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q-FRACTIONAL DIRAC TYPE SYSTEMS

Bilender P. Allahverdiev and Hüseyin Tuna

Abstract. This paper is devoted to study a regular q-fractional Dirac
type system. We investigate the properties of the eigenvalues and the
eigenfunctions of this system. By using a fixed point theorem we give a
sufficient condition on eigenvalues for the existence and uniqueness of the
associated eigenfunctions.

1. Introduction

q-calculus deals with the investigation and applications of quantum
derivatives and quantum integrals. It is an interesting topic having inter-
connections with various problems of mathematical physics and quantum me-
chanics ([8–10,12,14,16,17,23,24,30]). For the q-calculus, we refer the reader
to the books [7, 13,18].

The fractional q-calculus is the generalization of the q-calculus. In
the recent years, some results have been derived in q-fractional equations
[5–7, 15, 20–22, 25, 26]. Mansour [25] introduced q-fractional Sturm-Liouville
problems containing the left-sided Caputo q-fractional derivative and the
right-sided Riemann-Liouville q-fractional derivative. The author used a
fixed point theorem to introduce a sufficient condition on eigenvalues for
the existence and uniqueness of the associated eigenfunctions of q-fractional
Sturm-Liouville problems. Al-Towailb studied the regular q-fractional Sturm-
Liouville problems. The author proved properties of the eigenvalues and the
eigenfunctions in [5]. In [26], the author introduced the essential q-fractional
variational analysis needed in proving the existence of a countable set of
real eigenvalues and associated orthogonal eigenfunctions for the regular q-
fractional Sturm-Liouville problems. Allahverdiev and Tuna [3] proved a the-
orem on the completeness of the system of eigenvectors and associated vectors
of the dissipative q-fractional Sturm-Liouville operators.
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It is well known that the Dirac systems defined by(
0 − d

dx
d
dx 0

)(
y1 (x)
y2 (x)

)
+
(
p (x) 0

0 r (x)

)(
y1 (x)
y2 (x)

)
(1.1)

= λ

(
y1 (x)
y2 (x)

)
,

where x ∈ [a, b], play an important role in relativistic quantum mechan-
ics. These systems describe spin 1/2 particles, including electrons, neutrinos,
muons, protons, neutrons, quarks, and their corresponding anti-particles. For
the history and details of the Dirac systems, see [11, 19, 29, 31] and their ref-
erences. In this paper, we are interest in a q−fractional version of the system
(1.1) defined by(

0 −Dαq,a−
cDαq,0+ 0

)(
y1 (x)
y2 (x)

)
+
(
p (x) 0

0 r (x)

)(
y1 (x)
y2 (x)

)
= λ

(
ω1 (x) 0

0 ω2 (x)

)(
y1 (x)
y2 (x)

)
,

where x ∈ (0, a). To the best of the authors’ knowledge there are no results
available in the literature considering this system. These results are a gener-
alization of the regular q-Dirac system introduced in [2].

2. Preliminaries

First of all, we recall the notations and some basic properties for q-
fractional calculus theory, which are useful in the following discussion (see
[1, 4, 7, 13, 18, 25, 27, 28]). Throughout this paper, we assume that 0 < q < 1
and A is a q-geometric set, i.e., qx ∈ A whenever x ∈ A. For every t > 0, we
define the sets At,q, A∗t,q and At,q, respectively, by

At,q := {tqn : n ∈ N} , A∗t,q := At,q ∪ {0} ,
and

At,q := {±tqn : n ∈ N} .

Let y (.) be a complex-valued function on A. The q-difference operator Dq
is defined by

Dqy (x) = y (qx)− y (x)
(q − 1)x for all x ∈ A\ {0} .

The q-derivative at zero is defined by

Dqy (0) = lim
n→∞

y (qnx)− y (0)
qnx

(x ∈ A),
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if the limit exists and does not depend on x. A right-inverse toDq, the Jackson
q-integration is given by∫ x

0
f (t) dqt = x (1− q)

∞∑
n=0

qnf (qnx) (x ∈ A),

provided that the series converges, and∫ b

a

f (t) dqt =
∫ b

0
f (t) dqt−

∫ a

0
f (t) dqt (a, b ∈ A).

Let L2
q(0, a) be the space of all complex-valued functions defined on [0, a]

such that

‖f‖ :=
(∫ a

0
|f (x)|2 dqx

)1/2
<∞.

L2
q(0, a) is a separable Hilbert space with the inner product

(f, g) :=
∫ a

0
f (x) g (x)dqx, f, g ∈ L2

q(0, a),

and the orthonormal basis

φn (x) =
{ 1√

x(1−q)
, x = aqn,

0, otherwise,

where n = 0, 1, 2, ...(see [7]).

Definition 2.1. A function f which is defined on A, 0 ∈ A, is said to
be q-regular at zero if

lim
n→∞

f (xqn) = f (0)

for every x ∈ A (see [7]).

Let C (A) denote the space of all q-regular at zero functions on A. This
space is a normed space with the norm function

‖f‖ = sup {|f (xqn)| , x ∈ A, n ∈ N} .

(see [7]).

Definition 2.2. A q-regular at zero function f which is defined on A∗t,q
is said to be q-absolutely continuous if

∞∑
j=0

∣∣f (uqj)− f (uqj+1)∣∣ ≤ K, ∀u ∈ A∗t,q,
for K is a constant depending on the function f (see [7]).
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The space of all q-absolutely continuous functions on A∗t,q is denoted by
ACq

(
A∗t,q

)
. Note that ACq(A∗q,t) ⊆ C(A∗q,t).

For n ∈ N and α, a1, .., an ∈ C; the q-shifted factorial, the multiple q-
shifted factorial and the q-binomial coefficients are defined by

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(
1− aqk

)
, (a; q)∞ =

∞∏
k=0

(
1− aqk

)
,

(a1, a2, ..., ak : q) =
k∏
j=1

(aj ; q)n

and [
α

0

]
q

= 1,
[
α

n

]
q

=
(1− qα)

(
1− qα−1) ... (1− qα−n+1)

(q; q)n
,

respectively (see [7]). The generalized q-shifted factorial is defined by

(a; q)ν =
(a; q)∞

(aqν ; q)∞
(ν ∈ R)

(see [7]). The q-Gamma function is defined by

Γq (z) =
(q; q)∞
(qz; q)∞

(1− q)1−z
, z ∈ C, |q| < 1

(see [7]).

Definition 2.3. Let 0 < α ≤ 1. The left-sided and right-sided Riemann-
Liouville q-fractional operator are given by the formulas

Iαq,a+f (x) = xα−1

Γq (α)

x∫
a

(
qt

x
; q
)
α−1

f (t) dqt,(2.1)

Iαq,b−f (x) = 1
Γq (α)

b∫
qx

tα−1
(qx
t

; q
)
α−1

f (t) dqt,(2.2)

respectively (see [25]).

Definition 2.4. Let α > 0 and dαe = m. The left-sided and right-sided
Riemann-Liouville fractional q-derivatives of the order α are defined, respec-
tively, as follows:

Dαq,a+f (x) = Dmq Im−αq,a+ f (x) ,(2.3)

Dαq,b−f (x) =
(
−1
q

)m
Dmq−1Im−αq,b− f (x) .(2.4)
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Similar formulas give the left-sided and right-sided Caputo fractional q-
derivatives of order α, respectively as follows:

cDαq,a+f (x) = Im−αq,a+ Dmq f (x) ,

cDαq,b−f (x) =
(
−1
q

)m
Im−αq,b− D

m
q−1f (x)

(see [25]).

In order to prove the main results, we also need the following lemmas.
One can find them in [25].

Lemma 2.5.
i) The left-sided Riemann-Liouville q-fractional operator satisfies the

semi-group property

(2.5) Iαq,a+Iβq,a+ = Iα+β
q,a+ f (x) , x ∈ A∗q,a,

for any function defined on Aq,a and for any values of α and β.
ii) The right-sided Riemann-Liouville q-fractional operator satisfies the

semi-group property

Iαq,b−I
β
q,b−f (x) = Iα+β

q,b− f (x) , x ∈ A∗q,b,

for any function defined on Aq,b and for any values of α and β .

Lemma 2.6. Let α ∈ (0, 1) .
i) If f ∈ L1

q

(
A∗q,a

)
such that Iαq,0+f ∈ ACq

(
A∗t,q

)
then

cDαq,0+Iαq,0+f (x) = f (x)−
Iαq,0+f (0)
Γq (1− α)x

−α.

Moreover, if f is bounded on A∗t,q then
cDαq,0+Iαq,0+f (x) = f (x) .

ii) If f ∈ L1
q (Aq,a) then

Dαq,0+Iαq,0+f (x) = f (x) .

iii) If f is a function defined on A∗t,q then

cDαq,a−I
α
q,a−f (x) = f (x)− a−α

Γq (1− α)

(qx
a

; q
)
−α

(
Iαq,a−f

)(a
q

)
,

Dαq,a−I
α
q,a−f (x) = f (x) ,

Iαq,a−D
α
q,a−f (x) = f (x)− aα−1

Γq (α)

(qx
a

; q
)
α−1

(
I1−α
q,a−f

)(a
q

)
.

iv) If f ∈ ACq
(
A∗t,q

)
then

Iαq,0+
cDαq,0+f (x) = f (x)− f (0) .
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We denote by L2
q,ω

(
A∗t,α;E

)
(E := R2) the Hilbert space which consists

of vector-valued functions with inner product

(f, g) :=
∫ a

0
f1(x)g1(x)ω1(x)dqx(2.6)

+
∫ a

0
f2(x)g2(x)ω2(x)dqx,

where f(x) =
(
f1 (x)
f2 (x)

)
, g(x) =

(
g1 (x)
g2 (x)

)
, fi(x), gi(x), ωiα(x) (i = 1, 2)

are real-valued functions on A∗t,α and ωi (x) > 0, ∀x ∈ A∗t,α, (i = 1, 2) .

3. q-Fractional Dirac Systems

In the present section, our goal is to study the q-fractional Dirac system
which includes the right-sided Caputo and the left-sided Riemann-Liouville
fractional derivatives of same order α. Throughout this section, we assume
α ∈ (0, 1) .

Let

τq,αy :=
(

0 −Dαq,a−
cDαq,0+ 0

)(
y1
y2

)
+
(
p (x) 0

0 r (x)

)(
y1
y2

)
=
(
−Dαq,a−y2 + p (x) y1
cDαq,0+y1 + r (x) y2

)
,

where y :=
(
y1
y2

)
. With this notation, we consider the q-fractional Dirac

type system:
(3.1) τq,αfλ = λωfλ, a ≤ x ≤ b <∞,

where fλ =
(
f
λ1
f
λ2

)
, p(.), r(.) are real-valued functions defined in A∗t,α,

ω(x) =
(
ω1 (x) 0

0 ω2 (x)

)
, ωi(.) are real-valued functions defined in A∗t,α

and ωiα(x) > 0, ∀x ∈ A∗t,α, (i = 1, 2) , λ is a complex eigenvalue parameter
and boundary conditions

c11fλ1 (0) + c12I1−α
q,a−fλ2 (0) = 0,(3.2)

c21fλ1 (a) + c22I1−α
q,a−fλ2

(
a

q

)
= 0,(3.3)

with c211 + c212 6= 0 and c221 + c222 6= 0.
To pass from the differential expression Tq,α := ω−1τq,α to operators, we

introduce the space H ⊆ L2
q,ω

(
A∗t,α;E

)
∩ C

(
A∗t,α;E

)
which consists of all

q-regular at zero functions satisfying the conditions (3.2) and (3.3) with inner
product (2.6).
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Theorem 3.1. The operator Tq,α generated by q-fractional Dirac type
system (FD) defined by (3.1)-(3.3) is formally self-adjoint on H.

Proof. Let u (.) , z (.) ∈ H. Then, we have

(Tq,αu, z)− (u, Tq,αz) =
∫ a

0

(
cDαq,0+u1 + r (x)u2

)
z2dqx

+
∫ a

0

(
−Dαq,a−u2 + p (x)u1

)
z1dqx

−
∫ a

0
u2

(
cDαq,0+z1 + r (x) z2

)
dqx

−
∫ a

0
u1

(
−Dαq,a−z2 + p (x) z1

)
dqx

=
∫ a

0

(
cDαq,0+u1

)
z2dqx−

∫ a

0

(
Dαq,a−u2

)
z1dqx

−
∫ a

0
u2

(
cDαq,0+z1

)
dqx+

∫ a

0
u1

(
Dαq,a−z2

)
dqx.

Since ∫ a

0

(
cDαq,0+u1

)
z2dqx =

∫ a

0
u1

(
−Dαq,a−z1

)
dqx

−

[
u1 (a) I1−α

q,a−z2

(
a

q

)
− u1 (0) I1−α

q,a−z2 (0)
]

and ∫ a

0
u2

(
cDαq,0+z1

)
dqx =

∫ a

0

(
−Dαq,a−u2

)
z1dqx

−

[
z1 (a) I1−α

q,a−u2

(
a

q

)
− z1 (0) I1−α

q,a−u2 (0)
]
,

we get

(3.4) (Tq,αu, z)− (u, Tq,αz) = [u, z] (a)− [u, z] (0) ,

where [y, z] (x) := y1 (x) I1−α
q,a−z2 (x) − z1 (x)I1−α

q,a−y2 (x) . We proceed to show
that the equality (Tq,αu, z) = (u, Tq,αz) for any u (.) , z (.) ∈ H. From the
boundary conditions (3.2) and (3.3), we get [u, z]a = 0 and [u, z]0 = 0. Con-
sequently,

(3.5) (Tq,αu, z) = (u, Tq,αz) .

This completes the proof.

Lemma 3.2. All eigenvalues of the operator Tq,α generated by q-FD system
defined by (3.1)-(3.3) are real.



124 B. P. ALLAHVERDIEV AND H. TUNA

Proof. Let µ be an eigenvalue with an eigenfunction z (x) . From the
equality (3.5), we get
(3.6) (Tq,αz, z) = (z, Tq,αz) = (z, µz) = µ (z, z) .
On the other hand,
(3.7) (Tq,αz, z) = (µz, z) = µ (z, z) .
It follows from (3.6) and (3.7) that

µ (z, z) = µ (z, z) , (µ− µ) (z, z) = 0.
Since z 6= 0, we get µ = µ.

Lemma 3.3. If µ1 and µ2 are two different eigenvalues of the operator
Tq,α generated by q-FD system defined by (3.1)-(3.3), then the corresponding
eigenfunctions θ and η are orthogonal.

Proof. Let µ1 and µ2 be two different real eigenvalues with correspond-
ing eigenfunctions θ and η, respectively. From (3.5), we obtain

(Tq,αθ, η) = (θ, Tq,αη) , (µ1θ, η) = (θ, µ2η)
(µ1 − µ2) (θ, η) = 0.

Since µ1 6= µ2, we obtain that θ (x) and η (x) are orthogonal.

Now let u (x) =
(
u1 (x)
u2 (x)

)
, z (x) =

(
z1 (x)
z2 (x)

)
∈ H. Then, we define

the Wronskian of u (x) and z (x) by
W (u, z) (x) = u1 (x) I1−α

q,a−z2 (x)− z1 (x) I1−α
q,a−u2 (x) .

Theorem 3.4. The Wronskian of any solution of Eq. (3.1) is independent
of x.

Proof. Let u (x) and z (x) be two solutions of Eq. (3.1). By Green’s
formula (3.4), we have

(Tq,αu, z)− (u, Tq,αz) = [u, z] (a)− [u, z] (0) .
Since Tq,αu = λu and Tq,αz = λz, we have

(λu, z)− (u, λz) = [u, z] (a)− [u, z] (0) ,(
λ− λ

)
(u, z) = [u, z] (a)− [u, z] (0) .

Since λ ∈ R, we have [u, z] (a) = [u, z] (0) = W (u, z) (0) , i.e., the Wronskian
is independent of x.

Corollary 3.5. If u (x) and z (x) are both solutions of Equation (3.1),
then either W (u, z) (x) = 0 or W (u, z) (x) 6= 0 for all x ∈ [0, a] .

Theorem 3.6. Any two solutions of Equation (3.1) are linearly dependent
if and only if their Wronskian is zero.
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Proof. Let u (x) and z (x) be two linearly dependent solutions of equa-
tion (3.1). Then, there exists a constant k > 0 such that u (x) = k z (x) .
Hence

W (u, z) =

∣∣∣∣∣ u1 (x) I1−α
q,a−u2 (x)

z1 (x) I1−α
q,a−z2 (x)

∣∣∣∣∣ =

∣∣∣∣∣ kz1 (x) kI1−α
q,a−z2 (x)

z1 (x) I1−α
q,a−z2 (x)

∣∣∣∣∣ = 0.

Conversely, the Wronskian W (u, z) = 0 and therefore, u (x) = kz (x) , i.e.,
u (x) and z (x) are linearly dependent.

Before proceeding further, we need the following auxiliary functions.

We introduce the function φ (x) :=
(

(Iαq,a−1)(x)
(Iαq,0+1)(x)

)
. Further, the general

solution of the equation τq,αψ = 0, i.e.,

(
0 Dαq,a−

cDαq,0+ 0

)(
ψ1
ψ2

)
= 0

is given by

ψ =
(

ξ1
ξ2ϕ (α, a, x)

)
,

where

(3.8) ϕ (α, a, x) =
aα−1 ( qx

a : q
)
α−1

Γq (α) .

Lemma 3.7. Let

∆ := c11c12 − c11c21

and

(3.9) Fλ (f) := {V − λω} fλ,

where V (x) :=
(
p (x) 0

0 r (x)

)
. Assume ∆ 6= 0. Then on the space

C
(
A∗t,α

)
, the q-FD system defined by (3.1)-(3.3) is equivalent to the inte-

gral equation

fλ (x) = −MFλ (f) +A (x)T +B (x)Z,
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where the coefficients M,A, T,B and Z are

M :=
(

0 Iαq,0+

Iαq,a− 0

)
,

A (x) :=
(

c12c22
∆

− c21c12
∆ ϕ (α, a, x)

)
,

T := −Iαq,a−Fλ1 (y) |x=0,

B (x) :=
(

c12c21
∆

− c21c11
∆ ϕ (α, a, x)

)
,

Z := −I1
q,0+Fλ2 (y) |x=a,

and the function ϕ (α, a, x) is defined in (3.8).

Proof. Using fractional composition rules and (3.9), we can rewrite the
equation (3.1) as follows:

τq,α [fλ (x) +MFλ (f)] = 0.

Thus, we get

fλ (x) +MFλ (f) =
(

ξ1
ξ2ϕ (α, a, x)

)
,

i.e.,

(3.10) fλ (x) = −MFλ (f) +
(

ξ1
ξ2ϕ (α, a, x)

)
.

Now, we shall connect the coefficients ξi (i = 1, 2) to the values cij (i, j = 1, 2)
in the boundary conditions (3.2)-(3.3). From the equation (3.10), we obtain

Kfλ (x) = −KMFλ (f) +K

(
ξ1

ξ2ϕ (α, a, x)

)
,

where K :=
(

0 I1−α
q,a−

1 0

)
. Then we have

(
I1−α
q,a−fλ2
f
λ1

)
= −

(
I1
q,a− 0
0 Iαq,0+

)
Fλ (f) +

(
I1−α
q,a− [ξ2ϕ (α, a, x)]

ξ1

)
,

i.e, (
I1−α
q,a−fλ2
f
λ1

)
=
(
−I1

q,a−Fλ1 (f)
−Iαq,0+Fλ2 (f)

)
+
(
ξ2
ξ1

)
.
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By virtue of (3.2) and (3.3), we conclude that

f
λ1 (0) = ξ1,

f
λ1 (a) = −Iαq,0+Fλ2 (y) |x=a +ξ1,

I1−α
q,a−fλ2 (0) = −I1

q,a−Fλ1 (y) |x=0 +ξ2,

I1−α
q,a−fλ2

(
a

q

)
= ξ2.

This leads to the system of equations

c11ξ1 + c12ξ2 = −c12, T c21ξ1 + c22ξ2 = −c21Z.

Since ∆ 6= 0, the solutions for coefficients ξj , j = 1, 2 is unique:

ξ1 = c12 (c21Z − c22T )
∆ ,

ξ2 = c21 (c12T − c11Z)
∆ .

We have finished the proof of the lemma.

Now, we prove the existence and uniqueness of eigenfunction of the regular
q-FD system defined by (3.1)-(3.3). In the next result, we use the following
notations:

A := ‖A (x)‖C , B := ‖B (x)‖C , Sφ := ‖φ (x)‖C ,

where ‖.‖C denotes the supremum norm on the space C
(
A∗t,α, E

)
.

Theorem 3.8. Let α ∈ (0, 1) and assume ∆ 6= 0. Then unique continuous
function yλ for the regular q-FD system defined by (3.1)-(3.3) corresponding
to each eigenvalue obeying

(3.11) ‖V − λω‖C ≤
1

Sφ +A ‖φ (a)‖C +Ba

exists and such eigenvalue is simple.

Proof. Let us define the mapping L : C
(
A∗t,α, E

)
→ C

(
A∗t,α, E

)
by

Lf := −MFλ (f) +A (x)T +B (x)Z.

Now, we show that the equation (3.1) can be interpreted as a fixed point
condition on the space C

(
A∗t,α, E

)
. Using the following estimate

‖Fλ (g)− Fλ (h)‖C ≤ ‖g − h‖C ‖V − λω‖C ,
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we conclude that

‖Lg − Lh‖C ≤ ‖g − h‖C ‖V − λω‖C Sφ +A ‖g − h‖C ‖φ (a)‖C
+Ba ‖g − h‖C ‖V − λω‖C
= ‖V − λω‖C ‖g − h‖C (Sφ +A ‖φ (a)‖C +Ba)
= Π ‖g − h‖C ,

where Π = ‖V − λω‖C (Sφ +A ‖φ (a)‖C +Ba) . By the condition (3.11), the
mapping L is a contraction on the space C

(
A∗t,α, E

)
so it has a unique fixed

point. Therefore, such eigenvalue is simple.

Conclusion 3.9. In this paper, we study regular q-fractional Dirac sys-
tems. In this context, we investigate the properties of the eigenvalues and
the eigenfunctions of this system. Finally, we give a sufficient condition on
eigenvalues for the existence and uniqueness of the associated eigenfunctions.
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q-frakcijski sustavi Diracovog tipa

Bilender P. Allahverdiev i Hüseyin Tuna

Sažetak. Ovaj članak je posvećen proučavanju regularnih
q-frakcijskih sustava Diracovog tipa. Proučavaju se svojstva svo-
jstvenih vrijednosti i svojstvenih funkcija tih sustava. Korišten-
jem teorema o fiksnoj točki, daje se dovoljan uvjet na svojstvene
vrijednosti za postojanje i jedinstvenost pridruženih svojstvenih
funkcija.
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