RAD HAZU. MATEMATICKE ZNANOSTI
Vol. 24 = 542 (2020): 117-130
DOI: https://doi.org/10.21857/mwolvcjxvy

¢-FRACTIONAL DIRAC TYPE SYSTEMS

BILENDER P. ALLAHVERDIEV AND HUSEYIN TUNA

ABSTRACT. This paper is devoted to study a regular g-fractional Dirac
type system. We investigate the properties of the eigenvalues and the
eigenfunctions of this system. By using a fixed point theorem we give a
sufficient condition on eigenvalues for the existence and uniqueness of the
associated eigenfunctions.

1. INTRODUCTION

g-calculus deals with the investigation and applications of quantum
derivatives and quantum integrals. It is an interesting topic having inter-
connections with various problems of mathematical physics and quantum me-
chanics ([8-10,12,14,16,17,23,24,30]). For the g-calculus, we refer the reader
to the books [7,13,18].

The fractional g-calculus is the generalization of the ¢-calculus. In
the recent years, some results have been derived in g-fractional equations
[6-7,15,20-22,25,26]. Mansour [25] introduced g¢-fractional Sturm-Liouville
problems containing the left-sided Caputo ¢-fractional derivative and the
right-sided Riemann-Liouville g-fractional derivative. The author used a
fixed point theorem to introduce a sufficient condition on eigenvalues for
the existence and uniqueness of the associated eigenfunctions of ¢-fractional
Sturm-Liouville problems. Al-Towailb studied the regular g-fractional Sturm-
Liouville problems. The author proved properties of the eigenvalues and the
eigenfunctions in [5]. In [26], the author introduced the essential g-fractional
variational analysis needed in proving the existence of a countable set of
real eigenvalues and associated orthogonal eigenfunctions for the regular g-
fractional Sturm-Liouville problems. Allahverdiev and Tuna [3] proved a the-
orem on the completeness of the system of eigenvectors and associated vectors
of the dissipative ¢-fractional Sturm-Liouville operators.
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It is well known that the Dirac systems defined by

o (4 F)E) - H) (5

~(06)

where = € [a,b], play an important role in relativistic quantum mechan-
ics. These systems describe spin 1/2 particles, including electrons, neutrinos,
muons, protons, neutrons, quarks, and their corresponding anti-particles. For
the history and details of the Dirac systems, see [11,19,29,31] and their ref-
erences. In this paper, we are interest in a g—fractional version of the system
(1.1) defined by

(g 0 ) (00 (0 00 ) (560
(7wt ) (06 )

where © € (0,a). To the best of the authors’ knowledge there are no results
available in the literature considering this system. These results are a gener-
alization of the regular ¢-Dirac system introduced in [2].

2. PRELIMINARIES

First of all, we recall the notations and some basic properties for ¢-
fractional calculus theory, which are useful in the following discussion (see
[1,4,7,13,18,25,27,28]). Throughout this paper, we assume that 0 < ¢ < 1
and A is a ¢-geometric set, i.e., gr € A whenever z € A. For every t > 0, we
define the sets A; 4, A7 , and A; 4, respectively, by

Apg:={tq" :n e N}, A g =AU {0},
and
Ay g = {£tq" : n € N}.

Let y (.) be a complex-valued function on A. The g-difference operator D,
is defined by

y(qz) —y (x)
Dyy (x) = for all z € A\ {0}.
The g-derivative at zero is defined by

Dyy(0) = lim y(g"z) —y(0)

n—oo q”m

(z € A),
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if the limit exists and does not depend on . A right-inverse to D, the Jackson
g-integration is given by

/;f(t)dqt=w(1—q)Zq”f(q"m) (x € 4),

n=0

provided that the series converges, and

/abf(t)dqt:/Obf(t)dqt—/oaf(t)dqt (a,b € A).

Let Li (0, a) be the space of all complex-valued functions defined on [0, a

such that
a 1/2
= ([ 1@l de) " <o

2 . . . .
L7(0,a) is a separable Hilbert space with the inner product

(fg) = / @) 9 @dgr, 1.9 € L2(0,a),

and the orthonormal basis

1 _ n
bula) =4 Vet T
0, otherwise,

where n =0, 1,2, ...(see [7]).

DEFINITION 2.1. A function f which is defined on A, 0 € A, is said to
be q-reqular at zero if

Jim_ f(2q") = f(0)

for every x € A (see [7]).

Let C (A) denote the space of all g-regular at zero functions on A. This
space is a normed space with the norm function

If]l = sup{|f (zq")|, z € A, n € N}.
(see [7]).

DEFINITION 2.2. A g-regular at zero function f which is defined on A;
is said to be q-absolutely continuous if

SIS (ue?) - f (wg )] < K, Vue 47,
7=0

for K is a constant depending on the function f (see [7]).
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The space of all g-absolutely continuous functions on A;
AC, (A;,) - Note that AC,(Az,) € C(A% ).

For n € N and «,aq,.. an e C; the g-shifted factorial, the multiple q-
shifted factorial and the g-binomial coefficients are defined by

— oo
(a;q)y =1, ( H 1—aq , (a39) o Hl—aq
k=0 k=0

14 1s denoted by

k
(a17a27"'7ak:q H a;;q

and

)

{a} _ [a] _ (1—4¢%) (1 — qafl) (1 — qa*"“)
01, a (%:9),,
respectively (see [7]). The generalized g-shifted factorial is defined by
(a;9)

a;q), = ——<— (veR

0= fagrig). P
(see [7]). The ¢-Gamma function is defined by

) 1-2

Ty(z) = —2(1— , 2z €C, <1

(see [7]).

DEFINITION 2.3. Let 0 < a < 1. The left-sided and right-sided Riemann-
Liouville q-fractional operator are given by the formulas

(2.1) Tued 0= s [ (%) 10
b
(22 Ty @) = g [ (Sea) S

respectively (see [25]).

DEFINITION 2.4. Let oo > 0 and [a] = m. The left-sided and right-sided
Riemann-Liouville fractional q-derivatives of the order a are defined, respec-
tively, as follows:

(2.3) D2, f (2) = DITI0f (),

(2.4) DYy f (z) = (‘ql)mpm I f (x).
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Similar formulas give the left-sided and right-sided Caputo fractional q-
derivatives of order «, respectively as follows:

Do+ f(2) =17°Dg f (2),

q,at
D, f(z) = (j) oD, f (x)
(see [25]).

In order to prove the main results, we also need the following lemmas.
One can find them in [25].
LEMMA 2.5.
i) The left-sided Riemann-Liowville g-fractional operator satisfies the
semi-group property

(2.5) T8I o =T f(2), @€ A

q q,a’

for any function defined on Ay, and for any values of o and .
it) The right-sided Riemann-Liouville q-fractional operator satisfies the
semi-group property
I, I0, () =T0 7 f (w), w € A,
for any function defined on Aqp and for any values of o and B .
LEMMA 2.6. Let a € (0,1).
i) If f € Ly (A; ) such that T3 f € AC, (Aj,) then

20+ (0
‘Do oiLoor f(x) = f(x) — Fq,(()l_(a))x
q

Moreover, if f is bounded on Aj , then
CD;WI;MJC (x) = f ().
i) If f € Ly (Aqa) then

Dimfﬁmf(ﬂ?) = f(x).
i) If f is a function defined on A}, then

—x

a—Ot

DT ) =10~ g (), (B9) ().
Dia-Tga-f (@) = f (@),

a—1
i1 (2629 )
i) If f € ACy (A7) then
2o+ Do+ [ (x) = f(z) = £(0).
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We denote by L?,w (A* E) (E := R?) the Hilbert space which consists

t,o
of vector-valued functions with inner product

(2.6) (f,9) = /Oa fi(@)g1 (@) ()dgx
+f @) m@en(n)d,

where f(0) = (110 ), @)= (215, 0, 50), wialo) (1= 1,2

are real-valued functions on Aj , and w; (v) >0, Vo € A7 ,, (i=1,2).

3. ¢-FRACTIONAL DIRAC SYSTEMS

In the present section, our goal is to study the g¢-fractional Dirac system
which includes the right-sided Caputo and the left-sided Riemann-Liouville
fractional derivatives of same order a. Throughout this section, we assume
ae(0,1).

Let

0 =Dy .- Y1 p(x) 0 Y1
.: q,a
TqA,ozy . ( CD((;,0+ O ) ( Yo > + ( O r (I) Yo
_ ( —Dg ,-y2 +p ()1 )
“Dyo+y1 +r@y )’

where y := ( ?;1 > . With this notation, we consider the g¢-fractional Dirac
2

type system:

(3.1) Tgafy =dwfy, a <z <b < oo,
where f) = < ji*; >, p(.), 7(.) are real-valued functions defined in A7 ,,
A
w(x) = w () 0 , wi(.) are real-valued functions defined in A}
0 W2 (.’L‘) ,Q

and wie(z) > 0, Vo € A7, (i=1,2), X is a complex eigenvalue parameter
and boundary conditions

(3.2) Cllf,\l (O) + 6121-;;1(}.]&2 (0) =0,
(3.3) co1fy1 (a) + 6221(;;3‘}32 <Z) =0,

with ¢, + ¢, # 0 and ¢3; + ¢35 # 0.
To pass from the differential expression Ty o = ofqu,a to operators, we
introduce the space H C L2 , (A ,; E) N C (A ,; E) which consists of all

t,a t,a
g-regular at zero functions satisfying the conditions (3.2) and (3.3) with inner

product (2.6).
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THEOREM 3.1. The operator T, . generated by g-fractional Dirac type
system (FD) defined by (3.1)-(3.3) is formally self-adjoint on H.

PROOF. Let u(.),z(.) € H. Then, we have
(Tg,att, 2) — (u, Ty q2) = / (CDZ"Mm + 7 (z) u) Zadgx
0
+ / <—D3’G7U2 +p(x) u1> Zrdgx
0
— | ua(°D* 21+ 7 ()22 )dg
[ (2o )i
a
_ / Uy (—Dg”a, 2o + p (x) zl)dqx
0
= / (CDZII’O+’LL1) Tqu$ — / <Dq af’LL2> zldqx
0 0

a

7\/ UQ(C,D;O+21>dQ‘T+\/ (751 (D((;a_ZQ)dql‘.
0 ) 0 ’

Since
/O (“DY g+ ur) Z2dgw :/0 u1<—D;a,zl)dqx
- [ul ()., %2 (Z) — uy (0) quazz(o)]
and
/0 uQ( D O+zl)dqa::/0 ( D ,U2) Zd
— |z (a) I <> —21(0)Z, %uy (0)] :
we get
(3.4) (Ty,at, 2) — (u, Ty .o2) = [u, 2] (@) — [u, 2] (0),

where [y, 2] () = y1 () I;;sz (z) — 2z (z)I* .- Y2 (z) . We proceed to show
that the equality (Tyau,2) = (u,Tyaz) for any u(.),z(.) € H. From the
boundary conditions (3.2) and (3.3), we get [u, z], = 0 and [u, z], = 0. Con-
sequently,

(3.5) (Th.au, 2) = (u, Tg.a%) .

This completes the proof. 0

LEMMA 3.2. All eigenvalues of the operator Ty o generated by q-FD system
defined by (3.1)-(3.3) are real.
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PROOF. Let u be an eigenvalue with an eigenfunction z (x). From the
equality (3.5), we get

(3.6) (Tyaz,2) = (2, Tg.a2) = (z,u2) =0 (2, 2).
On the other hand,
(3.7 (Tyaz,2) = (p2,2) = p(2,2) .

It follows from (3.6) and (3.7) that
p(z,2) =n(z2), (p—m)(z2)=0.
Since z #£ 0, we get u = [. 0
LEMMA 3.3. If uy and us are two different eigenvalues of the operator

Ty« generated by g-FD system defined by (3.1)-(3.3), then the corresponding
eigenfunctions 6 and n are orthogonal.

PROOF. Let p1 and po be two different real eigenvalues with correspond-
ing eigenfunctions 6 and 7, respectively. From (3.5), we obtain

(T4,00,m) = (0,Tq,am) , (110,m) = (0, pan)

(11 = p2) (0,m) = 0.
Since 1 # pa2, we obtain that 6 (x) and 7 (x) are orthogonal. O

Now let u (z) = w (@) , z(x) = ( 2 (@) ) € H. Then, we define
us (x) 23 (x)
the Wronskian of u (z) and z (z) by
W (u, z) () = u1 () I;;f‘zz (x) — 21 (z) I{;fug (x).
THEOREM 3.4. The Wronskian of any solution of Eq. (3.1) is independent
of x.

PROOF. Let u(x) and z (z) be two solutions of Eq. (3.1). By Green’s
formula (3.4), we have

(Ty,au, 2) = (u, Tgaz) = [u, 2] (@) — [u, 2] (0) .

Since Ty ou = Au and Tj o2 = Az, we have
(Au, 2) = (u; A2) = [u, 2] (@) — [u, 2]
(A =A) (u,2) = [u,2] (@) = [u, 2]

Since A € R, we have [u, 2] (a) = [u, 2] (0) = W (u,Z) (0), i.e., the Wronskian
is independent of x. 0

COROLLARY 3.5. Ifu(z) and z(zx) are both solutions of Equation (3.1),
then either W (u, z) () =0 or W (u, z) (x) # 0 for all x € [0,4a].

THEOREM 3.6. Any two solutions of Equation (3.1) are linearly dependent
if and only if their Wronskian is zero.
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PROOF. Let u(x) and z (x) be two linearly dependent solutions of equa-
tion (3.1). Then, there exists a constant k > 0 such that u(z) = k z(z).
Hence

kzy (z) kI %2 ()

| m@) T up(2) |
W(u,z) = 21 () qu—%Q(x) ‘_ z1 ()

g,a™

Conversely, the Wronskian W (u, z) = 0 and therefore, u (x) = kz (z), i.e.,
u(z) and z (z) are linearly dependent. 0

Before proceeding further, we need the following auxiliary functions.

e 1
We introduce the function ¢ (z) := < (Zga- D))

(Iqa,m () ) . Further, the general

solution of the equation 74,79 =0, i.e.,

(o, ) ()=
Dy 0 ¥

is given by
_ &1
w_ ( 524)0(0470471') ) ’
where
aa_l (% : q)a—l

LEMMA 3.7. Let
A= cr1c12 — cric21

and
(3.9) Fy(f) :={V = Mw} [,

where V (z) = (pgc) r(Oac)

C(A;,), the ¢-FD system defined by (3.1)-(3.3) is equivalent to the inte-
gral equation

). Assume A # 0. Then on the space

Ia(x) =-MF\(f)+A(@@)T + B(x) Z,
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where the coefficients M, A,T, B and Z are

0 e
— q,0F
e, )

C12A622
A(JZ) = ( _021&212@(0[’(%%) ) )

T:= _I;a*Fxl (y) |r:07

012~AC21
B([E) = ( —czlAcH(P(CY,CL,LE) > )

Z = - ;’0+F>\2 (y) |z:a7
and the function ¢ (a,a,x) is defined in (3.8).

PrOOF. Using fractional composition rules and (3.9), we can rewrite the
equation (3.1) as follows:

Tao Lfx () + MFy (f)] = 0.

Thus, we get

n@+ann=( o &),
ie.,
(3.10) Ix(@) = =MF\(f) + ( gw(il,a,x) ) '

Now, we shall connect the coefficients §; (i = 1, 2) to the values ¢;; (4,j = 1,2)
in the boundary conditions (3.2)-(3.3). From the equation (3.10), we obtain

K (@) = kM )+ K (g 8

-«
0 IW,
1

e\ Zya- O I o (o a, )]
(q’fﬂ )( o I;tm)F*(f”( " >

(z;wg>_(—%VRMﬂ>+<&)
f>\1 B 7I¢iO+F>\2 (f) 51 '

where K = < ) . Then we have

i.e,
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By virtue of (3.2) and (3.3), we conclude that

Fi1(0) =&,
fi(a) =17 0+ 2 () le=a +&1,
Il afAQ (0) ,\1 (3/) ‘z:O +§27
a

qlaafAQ (q) = 62'

This leads to the system of equations
c1181 + 1282 = —c12, Ty + 228 = —c1 2.
Since A # 0, the solutions for coefficients &;,j = 1,2 is unique:

c12 (€21 Z — c92T)
51 = )

A
£ = 21 (c12T — e Z)
2 A .
We have finished the proof of the lemma. 0

Now, we prove the existence and uniqueness of eigenfunction of the regular
¢-FD system defined by (3.1)-(3.3). In the next result, we use the following
notations:

A= [A@)|c, B:=[B@)lc, So:=ll¢@)le

where ||.|| denotes the supremum norm on the space C (45, E) .

THEOREM 3.8. Let v € (0,1) and assume A # 0. Then unique continuous
function yy for the regqular q-FD system defined by (3.1)-(3.3) corresponding
to each eigenvalue obeying

1
Se + All¢(a)llc + Ba

(3.11) IV =l <

erists and such etgenvalue is simple.
PRrROOF. Let us define the mapping L : C (A;"Oé, ) —C (A;‘a, ) by
Lf:=-MF\(f)+A(z)T+ B (z)Z.

Now, we show that the equation (3.1) can be interpreted as a fixed point
condition on the space C' (A;a, E) . Using the following estimate

1Ex (9) = Ex (M)llc < llg = hllc [V = Mwlle,
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we conclude that

ILg = Lhllc < llg = hllc IV = Awllc Sp + Allg — Rl 16 (a)ll
+ Ballg = hllc [V = Awllo
=V =l llg = hllc (Sp + Allé (a)llc + Ba)
=1llg = hllc,

where II = ||V — Aw||- (S¢ + A||¢ (a)||~ + Ba) . By the condition (3.11), the

mapping L is a contraction on the space C' ( tos E) so it has a unique fixed

point. Therefore, such eigenvalue is simple. 0

CoNCLUSION 3.9. In this paper, we study regular g-fractional Dirac sys-
tems. In this context, we investigate the properties of the eigenvalues and
the eigenfunctions of this system. Finally, we give a sufficient condition on
eigenvalues for the existence and uniqueness of the associated eigenfunctions.
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g-frakcijski sustavi Diracovog tipa

Bilender P. Allahverdiev i Hiseyin Tuna

SAZETAK. Ovaj c¢lanak je posveéen proucavanju regularnih
g-frakcijskih sustava Diracovog tipa. Proucavaju se svojstva svo-
jstvenih vrijednosti i svojstvenih funkcija tih sustava. Koristen-
jem teorema o fiksnoj tocki, daje se dovoljan uvjet na svojstvene
vrijednosti za postojanje i jedinstvenost pridruzenih svojstvenih
funkcija.
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