 + o (1))
(
V0 (r)
zr

)j
,

as r → 0, r /∈ E, where V0 (r) is the central index of f near the singular point
0, zr is a point in the circle |z| = r that satisfies |f (zr)| = max

|z|=r
|f (z)| . Since

µ (z) is analytic and non zero in D (R′) , we have

(2.8)
∣∣∣∣µ(j) (z)
µ (z)

∣∣∣∣ ≤M, (j ∈ N) .
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Set M0 (r) = max
|z|=r

{|Aj (z)| : j = 0, 1, ..., k − 1} . From (2.6), we can write

(2.9) f (k)

f
+Ak−1(z)f

(k−1)

f
+ · · ·+A1(z)f

′

f
+A0(z) = 0.

We have f (z) = φ̃ (z)µ (z), and then

(2.10) f (j) (z)
f (z) =

i=j∑
i=0

(
j
i

)
φ̃(j−i) (z)
φ̃ (z)

µ(i) (z)
µ (z) , j = 1, ..., k,

where
(
j
i

)
= j!

i!(j−i)! is the binomial coefficient. By combining (2.7), (2.8)

and (2.10) in (2.9), we get

(V0 (r))k ≤ Crk (V0 (r))k−1
M0 (r) ;

where r near enough to 0 and C > 0, and then
(2.11) V0 (r) ≤ CrkM0 (r) .
By (2.11), we obtain σ2 (f, 0) ≤ α.

Lemma 2.8. Let A (z) be a non-constant analytic function in D (0, R)
with σ (A, 0) < n. Set g (z) = A (z) exp

{ a

zn

}
, (n ≥ 1 is an integer)

, a = α + iβ 6= 0, z = reiϕ, δa (ϕ) = α cos (nϕ) + β sin (nϕ) , and H =
{ϕ ∈ [0, 2π) : δa (ϕ) = 0} , (obviously, H is of linear measure zero). Then for
any given ε > 0 and for any ϕ ∈ [0, 2π) \H, there exists r0 > 0 such that for
0 < r < r0, the two following statements hold.

(i) If δa (ϕ) > 0, then

(2.12) exp
{

(1− ε) δa (ϕ) 1
rn

}
≤ |g (z)| ≤ exp

{
(1 + ε) δa (ϕ) 1

rn

}
.

(ii) If δa (ϕ) < 0, then

(2.13) exp
{

(1 + ε) δa (ϕ) 1
rn

}
≤ |g (z)| ≤ exp

{
(1− ε) δa (ϕ) 1

rn

}
.

Proof. Let A (z) = zmφ (z)µ (z) be a Valiron’s decomposition and set
φ̃ (z) = zmφ (z) . By Valiron’s decomposition lemma and since A (z) is analytic
function in D (0, R), φ̃ (z) is analytic in D (0,∞] . By Remark 1.5, σ

(
φ̃, 0
)

=
σ (A, 0) < n. Since µ (z) is analytic and nonzero in D (R′) , we have
(2.14) 0 < c1 ≤ |µ (z)| ≤ c2 as r is close enough to 0.
By applying [5, Lemma 2.9] for φ̃ (z), and (2.14), we get (2.12) and (2.13).

Now, we give the standard order reduction procedure of linear differential
equations which is an adaptation of [7, Lemma 6.4].
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Lemma 2.9. Let f0,1, f0,2, ..., f0,m be m (m ≥ 2) linearly independent
meromorphic (in D (0, R)) solutions of an equation of the form

(2.15) y(k) +A0,k−1 (z) y(k−1) + ...+A0,0 (z) y = 0, k ≥ m,

where A0,0 (z) , ..., A0,k−1 (z) are meromorphic functions in D (0, R) . For 1 ≤
q ≤ m− 1, set

(2.16) fq,j =
(
fq−1,j+1

fq−1,1

)′
, j = 1, 2, ...,m− q.

Then, fq,1, fq,2, ..., fq,m−q are m − q linearly independent meromorphic (in
D (0, R)) solutions of the equation

(2.17) y(k−q) +Aq,k−q−1 (z) y(k−q−1) + ...+Aq,0 (z) y = 0,

where

(2.18) Aq,j (z) =
k−q−1∑
i=j+1

(
i

j + 1

)
Aq−1,j (z)

f
(i−j−1)
q−1,1 (z)
fq−1,1 (z)

for j = 0, 1, ..., k − q − 1. Here we set Ai,k−i (z) ≡ 1 for all i = 0, 1, ..., q.
Moreover, let ε > 0 and suppose for each j ∈ {0, 1, ..., k − 1}, there exists a
real number αj such that

(2.19) |A0,j (z)| ≤ exp
{

1
rαj+ε

}
, r = |z| /∈ E.

Suppose further that each f0,j is of finite hyper-order σ2 (f0,j , 0) . Set β =
max

1≤j≤m
{σ2 (f0,j , 0)} and τp = max

p≤j≤k−1
{αj}. Then for any given ε > 0, we

have

(2.20) |Aq,j (z)| ≤ exp
{

1
rmax{τq+j ,β}+ε

}
, r = |z| /∈ E,

for j = 0, 1, ..., k − q − 1.

Proof. By [7, Lemma 6.2 and Lemma 6.3], we obtain (2.17) and (2.18).
Therefore, we need only to prove (2.20). For this proof, we use mathematical
induction over q. First suppose that q = 1. Then, from (2.18) we get

(2.21) A1,j (z) =
k∑

i=j+1

(
i

j + 1

)
A0,i (z)

f
(i−j−1)
0,1 (z)
f0,1 (z) , j = 0, 1, ..., k − 2.

Since σ2 (f0,j , 0) ≤ β, by Theorem 1.6, we have

(2.22)

∣∣∣∣∣f
(i−j−1)
0,1 (z)
f0,1 (z)

∣∣∣∣∣ ≤ exp
{

1
rβ+ε

}
, r = |z| /∈ E.
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It follows from (2.19) and (2.21) that (2.20) holds for q = 1. For the induction
step, we make the assumption that (2.20) holds for q − 1; i.e.

(2.23) |Aq−1,j (z)| ≤ exp
{

1
rmax{τq−1+j ,β}+ε

}
, r /∈ E,

for j = 1, 2, ..., k− q− 1; and we show that (2.20) holds for q. From (2.18) we
get

(2.24) Aq,j (z) =
k−q−1∑
i=j+1

(
i

j + 1

)
Aq−1,j (z)

f
(i−j−1)
q−1,1 (z)
fq−1,1 (z) .

Since σ2 (f0,j , 0) and by elementary order considerations we get σ2 (fq−1,1, 0) ≤
β, and by Theorem 1.6, we obtain

(2.25)

∣∣∣∣∣f
(i−j−1)
q−1,1 (z)
fq−1,1 (z)

∣∣∣∣∣ ≤ exp
{

1
rβ+ε

}
, r = |z| /∈ E.

From (2.23)-(2.25), we get

(2.26) |Aq,j (z)| ≤ exp
{

1
rmax{τq+j ,β}+ε

}
, r /∈ E.

This proves the induction step, and therefore completes the proof of Lemma
2.9.

Lemma 2.10. Under the assumptions of Lemma 2.9, we have
(2.27) Aq,0 = A0,q +Gq (z) ,

where Gq (z) =
q+1∑
j=2

Hj with

(2.28) Hj =
k−q+j−1∑

i=j

(
i

j − 1

)
Aq−j+1,i (z)

f
(i−j+1)
q−j+1,1 (z)
fq−j+1,1 (z) .

Moreover, Gq (z) satisfies

(2.29) |Gq (z)| ≤ exp
{

1
rmax{τq+1,β}+ε

}
, r = |z| /∈ E.

Proof. (2.27) and (2.28) are the same in [7, Lemma 6.5]. So, we need
only to prove (2.29). We have

|Gq (z)| ≤
q+1∑
j=2

k−q+j−1∑
i=j

(
i

j − 1

)
|Aq−j+1,i (z)|

∣∣∣∣∣f
(i−j+1)
q−j+1,1 (z)
fq−j+1,1 (z)

∣∣∣∣∣ .
By applying (2.20) for the coefficients |Aq−j+1,i (z)| and Theorem 1.6

for the logarithmic derivatives
∣∣∣∣ f(i−j+1)
q−j+1,1(z)
fq−j+1,1(z)

∣∣∣∣ by taking into account that

σ2 (fq−j+1,1, 0) ≤ β, we obtain (2.29).
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3. Proof of theorems

Proof of Theorem 1.6. Suppose that f is meromorphic function in
D (0, R) with a singular point at the origin. By Valiron’s decomposition
lemma we have

(3.1) f (z) = zmφ (z)µ (z)

where
a) The poles and zeros of f in D (0, R′) are precisely the poles and zeros

of φ (z) . The poles and zeros of f in D (R′, R) are precisely the poles
and zeros of µ (z).

b) φ (z) is meromorphic inD (0,∞] and analytic and nonzero inD [R′,∞].
c) µ (z) is meromorphic in D (R) and analytic and nonzero in D (R′).

Set φ̃ (z) = zmφ (z). We have

f ′ (z)
f (z) = φ̃′ (z)

φ̃ (z)
+ µ′ (z)
µ (z) ;

and thus

(3.2)
∣∣∣∣f ′ (z)f (z)

∣∣∣∣ ≤ ∣∣∣∣ φ̃′ (z)φ̃ (z)

∣∣∣∣+
∣∣∣∣µ′ (z)µ (z)

∣∣∣∣ .
Since µ (z) is analytic and non zero in D (R′) , we have

(3.3)
∣∣∣∣µ(j) (z)
µ (z)

∣∣∣∣ ≤M, (j ∈ N) .

Set g (w) = φ̃
( 1
w

)
. Since φ (z) satisfy b), g (w) is meromorphic in C. We have

φ̃ (z) = g (w) such that w = 1
z ; then φ̃′ (z) = −1

z2 g
′ (w) and then

(3.4) φ̃′ (z)
φ̃ (z)

= −1
z2

g′ (w)
g (w) .

By Lemma 2.1, there exists a set E1 ⊂ (1,∞) that has a finite logarithmic
measure such that for all |w| = 1

|z| = 1
r satisfying 1

r /∈ [0, 1) ∪ E1, we have∣∣∣∣g′ (w)
g (w)

∣∣∣∣ ≤ C [T (αr , g) r logα
(

1
r

)
log T

(α
r
, g
)]
,

1
r
/∈ E1,

and by Lemma 2.2 and (3.4), we get

(3.5)
∣∣∣∣ φ̃′ (z)φ̃ (z)

∣∣∣∣ ≤ C [1
r
T0

( r
α
, φ̃
)

logα
(

1
r

)
log T0

( r
α
, φ̃
)]
, r /∈ E∗1 ;

where 1
r = R /∈ E1 ⇔ r /∈ E∗1 and

r0∫
0

χE∗1
t dt =

∞∫
1/r0

χE1
T dT < ∞, (the constant

C > 0 is not the same at each occurrence). Combining (3.2)-(3.3) with (3.5)
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and by taking into account Remark 1.5, we get∣∣∣∣f ′ (z)f (z)

∣∣∣∣ ≤ C [1
r
T0

( r
α
, f
)

logα
(

1
r

)
log T0

( r
α
, f
)]
, r /∈ E∗1 .

We have φ̃′′ (z) = 1
z4 g
′′ (w) + 2

z3 g
′ (w); and so

φ̃′′ (z)
φ̃ (z)

= 1
z4
g′′ (w)
g (w) + 2

z3
g′ (w)
g (w) .

By Lemma 2.1 and Lemma 2.2, we obtain

(3.6)
∣∣∣∣ φ̃′′ (z)φ̃ (z)

∣∣∣∣ ≤ C [1
r
T0

( r
α
, φ̃
)

logα
(

1
r

)
log T0

( r
α
, φ̃
)]2

r /∈ E∗1 .

We have

(3.7) f ′′ (z)
f (z) = φ̃′′ (z)

φ̃ (z)
+ µ′′ (z)

µ (z) + 2 φ̃
′ (z)
φ̃ (z)

µ′ (z)
µ (z) .

Combining (3.6)-(3.7) with (3.3) and by Remark 1.5, we get∣∣∣∣f ′′ (z)f (z)

∣∣∣∣ ≤ C [1
r
T0

( r
α
, f
)

logα
(

1
r

)
log T0

( r
α
, f
)]2

, r /∈ E∗1 .

In general, we can find that

φ̃(k) (z) = 1
z2k g

(k) (w) + ak−1

z2k−1 g
(k−1) (w) + ...+ a1

zk+1 g
′ (w) ;

where a1, ..., ak−1 are integers; thus

(3.8) φ̃(k) (z)
φ̃ (z)

= 1
z2k

g(k) (w)
g (w) + ak−1

z2k−1
g(k−1) (w)
g (w) + ...+ a1

zk+1
g′ (w)
g (w) .

Also by making use of Lemma 2.1 and Lemma 2.2 with (3.8), for r = |z| < r0,
we get,

(3.9)
∣∣∣∣ φ̃(k) (z)
φ̃ (z)

∣∣∣∣ ≤ C [1
r
T0

( r
α
, φ̃
)

logα
(

1
r

)
log T0

( r
α
, φ̃
)]k

r /∈ E∗1 .

We can generalize the equality of f
(k)(z)
f(z) as follows

(3.10) f (k) (z)
f (z) =

j=k∑
j=0

(
k

j

)
φ̃(k−j) (z)
φ̃ (z)

µ(j) (z)
µ (z) ,

where
(
k
j

)
= k!

j!(k−j)! is the binomial coefficient. Combining (3.9)-(3.10), with
(3.3) and Remark 1.5, we obtain∣∣∣∣f (k) (z)

f (z)

∣∣∣∣ ≤ C [1
r
T0

( r
α
, f
)

logα
(

1
r

)
log T0

( r
α
, f
)]k

(k ∈ N) ,
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The same reasoning applies to the case (ii); noting that θ ∈ E2 ⇔ 2π − θ ∈
E∗2 ; so, if E2 ⊂ [0, 2π) has linear measure zero, then E∗2 ⊂ [0, 2π) has also
linear measure zero.

Proof of Theorem 1.9. We divide the proof into three parts:
1) If σn (Aj , 0) ≤ α for all j = 0, 1, . . . , k − 1, then by Lemma 2.7 all

solutions f of (1.16) satisfy σn+1(f, 0) ≤ α.
2) Suppose that σn (Aj , 0) = αj , and let q ∈ {0, 1, ..., k − 1} be the largest

index such that αq = max
0≤j≤k−1

{αj} . By Part 1) all solutions f of (1.16) satisfy

σn+1(f, 0) ≤ αq. Assume that there are q + 1 linearly independent solutions
f0,1, f0,2, ..., f0,q+1 of (1.16) satisfy σn+1(f0,j , 0) < αq for all j = 1, . . . , q + 1.
By Lemma 2.9 with m = q + 1, there exists a solution fq,1 6≡ 0 of (2.17) such
that σn+1(fq,1) < αq and for any ε > 0

(3.11) |Aq,j (z)| ≤ expn
{

1
rmax{τq+j ,β}+ε

}
, r /∈ E.

where τq+j = max
q+j≤l≤k−1

{αl} and j = 1, . . . , k−q−1.We have max {τq+j , β} <
αq, and then

(3.12) |Aq,j (z)| ≤ expn
{

1
rαq−2ε

}
, r /∈ E,

for all j = 1, . . . , k − q − 1 and for ε > 0 small enough. Now, by Lemma
2.10, σn(Aq,0, 0) = σn(A0,q, 0) = αq and by Lemma 2.4, there exists a set
F ⊂ (0, R′) of infinite logarithmic measure such that for all r ∈ F we have

(3.13) |Aq,0 (z)| ≥ expn
{

1
rαq−ε

}
,

where |Aq,j (z)| = M0 (r,Aq,j) . On the other hand, by (2.17)

|Aq,0 (z)| ≤ |
f

(k−q)
q,1

fq,1
|+ |Aq,k−q−1(z)||

f
(k−q−1)
q,1

fq,1
|+ · · ·+ |Aq,1(z)||

f ′q,1
fq,1
|,

and so by (3.12) and Corollary 1.8 with σn+1(fq,1) < αq, we get

(3.14) |Aq,0 (z)| ≤ expn
{

1
rαq−2ε

}
, r /∈ E.

By taking r ∈ F\E, (3.14) contradicts (3.13). Hence, there are at most
q linearly independent solutions f of (1.16) such that σn+1(f) < αq. Since
σn+1(f) ≤ αq for all solutions f of (1.16), there are at least k − q linearly
independent solutions f of (1.16) such that σn+1 (f, 0) = αq.

3) Suppose that all solutions f of (1.16) satisfy σn+1(f, 0) ≤ α, and
assume that there is a coefficient Aj (z) of (1.16) such that σn(Aj) > α.
If q ∈ {0, 1, ..., k − 1} is the largest index such that αq = max

0≤j≤k−1
{αj} ,
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then by part 2), (1.16) has at least k − q linearly independent solutions f
such that σn+1 (f, 0) = αq > α. A contradiction. So, σn(Aj) ≤ α for all
j = 0, 1, . . . , k − 1.

Proof of Theorem 1.13. From (1.16), we can write

(3.15) |A0(z)| ≤
∣∣∣∣f (k)

f

∣∣∣∣+ |Ak−1(z)|
∣∣∣∣f (k−1)

f

∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣f ′f
∣∣∣∣ .

Case (i): σ (Aj , 0) < σ (A0, 0) <∞ (j = 1, ..., k − 1) . Set max{σ(Aj , 0) :
j 6= 0} < β < α < σ(A0, 0). By (1.9), there exists r0 > 0 such that for all r
satisfying r0 ≥ r > 0, we have

(3.16) |Aj(z)| ≤ exp{ 1
rβ
}, j = 1, 2, . . . , k − 1.

By Lemma 2.3, there exists a set F ⊂ (0, R′) of infinite logarithmic measure
such that for all r ∈ F , we have

(3.17) |A0(z)| > exp{ 1
rα
},

where |A0(z)| = M0 (r,A0) . From Theorem 1.6, there exists a set E∗1 ⊂ (0, R′)
that has finite logarithmic measure and a constant C > 0 such that for all
r = |z| satisfying r ∈ (0, R′) \E∗1 , we have

(3.18)
∣∣∣∣f (j) (z)
f (z)

∣∣∣∣ ≤ C

r2k

[
T0

( r
α
, f
)]2k

(j = 1, ..., k − 1) .

Using (3.16)–(3.18) in (3.15), for r ∈ F\E∗1 , we obtain

(3.19) exp{ 1
rα
} ≤ C

r2k

[
T0

( r
α
, f
)]2k

exp{ 1
rβ+ε }.

From (3.19), we obtain that σ2(f, 0) ≥ α.
On the other hand, applying Lemma 2.7 with (1.16), we obtain that

σ2(f, 0) ≤ σ(A0, 0). Since α ≤ σ2(f, 0) ≤ σ(A0, 0) holds for all α < σ(A0, 0),
then σ2(f, 0) = σ(A0, 0).

Case (ii): 0 < σ (Aj , 0) ≤ σ (A0, 0) <∞ and
max {τM (Aj , 0) : σ (Aj , 0) = σ (A0, 0)} < τM (A0, 0) (j = 1, ..., k − 1) .

Set max {τM (Aj , 0) : σ (Aj , 0) = σ (A0, 0)} < µ < ν < τM (A0, 0) and
σ(A0, 0) = σ. By (1.10), there exists r0 > 0 such that for all r satisfying
r0 ≥ r > 0, we have

(3.20) |Aj(z)| ≤ exp{ µ
rσ
}, j = 1, 2, . . . , k − 1.

By Lemma 2.3, there exists a set F ⊂ (0, R′) of infinite logarithmic measure
such that for all r ∈ F and |A0(z)| = M0 (r,A0) , we have

(3.21) |A0(z)| > exp{ ν
rσ
}.
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Combining (3.20)-(3.21) with (3.18) and (3.15), we get for r ∈ F\E∗1 ,

(3.22) exp{ ν
rσ
} ≤ C

r2k

[
T0

( r
α
, f
)]2k

exp{ µ
rσ
}.

From (3.22), we get σ2(f, 0) ≥ σ, and combining this with Lemma 2.7, we
obtain that σ2(f, 0) = σ(A0, 0).

Proof of Theorem 1.14. We begin with the case a = cb (0 < c < 1) .
It is easy to see that τM

(
A(z) exp

{
a
zn

}
, 0
)

= |a| and τM
(
B(z) exp

{
b
zn

}
, 0
)

=
|b|. By Theorem 1.13 case (ii), we get σ2(f, 0) = n. Now, suppose that arg a 6=
arg b. Then, there exist (ϕ1, ϕ2) ⊂ [0, 2π) such that for arg(z) = ϕ ∈ (ϕ1, ϕ2),
we have δb(ϕ) > 0 and δa(ϕ) < 0. From (1.19), we can write

(3.23) |B(z) exp
{ b

zn

}
| ≤

∣∣∣f ′′
f

∣∣∣+ |A(z) exp
{ a

zn

}
|
∣∣∣f ′
f

∣∣∣.
Since max{σ(A, 0), σ(B, 0)} < n, then by Lemma 2.8, (1.14) and (3.23), we
obtain

(3.24) exp
{

(1− ε) δb (ϕ) 1
rn

}
≤ C

r4

[
T0

( r
α
, f
)]4

exp
{

(1− ε) δa (ϕ) 1
rn

}
.

From (3.24) we get σ2(f, 0) ≥ n and combining this with Lemma 2.7, we
obtain that σ2(f, 0) = n.
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Ocjene za logaritamsku derivaciju u okolini singularne točke i
primjene

Saada Hamouda
Sažetak. U ovom članku dane su ocjene u okolini od z = 0

za logaritamsku derivaciju
∣∣∣ f(k)(z)
f(z)

∣∣∣, gdje je f meromofna funkcija
u području oblika D (0, R) = {z ∈ C : 0 < |z| < R}. Dane su
neke primjene na rast rješenja linearnih diferencijalnih jednadžbi
u okolini singularne točke.
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