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A note on the curve complex of the 3-holed projective plane∗
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Gdańsk, 80-308 Gdańsk, Poland
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Abstract. Let S be a projective plane with 3 holes. We prove that there is an exhaustion
of the curve complex C(S) by a sequence of finite rigid sets. As a corollary, we obtain that
the group of simplicial automorphisms of C(S) is isomorphic to the mapping class group
Mod(S). We also prove that C(S) is quasi-isometric to a simplicial tree.
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1. Introduction

The complex of curves C(S) of a surface S, first introduced by Harvey [7], is the
simplicial complex with k-simplices representing collections of homotopy classes of
k + 1 non-isotopic disjoint simple closed curves in S. In this paper, we let S = N1,3

be a 3-holed projective plane. Then C(S) is one-dimensional and its combinatorial
structure was described by Scharlemann [22]. The first purpose of this note is to
prove some rigidity results about C(N1,3), which are known for most surfaces, but
have not been proved in the literature in this particular case. The second purpose
is to show that C(N1,3) is quasi-isometric to a simplicial tree.

By the celebrated theorem of Ivanov [12], Korkmaz [14] and Luo [17], the group
Aut(C(S)) of simplicial automorphisms of C(S) for orientable surface S is, with a
few well understood exceptions, isomorphic to the extended mapping class group
Mod±(S). A stronger version of this result, due to Shackleton [24], says that every
locally injective simplicial map from C(S) to itself is induced by some element of
Mod±(S) (simplicial map is locally injective if its restriction to the star of every
vertex is injective). Analogous results for nonorientable surfaces were proved by
Atalan-Korkmaz [3] and Irmak [10], omitting the case of N1,3.

In [1], Aramayona and Laininger introduced the notion of a rigid set. It is a
subcomplex X ⊂ C(S), with the property that every locally injective simplicial map
X → C(S) is induced by some homeomorphism of S. In [1], they constructed a finite
rigid set in C(S), for every orientable surface S, and in [2] they proved that there is
an exhaustion of C(S) by a sequence of finite rigid sets.
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Let S = Ng,n be a nonorientable surface of genus g with n holes. Ilbira and
Korkmaz [9] constructed a finite rigid set in C(S) for g + n 6= 4. Irmak [11] proved
that C(S) can be exhausted by a sequence of finite rigid sets for g + n ≥ 5 or
(g, n) = (3, 0). The methods used in [9, 11] fail for g + n < 5 due to the exceptional
combinatorial structure of C(S). While this structure is rather simple for g + n < 4
(see [22]), it is quite complicated for g + n = 4. In this paper, we show that the
main results of Ilbira-Korkmaz [9] and Irmak [11] are true for N1,3.

Theorem 1. There exists a sequence X1 ⊂ X2 ⊂ · · · ⊂ C(N1,3) such that:

(1) Xi is a finite rigid set for all i ≥ 1;

(2) Xi has a trivial pointwise stabilizer in Mod(N1,3) for all i ≥ 1;

(3)
⋃

i≥1
Xi = C(N1,3).

Our proof is independent of [9, 11]. The following corollary is an extension of
the main results of Atalan and Korkmaz [3] and Irmak [10]. It follows easily from
Theorem 1 (see the proof of the analogous corollary in [2]).

Corollary 1. If φ : C(N1,3) → C(N1,3) is a locally injective simplicial map, then
there exists a unique f ∈ Mod(N1,3) such that φ = f .

In particular, the group of simplicial automorphisms of C(N1,3) is isomorphic to
Mod(N1,3).

Masur and Minsky [19] proved that C(S) is δ-hyperbolic for orientable S. Their
result was extended to nonorientable surfaces by Bestvina and Fujiwara [4] and
Masur and Schleimer [20]. The coarse structure of C(S) is central in low-dimensional
topology, providing a key to a better understanding of the mapping class group, the
Teichmüller space, and geometry of 3-manifolds. Our next result determines the
coarse structure of C(N1,3).

Theorem 2. The curve graph C(N1,3) is quasi-isometric to a simplicial tree.

It follows that the Gromov boundary ∂∞C(N1,3) of C(N1,3) is totally discon-
nected. We expect that ∂∞C(Ng,n) is connected for large enough g and n, similarly
to orientable surfaces [6, 16]. Recall that for orientable S, ∂∞C(S) is homeomorphic
to the space of ending laminations of S [13].

2. Preliminaries

Let S be a surface of finite type. By a hole in a surface we mean a boundary
component. A curve on S is an embedded simple closed curve. A curve is one-sided
(resp. two-sided) if its regular neighbourhood is a Möbius band (resp. an annulus).
If α is a curve on S, then S\α is the subsurface obtained by removing from S an
open regular neighbourhood of α. A curve α is essential if no boundary component
of S\α is a disc or an annulus or a Möbius band.

The curve complex C(S) is a simplicial complex whose k-simplices correspond to
sets of k + 1 isotopy classes of essential curves on S with pairwise disjoint represen-
tatives. To simplify the notation, we will confuse a curve with its isotopy class and
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Figure 1: Vertices of C(N1,2) (left) and C(N1,3) (right)

the corresponding vertex of C(S). Simplices of dimension 1, 2 and 3 will be called
edges, triangles and tetrahedra, respectively. For α, β ∈ C0(S), by i(α, β) we denote
their geometric intersection number.

The mapping class group Mod(S) of a nonorientable surface S (resp. the exten-
dend mapping class groupMod±(S) of an orientable surface S) is the group of isotopy
classes of all self-homeomorphisms of S. If S is orientable, then the mapping class
group Mod(S) is defined to be the group of isotopy classes of orientation preserv-
ing homeomorphisms. Note that Mod(S) and Mod±(S) act on C(S) by simplicial
automorphisms.

If S is a four-holed sphere (or a torus with at most one hole), then C(S) is a
countable set of vertices. In order to obtain a connected complex, the definition
of C(S) is modified by declaring α, β ∈ C0(S) to be adjacent in C(S) whenever
i(α, β) = 2 (or i(α, β) = 1). Furthermore, triangles are added to make C(S) into
a flag complex. The complex C(S) obtained in such way is isomorphic to the well-
known Farey complex [21, 23]. Two adjacent vertices of C(S) will be called Farey
neighbours, and 2-simplices of C(S) will be called Farey triangles.

We represent the surface N1,n as a sphere with one crosscap and n holes. The
following two lemmas are easy to prove, and otherwise, they can be found in [22].

Lemma 1. C(N1,2) consists of two one-sided vertices α, α′ such that i(α, α′) = 1
(Figure 1).

Lemma 2. In C(N1,3) every two-sided vertex β is connected by an edge with exactly
two vertices α, α′, which are one-sided and i(α, α′) = 1. Conversely, for every pair
of one-sided vertices α, α′ such that i(α, α′) = 1, there exists exactly one two-sided
vertex β connected by an edge with α and α′ (Figure 1).

3. Finite rigid sets

In this section, S denotes a three-holed projective plane. The complex C(S) was
studied by Scharlemann [22]. It is a bipartite graph: its vertex set can be partitioned
as C0(S) = V1 ⊔ V2, where V1 and V2 denote the sets of one-sided and two-sided
vertices, respectively, and every edge of C(S) connects a one-sided vertex with a
two-sided one. Furthermore, by Lemma 2, every β ∈ V2 is connected by an edge
with exactly two α, α′ ∈ V1 such that i(α, α′) = 1. We say that β is determined by
α and α′.

We define an auxiliary simplicial complex D whose vertex set is V1, and a set of
vertices {α0, . . . , αk} is a simplex if i(ai, aj) = 1 for 0 ≤ i < j ≤ k. It follows from
the above discussion that C(S) is isomorphic to the graph obtained by subdividing
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every edge of D1 – the 1-skeleton of D. Indeed, the subdivision of an edge of D1

corresponds to adding the two-sided vertex determined by this edge.

Proposition 1. (a) The link of each vertex of D is isomorphic to the Farey com-
plex.

(b) dimD = 3.

(c) Every triangle of D is contained in exactly two different tetrahedra.

Proof. Fix a vertex α ∈ D and consider the four-holed sphere S\α. Recall that
C(S\α) is the Farey complex. We define a map θα : Lk(α) → C(S\α), where Lk(α) is
the link of α in D. For a vertex α′ ∈ Lk(α), θα(α

′) is a two-sided curve determined
by α and α′. It follows from Lemma 2 that θα is a bijection on vertices, and we claim
that it is a simplicial isomorphism. Indeed, note that for α′, α′′ ∈ Lk(α) we have
i(α′, α′′) = 1 ⇐⇒ i(θα(α

′), θα(α
′′)) = 2. This proves (a). The other assertions

are consequences of (a) and well-known properties of the Farey complex; namely
dim C(S\α) = 2 and every edge of C(S\α) is contained in exactly two different
triangles.

Given a one-sided curve, α0 we can construct infinitely many tetrahedra of D
containing α0 as a vertex. Let {βi}

3
1 be any Farey triangle of C(S\α0) and, for

1 ≤ i ≤ 3, let αi be a one-sided curve such that βi is determined by αi and α0. Then
{αi}

3
0 is a tetrahedron of D.

Lemma 3. Suppose that Σ is a 4-holed sphere, and C is one of its boundary compo-
nents. For any two Farey triangles {β0, β1, β2} and {β′

0, β
′
1, β

′
2} in C(Σ) there exists

a unique f ∈ Mod±(Σ) such that f(C) = C and f(βi) = β′
i for i = 0, 1, 2.

Proof. We denote by Mod(Σ, C) (resp. Mod±(Σ, C)) the subgroup of Mod(Σ)
(resp. Mod±(Σ)) consisting of elements fixing C. By cutting Σ along Farey neigh-
bours we obtain four annuli, each containing one boundary component of S. There-
fore, there exists an orientation preserving f ′ ∈ Mod(Σ, C) such that f ′(βi) = β′

i for
i = 1, 2. Furthermore, since f ′(C) = C, such f ′ is easily shown to be unique by the
Alexander method [5, Prop. 2.8]. The pointwise stabilizer of {β′

1, β
′
2} in Mod±(Σ, C)

is a cyclic group of order 2 generated by an orientation reversing involution τ fixing
every hole and such that β′

0 and τ(β′
0) are the unique common Farey neighbours of

both β′
1 and β′

2. By composing f ′ with τ if necessary we obtain the desired f .

Lemma 4. For any two tetrahedra {αi}
3
i=0 and {α′

i}
3
i=0 of D there exists a unique

f ∈ Mod(S) such that f(αi) = α′
i for 0 ≤ i ≤ 3.

Proof. For 1 ≤ i ≤ 3, let βi (respectively β′
i) be a two-sided curve determined by

α0 and αi (respectively α′
0 and α′

i). Note that {β1, β2, β3} and {β′
1, β

′
2, β

′
3} are Farey

triangles in C(S\α0) and C(S\α′
0), respectively. By Lemma 3 there exists a unique

f ∈ Mod(S) such that f(α0) = α′
0 and f(βi) = β′

i for 1 ≤ i ≤ 3. Since α′
i is the

unique vertex of C(S) different from α′
0 and adjacent to β′

i, we have f(αi) = α′
i for

1 ≤ i ≤ 3.
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T T ∗

Figure 2: A tetrahedron of D and the corresponding subgraph of C(S)

We define a “dual” graph T whose vertices are tetrahedra of D. Two tetrahedra
are connected by an edge in T if their intersection is a triangle. Sharlemann proved
in [22, Theorem 3.1] that D1 is the 1-skeleton of the complex obtained from a
tetrahedron by repeated stellar subdivision of the faces, but not the edges. This
result can be rephrased in terms of the graph T as follows.

Theorem 3 (Sharlemann). T is a 4-regular tree.

Recall that a k-regular tree is the infinite tree whose every vertex has degree k.
Let T be a tetrahedron of D. We denote by T ∗ the full subcomplex of C(S)

spanned by the four vertices of T and the six two-sided vertices determined by the
edges of T (Figure 2). The following proposition says that T ∗ is rigid. It is thus an
extension of the main result of [9].

Proposition 2. Suppose that T is a tetrahedron D and φ : T ∗ → C(S) is a locally
injective simplicial map. Then there exists a unique f ∈ Mod(S) such that φ = f
on T ∗.

Proof. First note that φ is injective because it is locally injective and T ∗ has diam-
eter 2. Let T = {αi}

3
i=0. We claim that {φ(αi)}

3
i=0 is a tetrahedron of D. Indeed,

for 1 ≤ i ≤ 3, φ(αi) is adjacent in C(S) to three different vertices, and hence it is
one-sided as two-sided vertices of C(S) have degree 2. For i 6= j, the distance in
C(S) between φ(αi) and φ(αj) is 2, and hence φ(αi) and φ(αj) are adjacent in D.

By Lemma 4, there exists a unique f ∈ Mod(S) such that f(αi) = φ(αi) for
0 ≤ i ≤ 3. Let β be a two-sided vertex of T ∗ determined by αi and αj . Then φ(β)
is adjacent to φ(αi) and φ(αj), and since such a curve is unique, φ(β) = f(β).

We denote by T 0 the vertex set of T , that is the set of tetrahedra of D. Let dT
denote the path metric on T . We fix a reference tetrahedron T0 and define

T 0
n = {T ∈ T 0 | dT (T, T0) ≤ n}.

In other words, T 0
n is the set of tetrahedra within distance at most n from T0 in the

path metric on T .

Proof of Theorem 1. Let X1 = T ∗
0 and for n ≥ 1:

Xn+1 =
⋃

T∈T 0
n

T ∗.
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We prove by induction that Xn is rigid for all n ≥ 1. By Proposition 2, X1 is rigid.
Assume that Xn is rigid and let φ : Xn+1 → C(S) be a locally injective simplicial
map. Since Xn is rigid, there exists a unique f ∈ Mod(S) such that f = φ on Xn.
Let φ′ = f−1 ◦ φ.

Let T ∈ Tn+1\Tn. We need to show that φ′ fixes every vertex of T ∗. It suffices
to show that φ′ fixes every vertex of T because then it also has to fix the two-
sided vertices of T ∗ determined by edges of T . The tetrahedron T has a common
face with some (unique) tetrahedron T ′ ∈ Tn. Let T = {α0, α1, α2, α3} and T ′ =
{α′

0, α1, α2, α3}. Let β (resp. β′) be the two-sided vertex of T ∗ (resp. (T ′)∗)
determined by α0 and α1 (resp. α′

0 and α1). By local injectivity of φ′, φ′(β) 6=
φ′(β′) = β′, and hence also φ′(α0) 6= φ′(α′

0) = α′
0. By Proposition 2, φ′(T ) is a

tetrahedron different from T ′ and having a common face with T ′. Since such a
tetrahedron is unique by (c) of Proposition 1, φ′(T ) = T and φ′(α0) = α0. We have
shown that φ′ pointwise fixes T ∗, and it follows that it pointwise fixes Xn+1. Hence
φ = f on Xn+1.

Since Xn contains T ∗
0 for all n ≥ 1, it has a trivial pointwise stabilizer in Mod(S).

Finally, it follows from the connectedness of T that
⋃

n≥1
Xn = C(S).

4. Coarse geometry

In this section, we consider C(S) and D1 as metric graphs with all edges of length
1. We denote the metrics on these graphs by dC and dD, respectively.

There is a natural piecewise-linear homeomorphism φ : C(S) → D1 equal to the
identity on one-sided vertices which forgets the two-sided vertices. That is, if β is
the two-sided vertex of C(S) determined by α and α′, then φ(β) is defined to be the
midpoint of the edge of D connecting α and α′. We have

dC(x, y) = 2dD(φ(x), φ(y))

for all x, y ∈ C(S). In particular, φ is a quasi-isometry.
Since T is a tree, every triangle of D is separating, i.e. the space obtained by

removing a triangle from D has two connected components. If ∆ is a triangle of D,
and x and y are points lying in different connected components of D\∆, then we say
that ∆ separates x from y.

Lemma 5. Let p be a vertex on a geodesic in D1 from x to y, such that dD(p, x) ≥ 1
and dD(p, y) ≥ 1. There exists a triangle ∆ of D such that p ∈ ∆ and ∆ separates
x from y.

Proof. Let [x, y] be a geodesic in D1 from x to y containing p, and let q be the vertex
preceding p on [x, y]. Let (Ti)

n
0 be any sequence of tetrahedra forming a geodesic in

T such that q ∈ T0 and y ∈ Tn. Note that q /∈ Tn since dD(q, y) = 1 + dD(p, y) ≥ 2.
Let Ti be the first tetrahedron in this sequence such that q /∈ Ti. Then ∆ = Ti∩Ti−1

is a triangle separating q from y. The segment [q, y] must pass through a vertex of
∆, and since q ∈ Ti−1\Ti, the distance from q to ∆ is 1, hence p ∈ ∆. Finally, notice
that ∆ separates x from y, for otherwise [x, y] could not contain q (there would be
a shorter path from x to y avoiding q).
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Proof of Theorem 2. Since C(S) is quasi-isometric to D1, it suffices to show that D1

is quasi-isometric to a simplicial tree. By [18, Theorem 4.6], this is equivalent to
D1 satisfying the following bottleneck property: There is some L > 0 so that for all
x, y ∈ D1 there is a midpoint m = m(x, y) with d(x,m) = d(y,m) = 1

2
d(x, y) and

the property that any path from x to y must pass within less than L of the point m.
Let L > 3

2
and define m = m(x, y) to be the midpoint of any geodesic from x to

y. Clearly we can assume dD(x,m) ≥ L. Let p be a vertex on a geodesic from x to
y such that dD(m, p) ≤ 1

2
. By Lemma 5, there exists a triangle ∆ separating x from

y such that p ∈ ∆. Any path from x to y must pass through ∆, and hence within
at most 3

2
of the point m.

Recall that a geodesic metric space (X, d) is δ-hyperbolic if, for any geodesic
triangle [x, y]∪ [x, z]∪ [y, z] and any p ∈ [x, y] there exists some q ∈ [x, z]∪ [y, z] with
d(p, q) ≤ δ. A triangle satisfying the condition above is called δ-thin. The curve
complex is known to be 17-hyperbolic for every surface for which it is connected
[8, 15]. Inspired by Minsky’s proof of the hyperbolicity of the Farey graph [21], we
give a better bound for the hyperbolicity constant of C(N1,3).

Proposition 3. The graph C(N1,3) is 3-hyperbolic.

Proof. First we prove that D1 is 3

2
-hyperbolic. Let [x, y]∪ [x, z]∪ [y, z] be a geodesic

triangle in D1 and p ∈ [x, y]. Clearly we can assume dD(x, p) ≥
3

2
. Let p′ be a vertex

on [x, y] such that dD(p, p
′) ≤ 1

2
. By Lemma 5, there exists a triangle ∆ separating

x from y such that p′ ∈ ∆. It follows that [x, z]∪ [y, z] has a non-empty intersection
with ∆, and for any point q in this intersection dD(q, p) ≤

3

2
.

To finish the proof we use the homeomorphism φ : C(S) → D1. Observe that φ
maps geodesics triangles to geodesic triangles and dC(x, y) = 2dD(φ(x), φ(y)) for all
x, y ∈ C(S). Since geodesic triangles in D1 are 3

2
-thin, geodesic triangles in C(S) are

3-thin.
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