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Abstract—Several technological solutions now available in the
market offer the possibility of increasing the independent life
of people who by age or pathologies otherwise need assistance.
In particular, internet-connected wearable solutions are of con-
siderable interest, as they allow continuous monitoring of the
user. However, their use poses different challenges, from the real
usability of a device that must still be worn to the performance
achievable in terms of radio connectivity and battery life. The
acceptability of a technology solution, by a user who would still
benefit from its use, is in fact often conditioned by practical
problems that impact the person’s normal lifestyle. The tech-
nological choices adopted in fact strongly determine the success
of the proposed solution, as they may imply limitations both
to the person who uses it and to the achievable performance.
In this document, targeting the case of a fall detection sensor
based on a pair of sensorized shoes, the effectiveness of a real
implementation of an Internet of Things technology is examined.
It is shown how alarming events, generated in a metropolitan
context, are effectively sent to a supervision system through
Low Power Wide Area Network technology without the need
for a portable gateway. The experimental results demonstrate
the effectiveness of the chosen technology, which allows the user
to take advantage of the support of a wearable sensor without
being forced to substantially change his lifestyle.

Index Terms—Wireless sensor network, low power, LoRa, fall
detection, wearable device.

I. INTRODUCTION

In recent years, several research studies have tried to pro-
pose technological solutions capable of supporting frail elderly
people with the aim of limiting the decay of their degree
of independence. Focusing, as an example, on fall detection,
that represent a major challenge in the elderly population,
Mubashir et al. in [1] classify the systems and algorithms
according to three general categories: ambient sensors-based,
vision-based, and wearable device-based detection systems.
The ambient sensors-based approach often includes presence,
vibration, pressure, or acoustic sensors [2], [3]. It represent
a kind of systems striving to embed sensors in the living
environment to recognize the falls in a totally non-intrusive
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way, while keeping the user safe from privacy issues. Vision-
based systems, on the contrary, exploit one or more sensors,
as fixed RGB cameras, RADAR and depth sensors, to capture
images, video frames or reflected signal streams. Through
suitable processing algorithms, they can detect shape changes,
inactivity, or 3D head motions [1], [4], in order to detect falls.

However, both ambient devices and vision-based systems
suffer from two major disadvantages: first, they must be
installed in the living environment by technical operators (with
a consequent cost increase), and second their use is limited to
the environment in which they are located, where they may
even suffer limitations due to occlusions. To overcome these
limitations, many studies propose the use of wearable devices
for fall detection [5]. Typically, the wearable-based approach
counts on clothing or accessories to wear, equipped with
sensors that can get information about movement, position,
or physiological parameters of the wearer. These objects are
usually connected to the external world, sending notifications
to caregivers or health operators in case of alarm, but also
allowing the long-term monitoring via web-accessible plat-
forms. They are part of an emerging market segment, called
Wearable Internet of Things (WIoT) [6]. Such systems are
rarely standalone as they have limited computing capabil-
ities and communication bandwidth. Therefore, one of the
issues that should not be underestimated is the transmission
technology used to connect the device to the outside world.
In the literature, most solutions propose to use short-range
transmission technologies, leveraging the smartphone as a
portable gateway towards the cloud or the remote control
platform. Nevertheless, studies demonstrate that the percentage
of mobile phone ownership in the elderly population is still
low. For example, in [7], the authors affirm that only 18% of
the 570 people over 65 years involved in the study have a
smartphone.

In this paper, we present an Internet of Things (IoT) sensor
for fall detection, able to transmit the alarming event to a su-
pervising system, through the Long-Range technology (LoRa)
[8], that allows the wearable device to send the information
remotely, without leaning on an intermediate portable gateway.
Among the different communication technologies used for
Low Power Wide Area Networks (LPWAN), LoRa offers
the best compromise solution, both in terms of device costs
and communication performance [9]. The proposed solution,
which integrates all the electronics necessary for the acqui-
sition of the data generated by the sensing elements, their
processing and the transmission of the processed data inside
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a shoe, does not change the user’s life habits, which can take
advantage of the technological support of the fall detection
sensor simply by putting on his/her shoes before leaving home.
The aim of the work is therefore to demonstrate the IoT
capabilities of the sensor, already developed in a prototype
way and tested in the laboratory, in a real scenario. The paper
is structured as follows. Section II overviews the available
literature on the technologies for wearable-based fall detection
systems, paying particular attention to the relationship between
the adopted architectures and the communication technologies
used. Section III describes the IoT communication protocols
and, especially, the LoRa technology and LoRa Wide Area
Network (LoRaWAN) protocol. The architecture of the pro-
posed system, along with its hardware and software compo-
nents, is described in Section IV, while the results obtained
in the experimental tests are presented in Section V, and
discussed in Section VI. Finally, Section VII draws the main
conclusion of the work.

II. BACKGROUND

The analysis of the literature relating to wearable sensors
shows the correlation existing between the objectives of the
monitoring to be implemented and the communication tech-
nologies and the sending of alarm messages that are adopted.
However, as shown below, the proposed solutions either rely
on short-range transmission technologies, the use of which in
outdoor environments necessarily requires the presence of a
gateway (often a smartphone) or directly use the sensors on
the smartphone to detect the monitored activity, which is then
notified through the smartphone itself.

In [10], the design and implementation of a wearable fall
detection system for people affected by Parkinson’s disease
(PD) are presented, based on the low-power ZigBee wireless
communication technology for sensor networks. The sensing
system relies on different sensors, including four tilt switches
with low power configuration, an accelerometer, an Elec-
tromyography (EMG) sensor to be placed on the subject’s
leg posterior muscle, a Force Sensing Resistor (FSR) placed
in the shoe, under the metatarsal head. Despite the positive
performance presented by the authors, the usability and com-
pliance of the proposed device are questionable, considering
the specific users’ needs and requirements. Additionally, dif-
ferently from the solution presented here, the system proposed
in [10] can be used only in a short-range communication
scenario, as it is based on the activation of a buzzer alarm on
a receiving device carried by a family caregiver. A wearable
system exploiting four surface EMG electrodes and 3 FSRs
located on the subject’s insole is presented in [11] as well,
for the aim of daily activity monitoring and fall detection.
The purpose of this work is mainly to design appropriate data
processing algorithms to ensure high classification accuracy.
As a matter of fact, even if a prototype sensing system
is developed to be worn by the subjects under test, it is
not enabled by a wireless data communication interface. A
more recent review of wearable fall detection systems is
given in [12], where the focus is mostly on the machine
learning algorithms adopted together with smart wrist-bands,

that are assumed to be more compliant to the users’ needs,
especially the older adults’ ones. The review criticizes the use
of smartphones with apps as wearable fall detection systems,
as it is not possible to ensure that the users have the device
in their pockets all day long, and this condition is far less
probable than having a user wearing a wristband. The same
review mentions an interesting work on fall detection and
human activity classification by Yacchirema et al. [13]. A
3D-axis accelerometer embedded into a 6LowPAN wearable
device provides data from movements of elderly people in real-
time. In order to ensure a high efficieny of the fall detection
system, the sensor readings are processed and analyzed using
a decision trees-based Big Data model running on a Smart
IoT Gateway. If a fall is detected, an emergency alert is raised
and delivered to different identified actors, exploiting a WiFi
connection from the Gateway to the internet. The presence
of the Gateway in charge of performing the high-demanding
computing processes on the collected data and the fact that
the wearable device communicates with the Gateway on a
6LowPAN link limits the applicability of the proposed solution
to indoor scenarios. The system presented in this paper, on the
contrary, aims for a solution that can track the user’s condition
outside, even at a large distance from the receiving terminal.

Kerdjidj et al. [14] exploit a wearable Shimmer device
to transmit some inertial signals via a short-range wireless
connection to a computer, where decision tree algorithms
are applied to detect falls. In order to reduce the size of
the transmitted data and minimize the energy consumption,
a Compressive Sensing (CS) method is applied. The Shimmer
wearable technology is applied in the work by Mehmood et
al. [15] too, in which a fall event is identified by resorting
to the use of the Mahalanobis distance on real-time data.
The proposed algorithm is tested and validated on a dataset
collected by the authors and including three daily life activ-
ities, such as walking, sitting (on) and getting up (from) a
chair, and standing still. They are identified as the Activities
of Daily Living (ADLs) most frequently associated to fall
events in elderlies. Shimmer is a research-oriented device
that, differently from the solution proposed in this work, does
not have a long-range data transmission capability and can
even create stigma in the user, being far from having the
appearance of a consumer electronics device. The target of
the system herein described, on the contrary, is to attain a
wearable device with long-range data transmission capability,
possibly integrated with common objects like the shoes any
subject would normally wear.

A real-time fall detection system based on the acceleration
sensor available onboard smartphones is presented in [16]. The
communication capabilities of the smartphone are exploited to
locate the position of the user, through the real-time location
tracking function enabled by the Google Map’s service, in
order to eventually raise an alarm in the case of a fall event.
For sure, the diverse sensors and communication interfaces
available in smartphones make them ideally suitable to appli-
cations related to fall detection, however, when considering
real life constraints (such as the fact that elderly people often
do not possess or carry a smartphone in their pockets, or they
can just forget to have the smartphone with them when walking
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and possibly falling, especially indoor), its effectiveness in
coping with fall detection becomes less clear and reliable. As
a consequence, a solution based on true wearable technologies
may better fit the practical operational conditions.

The use of wearable devices poses then several challenges.
On the one hand, they offer the chance to monitor and follow
the users in every situation of their daily life, while, on
the other, such an approach forces them to wear the device
constantly, causing acceptability issues. Studies suggest that
most of the elderly people do not want to be seen wearing
health monitoring devices [17], not to mention concerns about
fashion and aesthetics [18]. For these reasons, in recent years,
numerous efforts have been made to realize as unobtrusive
as possible wearable systems, embedding them in textile
vests, bracelets, necklaces or rings [19]. Such small devices,
however, do not allow complex processing procedures, due to
limited computational resources. On the other hand, embed-
ding the analysis and classification module into the wearable
undoubtedly results in a more robust and responsive system,
since wireless communications are often unreliable, and may
be unavailable or prone to errors [20].

A further problem affecting the wearables regards the en-
ergy consumption, since the improvement of battery technol-
ogy is not as fast as the developments in the digital processing
and radio frequency integration [21]. As well known, com-
munication is usually the most energy demanding operation.
For this reason, it is necessary to conceive new strategies
to minimize the amount of transmitted data. According to
Delahoz and Labrador in [20], there exist different methods
to limit the power consumption, such as data aggregation and
compression, or by performing data analysis and classification
onboard. Anyway, short range technologies (Bluetooth, Wi-
Fi, etc.) should be preferred over long range ones (Cellular,
WiMAX, etc.), since they use less power [20]. Nevertheless,
this implies that the receiving node is located closely to the
wearable. For this reason, some solutions implemented in
literature can be used by the subject in a limited spatial range,
while others require a mobile gateway to be carried.

The sensing function is obviously performed by the wear-
able, while the reasoning one can be run onboard or by
another device, such as the integration device or the remote
platform. Out of the considered research works, in most part of
cases, the device that performs the sensing function coincides
with the one that recognizes the falls and, therefore, the
communication of raw data, characterized by a quite high
throughput, is not required. In such cases, the communication
takes place mainly with the notifying device or directly with
the caregivers. However, to transmit both raw and processed
data, most solutions utilize short range technologies, especially
Bluetooth, Bluetooth Low Energy (BLE), and ZigBee.

Lastly, the notification management module can be fed,
directly, from the reasoning, or, indirectly, from the storage
and monitoring module. As shown in Table I, most papers use
the smartphone to send notifications in the form of voice calls
or text messages.

III. IOT COMMUNICATION TECHNOLOGIES

Wearable IoT (WIoT) has been defined by Hiremath et al.
as “a technological infrastructure that interconnects wearable
sensors to enable monitoring human factors including health,
wellness, behaviours and other data useful in enhancing indi-
viduals’ everyday quality of life” [6].

In the IoT, the communication technology can be classified
by the transmission range in short or long range.

As mentioned in Section II, most of the solutions presented
in the literature exploit short range technologies: Bluetooth,
BLE, and ZigBee are the most popular ones. They cover a
range of a few dozen meters and, for this reason, are partic-
ularly suitable indoor. For outdoor use, a portable gateway is
necessary.

Considering longer ranges, two main groups can be dis-
tinguished: cellular networks and Low Power Wide Area
Network (LPWAN). The former are very widespread and
characterized by a great throughput, although costly both
economically and energetically. On the contrary, when sending
a few information on long distances, the best choice is
represented by the LPWAN solutions. In fact, they penalize the
data rate, using a narrow band, in favour of a greater tolerance
to interferences and signal attenuation, allowing a coverage of
a few to tens kilometres, and a very long battery life [8].

According to Raza et al. in [46], five technologies have
gained momentum in this field: SigFox [47], LoRa [48], In-
genu RPMA [49], Telensa [50], and Qowisio [51]. In addition
to these, it is worth mentioning the Narrow Band IoT (NB-
IoT) standard, which represents a key technology in the view
of a future 5G-IoT infrastructure [52]. Among the LPWAN
solutions, in the following we will focus on LoRa, since it
offers two main advantages: bi-directionality and a business
model which allows to implement public or private networks.
Moreover, Petäjäjärvi et al. demonstrated the feasibility of
using such a technology for wearable-based applications, both
outdoor [53] and indoor [54].

A. LoRa

LoRa is a wireless technology aimed for IoT and machine-
to-machine (M2M) communications, characterized by a long
range coverage and low power consumptions patented by
Semtech. More specifically, it is a physical layer technology
that exploits SubGHz ISM band and a proprietary Spread
Spectrum modulation [55]. The spreading technique chosen
is the Chirp Spread Spectrum (CSS), that uses chirp pulses to
encode the information. However, the CSS modulation used
in the LoRa networks is even more tightening and advanced,
in order to meet the IoT requirements [56]. LoRa supports
multiple Spreading Factors (SF), i.e. from 7 to 12, in order to
trade-off data rate and coverage range. Moreover, it exploits a
Forward Error Correction (FEC) technique to further increase
the receiver sensitivity. The low-speed transmission and the
chosen modulation lead to a low sensitivity of the receiver (up
to -142 dBm). Such a feature, along with the output power of
+14 dBm, gives very high link budgets (up to 156 dB). These
characteristics make it possible to have Line-Of-Sight (LOS)
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TABLE I
OVERVIEW OF METHODS AND TECHNOLOGIES USED IN THE RELATED STUDIES

Ref. Year Sensors Communication
Technology

Reasoning
Device

Storing
Center

Notification
Management

Device

Notification
Technology

[22] 2010 Acc. - Smartphone - Smartphone Voice/Text message
[23] 2012 Acc. - Smartphone - Smartphone Voice/Text message
[24] 2014 Acc. - Smartphone - Smartphone SMS
[25] 2015 Acc. GSM Wearable - Notification SMS
[26] 2016 Acc. Bluetooth/NFC Smartphone Smartphone Smartphone Voice/Text message
[27] 2016 Acc./Gyr. Bluetooth Smartphone Smartphone Smartphone Voice/Text message
[28] 2011 Acc. ZigBee Wearable PC PC Desktop Interface
[29] 2011 Acc./Gyr. Bluetooth PC - PC Desktop Interface
[30] 2011 Acc. ZigBee PC - PC Desktop Interface
[31] 2012 Acc. ZigBee PC (offline) PC - -
[32] 2012 Acc. - PC (offline) SD card - -
[33] 2012 Acc./Gyr./Mag. Bluetooth PC (offline) PC - -
[34] 2013 Acc./Gyr. ZigBee Sink Node Sink Node - -
[35] 2014 Acc. Bluetooth LE Wearable Remote Server Smartphone SMS
[36] 2014 Acc./Gyr./Mag./Pulse Bluetooth Wearable Remote Server Remote Server -
[37] 2014 Acc./Gyr./Mag. ZigBee PC (offline) PC - -
[38] 2014 Acc./Pulse ZigBee Wearable/PC - - -
[39] 2014 Acc./ECG/Temp. Bluetooth Smartphone Remote Server Smartphone Voice/Text message
[40] 2015 Acc./Gyr. Bluetooth Smartphone - Smartphone Voice/Text message
[41] 2015 Acc./Gyr./Mag. Bluetooth Wearable PC/Tablet - -
[42] 2015 Acc./Gyr. Custom PC (offline) PC - -
[43] 2016 Acc. Bluetooth LE Smartphone Cloud Smartphone Email/SMS/Calls
[44] 2016 Acc./Gyr./Mag./Alt. Bluetooth PC (offline) PC - -
[45] 2017 Acc./Gyr. Bluetooth Smartphone - Smartphone Voice/Text message

connections within a range of 20 km, or non-LOS (NLOS)
connections up to 2 km in urban environments [57].

B. LoRaWAN

As discussed hitherto, LoRa describes a physical layer
that enables the long-range communication link. Nevertheless,
it does not define the higher layers, nor even the network
architecture. For this reason, the LoRa Alliance proposed an
open standard, named LoRa Wide Area Network (LoRaWAN),
defining both the architecture and communication protocol,
built upon the LoRa physical layer [8].

The architecture of a typical LoRaWAN network is repre-
sented in Figure 1. It mainly features three elements:

• end nodes: they communicate the information to the
gateway through the LoRa technology;

• gateway: it acts as a concentrator that transparently
forwards the data received from the end nodes to the
network server, and vice versa;

• network server: it deals with decoding the arriving pack-
ets and generating replies. It is also responsible for
choosing the best gateway, frequency, and data rate.

LoRa can be used in private and public networks. In both
cases, it requires the presence of a base station (gateway)
acting as the center node of a star topology. The number of
nodes connected to the base station depends on the application
and, more precisely, on the number of packets that must be
transmitted in a given period of time. Actually, the LoRaWAN
topology can be defined as a “star-of-stars” [46], as each
message transmitted by the end device is received by all the
base stations in the range. This way, the reception diversity can
improve the packet delivery ratio, and provide information on
the transmitter location. Communication to end point nodes

Fig. 1. A general LoRaWAN architecture according to [8].

is generally bi-directional, but it is also possible to support
multicast operations.

Basically, LoRaWAN networks exploit the ALOHA method.
Such a method is asynchronous and enables the communica-
tion when the nodes have something to send, reducing the bat-
tery consumption due to synchronization messages. Moreover,
LoRaWAN copes with the adaptation of data transmission rate
and output power, in order to optimize signal strength and
battery consumption. By means of the Adaptive Data Rate
(ADR), the network suggests the best SF to use to the end
node.

Finally, the LoRaWAN ensures the node authenticity, and
the message security through the AES encryption with a key
exchange utilizing an IEEE EUI64 identifier [8].

IV. THE PROPOSED FALL DETECTION SYSTEM

As already mentioned in Section I, the system designed
by the authors and presented in this paper exploits a pair of
instrumented shoes to detect falls and notify such events to
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a supervising system. The system architecture is depicted in
Figure 2. The smart shoes are equipped with force sensors and
accelerometers in order to analyse the distribution of body
weight on the soles, and the feet’s inclination angles with
respect to the ground. The fall detection is implemented by
a board embedded in the bottom of the shoe, which is also
able to send the fall alarm to the network server through the
LoRa technology. The network server is designed to store
the received messages, and deals also with the notification
management. In other words, it is able to send the alarming
event information to a caregiver, and keeps in memory a
history of past messages. The following subsections describe
the hardware and software components of the system.

A. Wearable Device

In the proposed system, the sensing device is represented
by an original pair of smart shoes. A shoe prototype is shown
in Figure 3(a), while its hardware components are shown in
Figure 3(b).

A first version of the prototype device was presented in
[58] and [59]. In those cases, however, the purpose of the
application was to monitor the vitality level of the elderly, by
transmitting information on the gait cycle to the smartphone
via BLE. Each shoe is equipped with an instrumented insole.
Three Force Sensing Resistors (FSRs) are applied on the
insole, placed in correspondence to the heel, 1st, and 5th
metatarsal heads. They allow to acquire information on the
gait cycle phase, distinguishing among heel contact (H), flat
foot (F), push off (P), and limb swing (S). The shoe is also
equipped with a triaxial accelerometer embedded in a hole
dug in the bottom of the shoe. It enables the foot orientation
recognition, through the calculation of pitch and roll angles.
The fall detection algorithm works independently for each
shoe. It is supplied with data acquired by the accelerometer
and the FSRs, and produces as output an alarm message. By
combining the information on the foot orientation with the gait
cycle phase, it is possible to distinguish an unusual position
of the foot, and thus determine the fall. The algorithm is also
able to detect recoveries. When a fall or a recovery occurs,
the shoe sends the information to the LoRa gateway. A deeper
description of algorithm and fall recognition performances is
reported in [60]. Fall and recovery messages are characterized
by a header of 13 byte, as required by the LoRaWAN protocol,

Fig. 2. System architecture.

(a) Shoe prototype (b) Hardware components

Fig. 3. (a) The shoe prototype and (b) its hardware components.

and by a payload of 14 and 18 byte, respectively. The payload
features the following format:

SHOES:<alarm type> <relative direction>.

where <alarm type> denotes the contents of the alarm
message and can assume the values “FALL” or “RECOV-
ERY”, while <relative direction> identifies the shoe
that is sending the message and therefore can be “lx” for the
left or “rx” for the right.

As regards communication, in the market there are many
evaluation boards that implement the LoRa standards. The
board chosen is the Adafruit Feather M0 with RFM95 LoRa
Radio [61]. It is small (51mm×23mm×8mm) and lightweight
(5.8 g) enough to be embedded in the footwear in a unobtrusive
way. The board is equipped with a microcontroller, which
implements the signal acquisition, fall detection, LoRaWAN
protocol, and data transmission procedures.

The system is also provided with a rechargeable battery,
and an inductive charger, which enables the wireless battery
charging. An inductive coil is installed in the stiffener of the
shoe, thereby the battery charging can simply be performed
by inserting a charging pipe in the shoe.

The battery, the board and the accelerometer are all embed-
ded in the bottom of the shoe and covered by a lid. This way
the user can walk comfortably, whitout noticing the presence
of the hardware, while facilitating the maintenance.

B. Gateway

The gateway used in this system, realized by the authors,
is composed by a radio module connected through the Serial
Peripheral Interface (SPI) to a host, which enables the UDP
connection towards the network server. The radio module deals
with all the communications based on LoRa technology, while
radio message processing, as well as protocol-related tasks, are
carried out by an external host.

In order to implement a multi-channel and bidirectional
LoRaWAN network, we realized a gateway, built by connect-
ing an iC880A board by IMST GmbH to a Raspberry Pi
via SPI. The iC880A board integrates two Semtech SX1257
transceivers and an SX1301 baseband processor: this com-
bination allows to emulate 49 LoRa demodulators with 10
parallel demodulation paths, with the aim to receive up to 8
LoRa packets simultaneously sent with different SFs and on
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Fig. 4. Estimated coverage area using a single gateway (blue flag) on top of
the tower building at at Università Politecnica delle Marche, Ancona (Italy).

different channels. In fact, the SX1257 transceiver integrates
an I/Q modulator/demodulator supporting different modulation
schemes, including LoRa technology, while the SX1301 digital
baseband chip is a powerful digital signal processing engine,
specifically designed to provide gateway functionality in the
ISM band.

Regarding the software component, the Raspberry Pi runs
a modified version of the packet_forwarder program,
developed by Semtech. It allows to forward the messages
received from the gateway to our network server (described
below), and vice versa, exploiting the UDP protocol.

C. Network Server

Since the LoRaWAN network server is proprietary, we real-
ized a private network server. It deals with the GWMP (Gate-
way Message Protocol) communication towards the gateway,
but also copes with the packets managing and processing, and
with the creation of acknowledgement packets in downlink. In
fact, when a fall event occurs, the shoes transmit the message
repeatedly until they receive a confirmation reply. Received
packets containing relevant information (i.e. fall and recovery),
are stored in a database and displayed in a web dashboard.

The server is also in charge of the notification management.
To this aim, we foresee to integrate a MQTT middleware. This
way, the server can promptly forward the alarm messages to
a caregiver, as already done in [62].

V. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed method
we conducted several experiments in the outdoor environment.
Tests involved the creation of a single-star private network
where data is exchanged with the gateway via LoRa. The
gateway, in its turn, communicates with a network server using
a User Datagram Protocol (UDP) and an intermediate network
(Ethernet or WiFi). The server deals with data management
and processing, and, through the gateway, responds to the
shoes, which require a receipt confirmation.

Fig. 5. PoMs and GW location: the blue flag indicates the gateway, while red
flags 1 to 37 represent the different positions of the end nodes. The University
Campus area is highlighted in grey.

A. Preliminary Radio Coverage Evaluation

In order to estimate the radio coverage range in the urban
environment, we conducted a preliminary study. Through
Radio Mobile software, we simulated the radio coverage of
the LoRa technology in the city of Ancona (Italy), using the
following parameters:

• TX power: 14 dBm;
• frequency: from 867.1 MHz to 868.5 MHz (8 channels

spaced by 200 kHz);
• RX sensitivity: -142 dBm;
• RX antenna gain: 0 dBi;
• RX antenna polarization: vertical;
• RX antenna polar pattern: omnidirectional;
• RX antenna height above sea level: 200 m;
• statistical margin value added to link’s path loss: 14.8 dB.

The gateway is located on the top of the tower building of the
Engineering Faculty, at Università Politecnica delle Marche,
in Ancona. The tower is about 40 m high and is built on a
hill, at 160 m above the sea level.

The obtained radio coverage map is shown in Figure 4. Red
areas are the ones which provide the higher Received Signal
Strength Indicator (RSSI) values, while blue areas are the ones
featuring the worst coverage.

B. Tests in the University Campus

We conducted a first experimental evaluation of the actual
outdoor radio coverage, by sending simulated fall messages
from different locations. The test campaign was held in the
University Campus, by placing the LoRa gateway on the top
of the tower building of the Engineering Faculty.
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In Figure 5, we present a map of the Points of Measure
(PoM). Table II lists, for each of them, the estimated distance
between the shoes’ location and the gateway’s antenna, as well
as the respective number of transmitted and received packets
and the calculated packet success ratio. The distribution of
RSSI values is represented in Figure 6.

The University Campus is built on a hill, and, therefore,
distributed over several altitude levels. Moreover, the area is
mainly covered by buildings and trees. For this reason the
RSSI values have a non-linear trend over the distance from
the gateway. However, as can be seen from Table II, the
presented results indicate that 95% of all the data packets were
successfully transferred for the selected locations.

C. Tests in the Urban Environment

A second experimental evaluation was conducted in the
urban environment. Also in this case, the LoRaWAN network
was created by placing the gateway on the top of the tower
building. During the tests, we simulated falls in 6 different
locations of the city (see Figure 7). From each PoM, we
transmitted 5 fall messages using a SF of 7, and 5 fall
messages using a SF of 12. The average RSSI values received
by the gateway for packets having the same SF is reported
in Table III. For each PoM, the table shows also the GPS
coordinates, a brief description of the location, and the distance
from the gateway.

The average RSSI values received from the first two PoMs
are optimal, especially in the first case, since during the
measurement the end node was in LOS. In the 3rd and 5th
cases, the tests took places in urban streets surrounded by
buildings. As a result, the receiver lost some packets with a
SF of 7. Despite the greater distance, in case 4, all the packets
reached the gateway with a fair RSSI. In fact, in such a case the
end node was placed on the top of a hill, in LOS with the base
station. The last test provided the worst results: no message
reached the destination. This is certainly due to unfavourable
position of the transmitting device. In fact, the radio link was

TABLE II
RESULTS OF THE FIRST TEST CAMPAIGN IN TERMS OF SUCCESS RATIO.

PoM Coordinates Distance (m) No. of TX packets No. of RX packets Success Ratio

1 43.586525 13.516407 64 417 410 98%

2 43.586002 13.516330 115 357 347 97%

3 43.585419 13.516218 177 424 410 97%

4 43.585423 13.515975 184 408 383 94%

5 43.584759 13.516003 252 397 367 92%

6 43.586205 13.515892 109 416 376 90%

7 43.585876 13.515337 163 291 283 97%

8 43.585600 13.515130 210 395 355 90%

9 43.585170 13.514640 248 282 269 95%

10 43.586605 13.515959 76 392 378 96%

11 43.586212 13.514790 174 420 406 97%

12 43.586048 13.514552 202 387 349 90%

13 43.585754 13.513961 256 428 408 95%

14 43.586750 13.515293 114 401 373 93%

15 43.586491 13.514944 149 393 368 94%

16 43.586315 13.514209 209 429 412 96%

17 43.586411 13.513798 240 407 394 97%

18 43.586849 13.514909 142 417 382 92%

19 43.586700 13.514251 199 415 394 95%

20 43.586601 13.513759 237 420 397 95%

21 43.587269 13.514403 185 416 391 94%

22 43.587132 13.513600 246 419 394 94%

23 43.587044 13.516308 51 415 403 97%

24 43.587185 13.515691 89 415 407 98%

25 43.587635 13.515096 149 360 352 98%

26 43.587856 13.514734 186 414 403 97%

27 43.588097 13.514154 239 418 407 97%

28 43.587288 13.516234 70 404 395 98%

29 43.587765 13.515960 117 417 406 97%

30 43.588108 13.515860 152 384 367 96%

31 43.588394 13.515478 193 418 403 96%

32 43.588394 13.515478 234 400 387 97%

33 43.587341 13.516503 67 274 267 97%

34 43.587784 13.516632 109 417 396 95%

35 43.588173 13.516375 151 412 381 92%

36 43.588467 13.516310 184 412 394 96%

37 43.588902 13.515993 232 421 411 98%

Total 6175 14712 14025 95%

Fig. 6. Box plot of RSSI values for each PoM sorted by the distance from the gateway.
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TABLE III
RESULTS OF THE EXPERIMENTAL TESTS PERFORMED IN 6 DIFFERENT POMS.

PoM Coordi-
nates

Distance
(m) Description SF RSSI

(dBm)
Packets
received

1 43.590043
13.516866 339 Outdoor parking. LOS link. 7 -95.50 5/5

12 -101.67 5/5

2 43.592612
13.522077 774

Outdoor parking.
The link is not

completely LOS
due to trees.

7 -106.25 5/5

12 -108.33 5/5

3 43.608285
13.513118 2390 Urban street surrounded

by buildings. NLOS link.
7 -116.72 4/5

12 -117.50 5/5

4 43.625085
13.510417 4280 Outdoor parking. The area

is on top of a hill. LOS link.
7 -113.50 5/5

12 -117.00 5/5

5 43.616377
13.506626 3380

Urban street flanked on one
side by buildings, and on the

other one by the seaport.
NLOS link.

7 -118.16 2/5

12 -119.50 5/5

6 43.615740
13.513068 3200

Urban street
surrounded by buildings.
The area is down a hill.

NLOS link.

7 - 0/5

12 - 0/5

completely covered by a hill, and the PoM was surrounded by
buildings.

Results obtained confirm the simulator’s prediction (see
Figure 8). In fact, according to simulation results, PoMs 1
and 2 feature a perfect coverage, while 4 and 5 are borderline,
and 6 is out of the coverage range. Even though the point 3
is marked as red, it showed results below expectations. The
reason is that the simulator takes into account only the soil
morphology, and does not consider buildings and trees.

D. Power Consumption Test

In order to verify the shoes’ power consumption, we per-
formed measures in the laboratory environment. The energy
consumption peaks are reported in Table IV for each operation
mode. The table shows also the duration. In fact, while the fall
detection algorithm is always active, the LoRa transmission
occurs only when a fall or recovery event takes place. As
expected, depending on the SF, the time duration as well as
the energy consumption value are different. LoRa transmission
times refer to packets transmitted on a band of 125 kHz, a code
rate of 4/5, a fixed header of 13 bytes, and a payload of 14
or 18 bytes, respectively for a fall or recovery message. It is
interesting to note that the consumption of the fall detection
algorithm is just 22 mA. This means that, when using, for
example, a 500 mA/h battery, the system can run for about 23
hours, i.e. almost a full day. While, when using a 800 mA/h
battery, the range reaches 36 hours.

VI. DISCUSSION

In general, the results obtained show that LoRa is an attrac-
tive and promising technology in the field of an individual’s
health and well-being monitoring, as also stated in [53]. In
fact, LPWAN technologies allow long-range communication
with a low battery consumption burden. However, they are
especially suited to application areas in which the amount of
transmitted information is limited, such as the fall detection.

TABLE IV
RESULTS OF MEASURES ON THE ENERGY CONSUMPTION.

Operation mode Energy
consumption

peak

Time

Fall detection algorithm 22 mA Full time

LoRa transmission with SF=7 118 mA 67 ms (fall) or
72 ms

(recovery)

Lora transmission with SF=12 144 mA 1483 ms (fall)
or 1647 ms
(recovery)

Total (fall detection algorithm +
LoRa transmission) with SF=7 140 mA -

Total (fall detection algorithm +
LoRa transmission) with SF=12 166 mA -

The radio coverage evaluation obtained through the simu-
lator has shown that only one gateway allows to fairly cover
most of the city area, providing the fall detection system with
the necessary reliability in the alarm messages delivery. Such
a claim has been confirmed by the experimental tests carried
out, first, in a limited spatial range (the University Campus)
and then in the urban environment.

The coverage problems reported during the experiments can
be easily solved by installing further gateways in different
places. In addition, some studies demonstrate that the pres-
ence of multiple (three or more) radio base stations allows
the multilateration of the transmitting device and, hence,
its localization. For example, Fargas and Petersen in [63],
demonstrate that the transmitter’s position can be estimated
by calculating the Time Difference Of Arrival (TDOA) of
a received packet from different gateways. In such a case,
the accuracy achieved is about 100 m. This feature is very
important in our application area, since it enables the subject’s
localization, without additional battery consumption (such as
that needed to transmit the position data via GPS). This way,
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Fig. 7. PoMs and GW location: the blue flag indicates the gateway, while
flags 1 to 6 represent the different positions of the end nodes.

the network server can calculate the shoe’s position and notify
it to the caregiver, along with the fall message.

Experimental results on battery consumption demonstrate
that the method and technology chosen are appropriate for
this application. In fact, they allow to monitor the elderly and
notify alarming events, with low energy consumption. This
is of great importance as it guarantees tracking contuinity. In
fact, as stated by [64] the battery limit of wearables inhibits
users from a continuous tracking of their health status. The
system is already geared towards the integration of a notifica-
tion management module. In this regard, in a previous work
[62] we discussed a MQTT-based alert notification system.
While in [65], we introduced a system able to acquire LoRa
packets and convert them into MQTT messages for building

automation purposes.

VII. CONCLUSION

In this work, the implementation of a wearable sensor for
detecting falls is shown experimentally. The authors have
verified in a real scenario that the IoT technology adopted
allows the sensor to connect to the realized Gateway even
over relatively long distances, compatible with metropolitan
coverage. Once a fall is detected, the sensor inside the shoe
sends a message to the supervisor entity, using a LoRaWAN
network. Experimental tests in urban environments demon-
strate the effectiveness of the proposed approach. The results
show that the chosen transmission technology is adequate
to provide the signal strength necessary for the external
environment considered. Further improvements include the
integration of multiple gateways to improve coverage and the
implementation of a functionality to forward information to a
potential caregiver.
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fall detection algorithm for reducing false alarms,” in Medical Informa-
tion and Communication Technology (ISMICT), 2012 6th International
Symposium on. IEEE, 2012, pp. 1–4.

[34] W.-S. Baek, D.-M. Kim, F. Bashir, and J.-Y. Pyun, “Real life applicable
fall detection system based on wireless body area network,” in Consumer
Communications and Networking Conference (CCNC), 2013 IEEE.
IEEE, 2013, pp. 62–67.

[35] R. Freitas, M. Terroso, M. Marques, J. Gabriel, A. T. Marques, and
R. Simoes, “Wearable sensor networks supported by mobile devices for
fall detection,” in SENSORS, 2014 IEEE. IEEE, 2014, pp. 2246–2249.

[36] Z. Li, A. Huang, W. Xu, W. Hu, and L. Xie, “Fall perception for elderly
care: A fall detection algorithm in smart wristlet mhealth system,” in
Communications (ICC), 2014 IEEE International Conference on. IEEE,
2014, pp. 4270–4274.
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