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Abstract. We propose a new family of iterative methods for finding simple roots of non-
linear equations. The proposed method is the four-point method with convergence order
16, which consists of four steps: the Newton step, an optional fourth order iteration scheme,
an optional eighth order iteration scheme and the step constructed using the divided dif-
ference. By reason of the new iteration scheme requiring four function evaluations and
one first derivative evaluation per iteration, the method satisfies the optimality criterion in
the sense of Kung-Traub’s conjecture and achieves a high efficiency index 165 ~ 1.7411.
Computational results support theoretical analysis and confirm the efficiency. The basins
of attraction of the new presented algorithms are also compared to the existing methods
with encouraging results.
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1. Introduction

The problem of solving nonlinear equations is frequent in many spheres of science
and engineering. Solving this type of equations analytically is usually difficult. Con-
sequently, many numerical methods for solving such problems have been developed.
In this paper, we will focus on highly efficient multipoint iterative methods.

Newton’s method is the best known iterative method for solving a nonlinear
equation f(z) =0, and it is defined by

f/(xn)

If « is a simple root of the function f(x), which means f(«) = 0 and f'(«) # 0, then
Newton’s method is quadratically convergent to a when the initial approximation
xg is close enough to a.

f(xn) =Tn —
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Newton’s method has been used as the foundation point for a significant number
of multipoint methods constructed with the aim to improve the quadratic conver-
gence order. Several multipoint methods were introduced by Ostrowski in [24],
together with the coefficient p% as a measure of the efficiency of methods, where p
is the convergence order and m is the number of functional evaluations per itera-
tion. Later, Kung and Traub conjectured in [19] that any multipoint method with
m functional evaluations per iteration can reach order 2! at most. Methods that
reach this order of convergence are called optimal methods. A systematic review of
the most important aspects of multipoint methods with certain generalizations and
historical notes can be found in a survey paper [26] by Petkovié et al. and a book
[25] by the same authors.

In this paper, we are focused on the efficient and relevant 16th order optimal
methods free from the second or any higher order derivatives. Therefore, we explore
a new wide family of four-point methods, which uses four function evaluations and
one derivative evaluation to achieve the 16th order of convergence. The structure of
the paper is as follows. In Section 2, we develop a new optimal method. In Section 3,
we present the numerical performance of the proposed method and compare it with
already existing methods through several test examples. The basins of attraction of
new algorithms are also displayed and compared visually and numerically to other
methods. Finally, conclusion is provided in Section 4.

2. A new family of methods and its convergence

Inspired by recently established highly efficient eighth-order methods [27, 31, 32],
we have used similar techniques based on the divided differences to develop a new
class of four-point methods in the following form:

W — 3 — f(zn)
" " f(@n)’
2n = My(zp, wy),
Yn = Mg (Zp, Wn, 25), (1)
Trpl = Yn — FWn) 2 flzn, Tl — 2fyn, 2] + flyn, 20]) '
f’(xn)(f[yna wn] - f[zm wn]) + fQ[Zna In] - f2[yna In] + fQ[yna Zn]
My(-,-) and Ms(-,-,-) represent any optimal iterative scheme of fourth and eighth
convergence order, respectively, with Newton’s method as the first step, while f[-, -]
denotes the divided difference defined by f[a,b] = w.
Theorem 1. Assume that function f(x) is sufficiently differentiable in a neighbor-
hood of its simple root o, and let My(-,-) and Mg(-,-,-) be any optimal fourth and
eighth order methods based on Newton’s method, satisfying

16
Zp — Q= Z Biel, 4+ O(el) (2)
i=4
and
16 .
b= 3 Ak + O, 3)

=8



AN OPTIMAL SIXTEENTH ORDER FAMILY OF METHODS 271
respectively, where e, = x, — «, By # 0 and As # 0. Then for any starting

approzimation xg chosen close enough to a,, method (1) is at least of sixteenth order.

Proof. Let e, = x, — a be the error of the n-th iteration. Then from Taylor’s
expansion of f(z,) and f’(z,) about «, we have

16
flan) = /(@) (en+ Y ciel,) +0(e)]) (4)
and
16 )
flen) = @)1+ Y iee ) + 0, (5)

where ¢; = %, for every integer i € {2, ...,16}.

4!

Using (4) and (5) in Newton’s step, we obtain its error e, ,:

16
Ewn =Wy — O = Z Kiel +0(el), (6)
=2

where K; = K;(co,cs, ..., ¢;) with several explicitly written coefficients as follows:

Ky = co,

K3 = —2¢5 + 2c3,

Ky = 403 — 70303 + 3¢y,

K5 = —863 + 200§C3 — 6c§ — 10cocy + 4cs,

Kg = 16¢5 — 52chcs + 28¢5c4 — 17ezeq + c2(33¢5 — 13¢5) + 5eg,

K7 = —2(16¢5 — 64cacs — 9¢ + 36¢3cq + 6¢; + 9e3(7cs — 2¢5)
+11leses 4 ca(—46¢3¢4 + 8¢6) — 3c7),

Substituting e, , from (6) into (4), we get

16
f(wn) = f'() Z Qie;, +O0(ey), (7)

where Q; = Q;(co,c3, ..., ¢;, Ko, ..., K;) with several explicitly written coefficients as
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follows:

Q2 = Kz = ca,

Q3 = K3 = —2¢2 + 2c3,

Q4 = 02K22 + K4 = 503 — Tcaes + 3y,

Qs = 2co Ko K3 + K5 = —2(6¢3 — 12¢3c3 + 3c§ + bSeaeq — 2c5),

Qs = c3K3 4+ co( K2 +2K3K,) + Ko = 28¢5 — T3chcs + 34cicy — 17cscq
+c2(37¢3 — 13¢5) + 5,

Q7 = 3c3 K5 K3 + 2c2(K3Ky + K2 K5) + Ky

= —2(32c§ — 103cic3 — 93 + 52c5cs + 663 + 5(80c3 — 22¢5) + 11czes

“+ea(—52¢zcq + 8cp) — 3e7),

For any optimal method My(z,,w,) that satisfies (2), from (4) we have

7
f(zn) = f’(a)(ZBiefl + (Bs + Bica)e,,
=4

+(Bg + 2By Bsca)el) + (Big + (B2 + 2B4Bg)cz2)el’

+(B11 + 2(BsBg + ByBr)ca)el! + (Bia + (B2 + 2Bs By + 2B4Bg)ca
+B3c3)el? 4+ (Bis 4 2(BsBr7 4+ BsBg 4+ ByBg)cy + 3B2Bscs)el?
+(B1s + (B? + 2(BsBs + BsBg + B4Big))c2 + 3By(BZ + ByBg)cs)e),!
+(B1s + 2(B7Bg + BgBg + BsB1o + B4Bi1)c2

+(B2 + 6B4B5Bg + 3B3Br)c3)el?

+(Bi6 + (B3 + 2(B7Bg + BsBig + BsB11 + B4B12))ca

+3(B3 B + 2B4Bs By + BaB§ + BiBg)cs + Bj}c4)e}f) +0(e;)). (8

Analogously, for any optimal Mg(x,,, wn, z,) that satisfies (3), we get

15
Fa) = 1'(@) (3 Aie, + (Arg + AZea)ell) +O(el). (9)
=8

Thus, using (4)-(9), with the aid of a Mathematica program package, it is uncom-
plicated to calculate any divided difference that appears in (1). Therefore, taking
those results into account and substituting (4)-(9) into the fourth step of scheme
(1), the following error equation is obtained:

Cn+1 = Ag (ASCQ + B4(2B4C§ — 0364 + C3Cq4 — 6265))67116 + 0(67117),
which completes the proof. [l

Remark 1. Due to the robust length of some coefficients expressed in terms of c;,
such as Kg, Ko,...,K15, Qs, Qo,...,Q16, as well as the divided differences, we inten-
tionally omit to display them for the sake of simplicity; still they can be efficiently
derived using Mathematica symbolic computation.
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Seeing that the proposed scheme (1) requires five function/derivative evaluations
per iteration, it is optimal in the sense of the Kung-Traub hypothesis. The efficiency
index of the new method is 16'/° ~~ 1.7411, which is better than the efficiency
of optimal fourth order methods [4, 15, 16, 18, 21, 24] and optimal eighth order
methods [2, 3, 5, 8, 9, 10, 17, 22, 27, 31, 32, 36] whose indices are 1.5874 and 1.6818,
respectively. Although in further analysis this study will be concerned only with the
optimal sixteenth order methods and their comparisons, several optimal methods
of fourth and eighth order based on Newton’s method are listed below since we
have employed them as the second and the third step in (1) to construct concrete
algorithms of the new family.

e Fourth order choices for My(x,,, wy,)

f(wy)
2f[wn, xn] — f(20)
2 1
Tl ~ 7))
2f[wna xn]) f(wn)

1) My(xn,wn) = wy, — from [24],

2) My(zp,wy) = w, — f(wy), from [13],

3) My(xn,wy) =w, — (3 — , from [31].
e Eighth order choices for Mg(xy,, wn, zp)
f(zn) f2n, wn]

A) Mg(xy, wn, 2n) = 2n from [27, 32],

- flzns Tn] flzn, Tn] — 2f(zn, wnr
_ f(n) F(@n) = flwn, on] + flzn, wn]
f'(xn) 2f[2n, wn] = flzn, Tn] 7

Thus, we consider six special cases of (1) denoted by NMXY, where X suggests
which function My (z,,, w,) has been used, while Y denotes the choice of Mg(x,, wy,,
zn). For example, the algorithm denoted by NM2A has the following form:

B) Mg((En,wn,Zn) = Zn

from [31].

W — 3 — f(zn)
n n f/(xn;7 1
Zn W, (f[wn,xn] - f,(xn))f(wn)a
— f(zn) .f[zna wn]
Yo =n f[zmxn] f[zna xn] - 2f[zn= wn]7
. =y — fWn)2f 20, 2n] = 2f[yn, zn] + flyn, 2n])
n+1 " f/(xn)(f[ynawn] _f[znawn])+f2[znaxn] _f2[ym$n] +f2[ynazn]'

Appropriate error equations for six methods obtained are displayed in Table 1.
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method error constant C'

NMIA  c3(es — c3)?(cacs — 3)(2¢5 — 2c3c3 + c3cq — ca(c3 + ¢5))
NM2A  c3(cs — 3c3)?(cacs — 3)(6¢5 — 2¢3e3 + czeq — ca(cl + ¢s5))
NM3A  c3(cs — 5c3)?(cacs — c2)(10c) — 2¢3cs + c3cq — ca(c3 + ¢5))

NMIB  —c3(c3 — c3)?(c5 — c3c3 + 3 — cacq)(c3 — cies + czeq — ca(cd + ¢5))
NM2B  —c3(c3 — 3¢3)?(3ch — cies + 3 — cacq) (3¢5 — c3es + czeq — ca(cd + ¢5))
NM3B  —c3(c3 — 5c3)2(5ch — c3es + & — caca)(5eh — cyes + czeq — ca(cd + ¢5))

Table 1: Error equations e,y1 = C - el0 + O(e'") for special members of family (1)

3. Numerical results

3.1. Numerical implementation and comparison

The comparison methods used in this paper have been theoretically and numerically
proven as the most efficient once through a vast number of test functions. Classes
of methods given below are the ones suggested by the authors in the corresponding
papers. The performance of our method is compared with the performance of the
following methods. Some additional optimal sixteenth order methods that have not
been included in this research can be found in [11, 23, 37].

The method developed by H.T. Kung and J.F. Traub [19] denoted by MKT is:

_ f(n)

T )

Zn =Wy, — Gr(xy),

Yn = 2n — fz(xn)f(wn)Hf(xm Wn, Zn),

2 (@n) f (wn) f(2n)
O e

Tn+1 =Yn +

where
) = Q(xn)f(wn)
Crlon) = T o) = Flan®
Hy (s ) = 61 @) T3 7o) — o)
i f(wn) - f(xn)
T (wn)(F(@n) — Fm)?
. 1
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f(@n)(f (wn) = f(z0) (f (@n) — f(wn)) = f2(zn) f(wn)
Gy(xn)
f(wn)fz(xn)Hj(fEm Wy, Zn)
(f(wn) = fya))(f(zn) = flyn))

The method developed by Sharma et al. [33] denoted by MSGG is:

Kf($n,wn, Zn) =

Lf(:l?n, Wny Zn,y yn) =

v = A (@n)
n n f,(xn)v
o, - @)+ BF(wn)  f(wn)

P+Q+R

I P e + QF (o) + Rffopa]
" oy Plf[men]+Q1f[xnawn]+Rf[ymwn]f(I )
mh PiL+ Q.M + RN "
where
ﬁ =1,P= (xn - wn)f(xn)f(wn)a Q = (wn - Zn)f(zn)f(wn)a
R = (Zn - xn)f(zn)f(xn)v P = (:Cn - yn)f(xn)f(yn)a
Q1 = (o — 22 Fu) ) £ = LM 2ol = Tl s ]
M = f(wn)fl(xn) - f(xn)f[xnu wn] and N = f(wn)f[xnayn] - f(yn)f[xnu wn] '
Wy — Ty Wn — Yn

Sharifi et al. have investigated a class of four-point methods in [30]. Here we
employ a member of this class, denoted by MSSSL, which achieved the best numerical
results in [30].

I f(@n)
Wn = Tn F(xn) )

zn:wn—«1+ﬁﬂ1+%n+%%+¢ﬂ2—&n—2ﬁ»-?7%,
Ty,
Yn = 2n — (4upn — v + (6 + v3) (t2 + vn) + (1 +ud)(1+2t,)) - ;[/((Zn))’
Ty,
Tpt1 = [ (I+tn)(2t, + t3 )+ 4152 tfl — 21),21 + 6uy + 2t,7rn + 200U,

23wy, — 1Wm%+6ﬁmz 1+2p, +2q,  6py
1+ 2t,uy, + 1—r, +1—|—qn
2uy + 6uZ v, + 202 6231, + 6831, — 4v2un1  f(yn)
C 1+tu, 1+ 02 1+t )

+24t3uy, + tpuy +
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where t, = Fn) Up = Flwn)’ Un = flzn)’ Pn = fxn)’ = f(wn) and
- f(yn)

Maroju et al. have proposed eighth and sixteenth-order families of King’s meth-
ods [20]. For the purpose of comparison we use a sixteenth-order method with

acronym MMBM, given by:

o S
T P
T f(wa) + (B=2)f(wn) f(wn)’
Yn = 2 — f(zn) 04
T fi(wn) 2B+42(B2—68+6)v—5
Tn+l =Tp — 95f( n)
where
04 =28+ u(268+ 2([32 —28—-4)w—5)—(48+ 1)1}2 + 2([32 —48+ 1)v — 5,
_ anby (Ulf(xn)2f(wn) + UQfI(xn)f(yn)f(Zn))
b5 = v1f(20)? + vaf'(zn) f(yn) f(2n) 7 (10)
for

ur = f(yn) (bif/(xn) +bnf(zn) — Cnf(zn)) +an (f(xn) - anf/(xn))f(zn),
Ug = anbncnf/(xn) (f(wn) - f(xn)) + Cnf(wn)f(xn)(an - bn)u

v = f(wn) [bnf(yn) (bif/(xn) + b f(wn) — Cnf(zn))
+ (aif/(xn) + cnanf(yn) — aif(xn))f(zn)}a

Vg = aibicnf’(xn)2(2f(wn) - f(xn)) + anbncn(2an - Cn)f/(xn)f(wn)f(xn)
+cp (anbn — QnpCp — bi)f(wn)f(‘rn)27

ﬂ:1;an:xn_zn;bn:yn_xnacn:yn_zn;u: - .

Latterly, Behl et al. have proposed a more general family (see [1] for details). We
have chosen a special case 1 created by authors of the original paper.

)
) flxn) - 2f(wn)7
Y = Uy — f(zn) ) 3(B2 + Bs) (un — 2n)
T xn) Bi(un — zn) + Bo(wn — ) + Ba(zn — )

Tnl = Tp — 95f(517n)7

)
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2
7 | o)~ 27 Cun) ¥ 3 ) — 27| M FHEO
while 05 has the form (10). This method is denoted by MBAMM with parametric
values 1 =0, B2 =1 and B3 = 0.

Recently, Geum et al. have constructed an optimal class of generic simple root
finders. They have tested a vast number of methods, here we take the one with
the lowest CPU time and an average number of iterations as reported by the test

examples in the original research [12]. The initialism that we use for this method is
MGKN.

where u,, = 2z, —

o f(zn)
N s
— Ln . (s s = Yn
Yn _ J(&n
Tptl = Wnp i ).Jf(S,u,v), v = 7o)
where
s—1)2
Qr(s) = o Kp(su) = Qls) - D)

1-2s’ 1—2s—u+2s%u’
1—s5—52—28+(=1— s+ s%)u+ 2su?

1—85—52—-2834+(—1—s5—s% —sYHhu+(—1+s+ 52 +2s%)v’

Jr(s,u,v)=K¢(s,u)-

Salimi and Behl have developed an optimal family in [28], from this family we use
a special member that has shown the best numerical performance in the original
paper. This method is denoted by MSB with the following form:

W — 3 — f(@n)
n n f/(xn)7

o — . — f(xn) ) f(wn)
" " f'(@n)  flzn) —2f(wn)’

t, =z — f(xn)f(wn)f(zn) . Q
T ) (=2f (wn) + f(xn)) (f (wn) = fz0))]

92P1
Tn+1 = Tn + 93 + 92P2
where
oo S M) A G)

02 = fan)(f(tn) = f(2n))(f (@n) = f(wn))(f(zn) = f(zn)),
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O3 = f'(@n) f(tn) f(2n) (f(tn) = [ (20))(tn — T) (@0 = 2n)

< [(f(@n) = fz2n)) (= f@a)(f (wn) + 2f (@n) = 2f (z0)) + f(wn)?

+ (f(wn) +2f (@) (f (@n) = f(2n)) + f(@n) (£ (tn) = f@n))(f (2n) = £(2n))],
Pr=(f(tn) = flwn))(f(tn) = f(20))(f (wn) = f(z0))(tn = 2n) (20 — 2n),
Py = f(wn)[f (tn)(tn = 20)(f(tn) = f(wn)) = f(zn)(@n = 20)(f(wn) = f(2n))]-

Tao and Madhu have proposed the optimal fourth, eighth and sixteenth order meth-
ods [35]. The sixteenth order method denoted by MTM could be written as follows:

Yn = Tn f,(xn)u
n = Yn — f(yn)
" " f’(wn)+2f[y,:v,x](yn—xn)’
W — 2 — f(zn)
T (@) + 2ba(2, — ) + 3b3(2, — 2)2

- f(wn)
Tn41 = Wp — )
f(xn) + 2a0(wy — xn) 4 3as(wy, — x,)? + dag(w, — x,)3

where

f[ya €L, :Z?](Zn - xn) B f[z,x,x](yn — In)

b2 - ’
Zn — Yn
b 7f[y,I,I]—f[Z,I,I]
3 — )
—Yn
0 — fly, z, ] (—s3s3 + 5282) + flz, 2, 7|(s3s3 — 8153) + fw, x, 2](—s3s2 + 5153)
2 — )

2 2 2 2 2 2
—S87S2 + S185 + S$7S3 — $583 — 51535 + S253

0y = L2 %2053 — 58) + flz 2, 2](=sF + 55) + flw, 2, 2](sF — s3)
—5%89 + 5155 + s753 — $353 — $153 + S253 ’

an — flys @, @] (=s2 + 83) + flz, @, 2](s1 — s3) + flw, 2, 7](=s1 + 82)
* —5289 + 5155 + s753 — $353 — $183 + 5253 ’

fltns ] — fl(xn)

tn_xn

51 =Yn — T, 82 = Zp — Tn, 83 = Wy, — Ty, and f[t,z,2] =

For the interpretation of the numerical behaviour and computational efficiency of the
proposed methods, we have used test examples and appropriate initial approxima-
tions displayed in Table 2. Functions f1, fo and f3 are derived from the acclaimed
real-life problems such as the real gas behavior explained by the van der Waals
equation of state, the fractional conversion and the equation derived from Plank’s
radiation law, respectively.
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fu(@) o 20
fi(2) = 0.9862° — 5.18122 + 9.0672 — 5.289; [20] 1.9298462... 2

fo(z) = 2* —7.790752° +14.74452% +2.5112—1.674; [20]  3.9..+i-0.3... 3.7+i/4
fa(z) = e — 1+ x/5; [14] 4.965114... 3

fa(z) = (x t242) —a+1; [32 4.1525907... 3

fs(x) = :clog(l +zsinz) +e —Lta’fcosa sin(mx); [30] 0 0.01
fo(x) = F2(9V247V3)+V1—22+(1+2°) cos(rz/2); [30] 1/3 0.35
fr(z) = log( z?) + e” sinz; [30)] 0 0.1

Table 2: Test functions

All computations have been carried out by Mathematica using the SetPrecision
function with 10000 significant digits. A computer with the Windows 10 Pro 64-bit
operating system and the AMD Ryzen 7 1700 Eight-Core CPU @ 3.00 GHz processor
has been used for all numerical calculations.

method it |z1 — qf |z2 — «f |zs — «f COC CPU

MKT 3 5.1027-1078 1.0011 - 107103 4.8228-1071%%°  16.000 0.0106
MSGG 3 83927-1071°  1.8082-10"'3*  3.8979-1072'2°  16.000 0.0144
MSSSL 3 7.5196-10" 1.3646 - 1073 1.8883-107*?®  16.000 0.0156
MMBM 3  1.1749-1078 1.9665 - 107 7.4638-107'%%7  16.000 0.0156
MBAMM 3  5.6460-107'°  1.0170-1077  1.2492.1072'8'  16.000 0.0156
MGKN 3 3.8085-107'° 22160-10"° 3.8251.-107%22¢ 16.000 0.0100
MSB 3 2.1280-107° 3.3608 - 107'?®  5.0337-1072°2°  16.000 0.0125
MTM 3 9.1473-1071°  3.3763-107'3*  4.0077-1072'25  16.000 0.0250
NM1A 3 1.8044-1071°  4.4746-107**¢ 9.1519-1072%!  16.000 0.00816
NM2A 3 2.1597-107°  4.8969-107'*%  2.3902-10722%5  16.000 0.00812
NM3A 3 3.5589-.107° 7.7187 10712 1.8504-107%  16.000 0.00872
NM1B 3 9.2506-1071%  3.9672-107** 5.1935-1072'2¢  16.000 0.00752
NM2B 3 1.9928 1078 1.9741-107*%  1.6981-107'™2  16.000 0.00812
NM3B 3 5.9879-1078 8.0420 -1071°2  9.0108-107¢%*  16.000 0.00876
Table 3: Numerical results for fi(x)

method it |z1 — qf |z2 — «f |zs — «f COC CPU
MKT 3 2.7372-107* 4.7461-107°%  3.1852-107%¢  16.000 0.0431
MSGG 3  4.7686-10°° 9.8749-107%%  1.1294-107'%°2  16.000 0.0569
MSSSL - - - - - -

MMBM 3  2.1478-107* 7.6017-107%*  4.5984-107%*°  16.000 0.0644
MBAMM 3  1.5788-1076 5.9057-107%°  8.6768-1072%  16.000 0.0662
MGKN 3  8.2841-1077 8.5845-107%  1.5178-107'°°2  16.000 0.0388
MSB 3 1.9090-107° 7.0180-10"7  7.8102-107'*?  16.000 0.0494
MTM 3 8.2254-1077 6.9022 -107%  4.1718-107*%*  16.000 0.0912
NM1A 3 1.5704-1077 2.9890 - 107197 8.8647-10717°%  16.000 0.0313
NM2A 3 9.4718-107° 3.1312-1077"  6.3690-107'22!  16.000 0.0312
NM3A 3 3.4343-107° 1.3675-107%7  5.4670-1071°%6  16.000 0.0344
NM1B 3 1.3351-107° 1.6749-107°Y  6.3068-1071%59  16.000 0.0312
NM2B 3 6.4308-107° 1.5839-107%2  2.9033-1079* 16.000 0.0325
NM3B 3 2.0108-107* 1.0927-107%%  6.3700-107%2  16.000 0.0331

Table 4: Numerical results for fa(x)
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method it |z1 — ¢ |x2 — |x3 — COC CPU
MKT 3 7.4786-1078 5.8399-1071%2  1.1162-1072'7  16.000 0.0406
MSGG 3 2.7003-1078 2.8804 - 107139  8.0888-107223%  16.000 0.0438
MSSSL 3 4.9791-107¢ 1.0851-107°1  2.8105-1071%%2  16.000 0.0462
MMBM 3  1.7448 -1077 8.0141-107'%%  3.1452-1072°'°  16.000 0.0463
MBAMM 3  2.5006-107° 2.8656 - 107156 2.5341-1072°°7  16.000 0.0456
MGKN 3  3.4023-107'°  4.1685-107'7° 1.0747-107%™®  16.000 0.0394
MSB 3 5.6297-107° 3.5586 - 107159 2.3115-10721°°  16.000 0.0406
MTM 3 3.9566-107° 8.3176 - 107153 1.2099-10~2%!  16.000 0.0550
NMI1A 3 2.7734-1071%  6.1675-1071"%  2.2063-10727®  16.000 0.035
NM2A 3 7.4584-1071°  5.6036-1071%°  5.7763-1072%47  16.000 0.0362
NM3A 3 1.5157-107° 5.6559 - 107159 7.9948-1072°¢7  16.000 0.0369
NM1B 3 7.5911-1071%  7.5856-1071%°  7.4985.-107254%  16.000 0.0375
NM2B 3 3.2961-107° 1.5000 - 10~**  5.0770-1072%%%  16.000 0.0375
NM3B 3  1.1336-108 6.9956 - 10714¢  3.0927-1072%4!  16.000 0.0356
Table 5: Numerical results for f3(z)
method it |z1 — ¢ |x2 — |x3 — COC CPU
MKT 3 5.8981-107"2  2.2937-107'"  6.2783-107%''%  16.000 0.0344
MSGG 3 6.9171-107"  4.8597-107%'°  1.7125-10°***  16.000 0.0375
MSSSL 3 21173-107'°  1.4873-107'%°  5.2291-10727'  16.000 0.0388
MMBM 3 818181072  5.1860-107'%*  3.5210-107°°°  16.000 0.0356
MBAMM 3 1.6411-107"%  1.3589-107%*°  6.6380-107°>**  16.000 0.0388
MGKN 3 3.0172-107*  6.5425-107%%%  1.5631-1073"®  16.000 0.0325
MSB 3 6.9534-107""  2.6903-107%*  6.7836-107°°%°  16.000 0.0344
MTM 3 34214-107*  7.8919-1072%2  5.0688-107°*  16.000 0.0475
NMI1A 3 3.3634-107'¢  5.5495-1072°7  1.6741-107**"  16.000 0.0287
NM2A 3 1.3202-107"  84901-107%'°  7.2663-107>**>  16.000 0.0294
NM3A 3 5.2518-107"*  1.2980-10**°  2.5167-107°° 16.000 0.0312
NM1B 3 1.3169-107*  2.5432-107%9  9.5228-1073%3%%  16.000 0.0275
NM2B 3 25289-10""  9.1704-107%%°  8.1986-10">"°>  16.000 0.0294
NM3B 3  1.0830-10""%  8.6483-10">*° 2.3670-10_**° 16.000 0.03
Table 6: Numerical results for fi(x)
method it |z1 — qf |z2 — «f |zs — «f COC CPU
MKT 3 2.9007-107%2  6.4779-107°%%  2.4802-107%°°"  16.000 0.111
MSGG 3 6.5287-1073%  7.2026-107%%°  4.2832-1077°7°  16.000 0.114
MSSSL 3 9.3684-1073C  8.6553-107%62  2.4384.1077*"™*  16.000 0.114
MMBM 3  5.9620-107%'  1.5491-107*%? 6.6811-1077"°®  16.000 0.118
MBAMM 3  5.1813-1073%  1.2984-107°%  3.1386-107%%*  16.000 0.118
MGKN 3 1.2622-1073%  4.5689-107°%®  3.9696-107%%3%  16.000 0.108
MSB 3 52367-107%  1.4395-107°Y 1.5301-107%%2°  16.000 0.110
MTM 3 6.4722-1073%  5.1403-1075%  1.2883-1078%  16.000 0.126
NM1A 3 1.5714-1073%  1.6613-1075%6  4.0466-1073*  16.000 0.109
NM2A 3 3.8002-1073  7.3983.107%8  3.1508-10"7"%'  16.000 0.104
NM3A 3 2.2830-1073°0  1.3482-107%"% 2.9502-1077**®  16.000 0.108
NM1B 3 1.3844-1073%  1.8892-1075%" 2.7335-107%12°  16.000 0.104
NM2B 3 53049-1073  2.1212-107%*  9.0552-1077"*2  16.000 0.105
NM3B 3 4.6200-1073°  2.1639-107%"  1.1603-10"7%*  16.000 0.107

Table 7: Numerical results for fs(x)
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method it |z1 — ¢ |x2 — |x3 — COC CPU
MKT 3 2.1129-107% 1.5197 -1073°Y  7.8004-107%%%°  16.000 0.0575
MSGG 3 2314810726 6.7216-1079%  1.7167-107%12  16.000 0.0606
MSSSL 3 8.2594-1072"  2.4290-107*%  7.6065-107°%32  16.000 0.0619
MMBM 3  2.7484-107% 1.3390 - 10738 1.3490-107%2'®  16.000 0.0644
MBAMM 3  4.1228 10727  1.2421-107%%° 5.7231-107%7'7  16.000 0.0662
MGKN 3  1.2434-107%®  3.6925-107** 1.3517.1077'2  16.000 0.0544
MSB 3 4.0450-107%"  7.9911-10"**'  4.3019-107°72°  16.000 0.0575
MTM 3 1.5451-107%"  6.6975-10%®  1.0407-107%%33  16.000 0.0694
NM1A 3 7.9516-1072%  8.3706-10%%  1.9038-107°°'2  16.000 0.0538
NM2A 3 3.1879-107%6  1.5174-107%%°  1.0529-107%"™  16.000 0.0538
NM3A 3 1.5100-1072°  4.8583-1073%  6.4056-107%2%°  16.000 0.0518
NM1B 3 8.1132-1072°  6.2355-10%° 9.2398-10"7*%  16.000 0.0538
NM2B 3 2.2842-107%  6.2176-107%%  5.6483-107%13  16.000 0.0532
NM3B 3 23504-1072%  1.0464-107%° 2.4901-107%%%  16.000 0.0537
Table 8: Numerical results for fe(z)
method it |z1 — ¢ |x2 — |x3 — COC CPU
MKT 3  1.7675-107  5.8749.107%°  1.3039-1072%*"  16.000 0.0581
MSGG 3 5.3823-107*%  6.7571-107'9%2  2.5728-1073%°*  16.000 0.0594
MSSSL 3 1.3817-107'°  5.9340-107'%®  7.9534-1072%3'  16.000 0.065
MMBM 3  82567-107'2  1.8483-10~'"' 7.3510-107%"2%  16.000 0.0613
MBAMM 3  2.6453-107*  2.4795-10*7 8.8006-1073*2  16.000 0.0625
MGKN 3  9.0931-107*  4.9413-1072% 2.8565-1073?%°  16.000 0.0531
MSB 3 4.7536-1071%  1.0734-107'°%  4.9060-1073°%*  16.000 0.0569
MTM 3 1.3916-10"*%  3.9851-1072°2  8.1489-10732°  16.000 0.0700
NMI1A 3 2.5080-107  8.5415-1072  2.7982:1073422  16.000 0.0519
NM2A 3 1.6031-107'% 21458 -1072°° 2.2768-107%'°°  16.000 0.0513
NM3A 3 1.3220-107*%  4.7015-1072°%  3.0797-10732%°  16.000 0.0537
NM1B 3 1.7548 .10 1.9906 - 1072°°  1.4957-1073%1  16.000 0.0507
NM2B 3 4.7330-10712  1.5343.107'7°  2.2821-1072"!'  16.000 0.0531
NM3B 3 1.9276-107*"  7.0415-1071%°  7.0783-107262°  16.000 0.0525

Table 9: Numerical results for f7(x)

Numerical results are listed in tables 3 - 9, where “it” represents the number of
iterations required for each method to satisfy the stopping criterion |f(x,)| < 1075%
(except for f5(x), where it is | f(x,,)| < 1071909). The following three columns display
the errors of the first, second and third iteration. Cases when the method diverges
or converges to an undesired root are denoted by “~”. The computational order of
convergence “COC” [38] has been calculated by the formula:

 log|(n — 0)/(@ns — )
R e PRy Fea——T

Finally, the last column CPU shows the average computational time of 25 perfor-
mances of each method.

From these tables, it is clear that all the methods of family (1) reach the 16th
convergence order, which agrees with the theoretical conclusions derived in Section
2. CPU times of the new methods are mostly better than the CPU times of the other
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considered methods. Moreover, according to the error values |z, — «|, a new method
NM1A performs favorably in comparison to the majority of existing methods for the
given particular choice of test functions.

3.2. Dynamical behaviour

In the following section, we compare the above given iterative methods in the com-
plex plane by using basins of attractions. The description of the dynamical behaviour
and comparison of the method through basins of attraction have been previously
used in [6, 23, 30, 32, 34]. Before presenting the numerical results, we give a brief
review of the basic concepts regarding basins of attraction.

Let f : C — C be the rational map of the complex plain. Point z is called a
fixed point for f if f(xz¢) = z¢. Fixed point zg is called attracting if |f'(zo)| < 1,
repelling if |f'(zo)| > 1, and neutral if |f/(x0)] = 1. Qualitative behaviors of non-
fixed starting points can be interpreted in relation to the fixed points. Further, the
orbit for x € C is defined as the set orb(z) = {z, f(x), f*(z),...} and point yq is
named periodic with the minimal period n if f™(yo) = yo. It is evident that a fixed
point is a periodic point with its minimal period being 1.

Each attracting region is called the basin of attraction A(«):

Ala) ={xo € C: f™(x0) = a,m — o0},

where « is an attracting fixed point of function f. In other words, the basin of
attraction is the set of starting points whose trajectories are asymptotic to a bounded
region. The points whose orbits tend to an attracting fixed point « define a set
named the Fatou set. The closure of the set consisting of repelling periodic points
is denoted as the Julia set. The Julia set is the complement to the Fatou set, and it
establishes the borders between the basins of attraction. This implies that the basin
of attraction of any fixed point belongs to the Fatou set and the boundaries of these
basins of attraction belong to the Julia set.

We observe a 256 x 256 mesh of a rectangle R = [—3, 3] x [—3, 3] with uniformly
distributed complex starting points (without pure real and pure imaginary starting
points). When considering the sensitive dependence on starting conditions, one needs
to observe the “decorations” along the basin boundaries for each method’s geometry
in terms of frequency, size, and structure. Methods with rather clean boundaries are
considered more desirable since they show increased behavior predictability in the
sense that the observed starting point converges to the closest solution. In order to
visualize the dynamical behaviour, we assign a color to each starting point zp € R
according to the root at which the corresponding iterative method starting from
xg converges, and we mark the point as black if the method does not converge, in
the sense that after at most 100 iterations it has a distance larger than 107° to
any of the roots. Furthermore, the number of iterations necessary to converge to a
root is shown through a variety of color intensities. Points requiring fewer iterations
appear with lower intensity. We have chosen three members of the family (1) for a
dynamical comparison with other methods presented above, namely NM1A, NM2A
and NM1B.



AN OPTIMAL SIXTEENTH ORDER FAMILY OF METHODS

283

The following test examples have been employed to analyze the dynamical behavior:

e pi(2) = 2% + 1 with roots =4, [29];

e po(2) = 2% + 2 with roots 0, £0.70710678 4 0.707106784, [32];

o p3(z) = (e = 1)(z -
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p1(2) p2(z)
method black(%) average (it) CPU | black(%) average (it) CPU
MKT 0 2.1559  662.829 0 2.9437 671.549
MSGG 0 1.8477  667.829 0 2.2695 681.313
MSSSL 1.605 5.7024 761.235 12.341 17.1359 1052.218
MMBM 0 1.9606  681.250 0 2.5404 699.953
MBAMM 0 1.8256  679.750 0 2.2971 694.891
MGKN 0 1.7726  663.203 0 2.3175 677.765
MSB 0 2.3825 682.172 0.452 3.0569 702.984
MTM 0 1.7867 685.516 0 2.4971 713.750
NMI1A 0 1.8030 650.906 0 2.3083 656.266
NM2A 0 1.9623 653.594 0 2.6659 659.625
NM1B 0 1.8416  652.359 0 2.4894 657.454

Table 10a: Numerical results for p1(z) and p2(2)
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p3(z) Total
method black(%) average (it) CPU | average (it) average (CPU)
MKT 0.198 2.1505 672.844 2.4167 669.089
MSGG 0.098 1.9157  680.171 2.0110 676.438
MSSSL 20.932 22.9360 745.719 15.2581 853.057
MMBM 3.174 4.9801 690.079 3.1604 690.427
MBAMM 0.154 1.9314  691.687 2.0180 688.776
MGKN 0.046 1.8567  677.063 1.9823 672.677
MSB 0.380 2.2142  692.750 2.5512 692.635
MTM 0 1.7861  698.750 2.0233 699.339
NMI1A 0 1.8143 663.219 1.9752 656.797
NM2A 0.031 19111 666.015 2.1798 659.745
NM1B 0.095 1.9570  665.078 2.0960 658.297

Table 10b: Numerical results for ps(z) and total average
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Figure 3: Basins of attraction of different methods for polynomial ps
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Tables 10a and 10b show a quantitative comparison of the methods. The percent
of black points (out of 65536 equally distributed starting points on the rectangle
[—3,3] x [-3,3]), the average number of iterations per starting point and CPU time
(in seconds) required for the depiction of the graph is calculated for each method
and each test example. In order to summarize the presented results, the last two
columns in Table 10b display the average number of iterations and the average CPU
time determined across all three test examples.

According to those results, it can be said that NM1A, NM2A and NM1B methods
are very competitive with already existing methods, especially in the sense of the
CPU time, the new methods are faster than the others in all tests. In terms of the
average number of iterations, the best method overall is NM1A, closely followed by
MGKN, MSGG, MBAMM, MTM and NM1B. Note that NM1A and MTM are the
only methods with no black points in all test examples. Aside from that, NM1A has
the best CPU time results.

4. Conclusions

In this paper, we have given a simple yet efficient family of multipoint methods of
order sixteen with four steps, by using an optional fourth order and an optional
eighth order iteration scheme for solving nonlinear equations. One requires four
evaluations of the function and one of its first derivative per step, accordingly, the
family is of the 16th convergence order. Some examples of members of the family are
given and their performance is compared with the existing optimal sixteenth order
methods over numerical experiments. The presented methods show competitive
results in the comparison to the existing methods by numerical results displayed in
Table 3 - Table 9. Moreover, the presented basins of attraction have also confirmed
good performance of the methods as compared to other methods established in the
literature.
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