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An equation was worked out for the solubility of a substance 
in the mixture of two solvents which reads d Ms/Ms=K·M~ ·d Mx, 
where Ms is the mo1ar fraction of the dissolved matter, Mx is the 
molar fraction of one of the components of the mixed solvent. 
From this equation subsequent equations for different magnitude 
of n were derived and was shown that some other reported 
equations represent special cases of this equation. 

The laws regulating the solubility of solid substances in a mixture of 
two solvents have been studied for a long time and so far a considerable 
number of mathematical relations have been derived to interpret the expe­
rimentally obtained data. In references1- 23 some of those papers are quoted. 
However, the equations suggested are very often valid only for those ternary 
systems for which they were evolved. In addition, at first glance it seems as 
if these relations differ essentially in their mathematical form as well. 

Considering that in formation of the equillibrium of a great number of 
different saturated ternary systems the same or very similar physico-chemical 
phenomenon is involved, it can be assumed that it could be formulated by 
an equation which will be able to satisfy many experimental data regardless 
of subsidiary processes which may develop during the solving process itself. 
Many equations der ived so far, should appear as special cases of such a 
generalisation. 

Having this in mind we started from the point of view that the change 
of the solubility M5 (expressed by molar fraction) of a certain substance is 
dependent on the change of the molar fraction Mx of one of the components 
of the mixed solvent. Expressed in the form of an equation it would give: 

dMs n 
~=K·Mx ·dMx 

s 
(1) 

Here K represents the constant of proportionality while the exponent n 
takes into account the fact that the nature of the supposed mathematical 
dependence could differ considerably. 
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By integration of the equation (1) we obtain for all finite values of n. 
exept for n = -1: 

or for n = 1 we get: 

K 
lnMs = --+- · M~+I + R 

n 1 
(2) 

(3) 

This shows that the expression (2) represents a series of families of 
exponential curves, while the equation (3) represents the algebraic equatio.n 
of any order. 

If n takes the value 0, the integral (2) acquires the form 

(2a) 

If we neglect the molar fraction of the solute as a value of a smaller 
ord er of magnitude compared with the values of the molar fractions of both_ 
components of the solvent, the relation 

M x + M y= 1 

will be valid. (Mv is the molar fraction of the other component of the mixed. 
solvent). Accordingly, equation (2a) could be written as follows : 

(2b) 

where Ms(~) means the ' solubility in pure solvent x. 

From the equation (2b) it can be easily seen that it is valid for the· 
case where the substance is soluble in both components of the niixed 
solvent because if Mx = 1 we obtain M s= Ms(x), while if M x = 0 we obtain 

Ms= M s(x) ' e-K = Ms(y) · 

On the other hand if we take the antilogarithm of the integral (3), it 
follows that 

M s= Ms(x) · M~ (3a) 

When Mx = 1, M s becomes M s(x) and when M = 0, M s is equal to 0 and that 
is equivalent to M s(y) which from it follows that the integral (3) is applicable 
only for the systems where a substance is soluble exclusively in one of the 
two components of the binary solvent. 

It is evident from the equation (2b) that the constant K could be giv~n 
in the form 

Ms(x) 
K = ln -­

Ms(y> 

(4) 

This relation suggests the physico-chemical significance of the constant K: 

a) If Ms(x) = M s(y) then K = 0. - The solubility of the substance is: 
equal in both components of the binary solvent so that no changes 
happen when their ratio is changed (see the line 1, Fig. 1). In other words, 
both components of the solvent contribute equally to the solving process, 
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while no subsidiary processes exist betw~eri · 'the Components themselves: 
(solvatation and the like). 

Q) If M s(x) > Ms(y) then K > 0 and M 8 = M s<x) · e -K ·MY . - The solu­
bility is greater in' one of the components (x) of the mixed solvent (see the 
c1irve 2, Fig. 1). Since , no linear course of the isotherm of solubility exists, it 
might be supposed that there is some sort of interaction between the com­
ponents of the solvent itself. 

c) If M s(x) < M s(y) then K < 0 and M 8 = M s(x ) • e -K · MY. - The solubility 
is greater in the second component of the solvent (y) and the nature of the 
interaction is of a different type (see the curve 3, Fig. 1). 

l:Jy 

Similarly it could be derived from equation (3a) that 
a) If K = O then M 5 = M s(x) eK·My. - The solubility does not change 

which means that only one solvent is present (see the line 1, Fig. 2). 
b) If K = 1 then M 5 = M s<x> · M x. A linear change of solubility occurs 

from 0 to the value of solubility in the pure solvent x (see the curve 2, 
Fig. 2). This means that the presence of the second component does not change 
the solubility of the substance in the first component but only dilutes the 
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latter. The course of solubility isotherme is linear meaning that no interaction 
takes place between the two components of the solvent. 

c) If K > 1 then Ms= Ms(x) · M~ . At the beginning the change of 
solubility is smaller, later on becoming greater than that in case b) (see the 
curve 3, Fig. 2). This means that with a smaller concentration of the solvent 
x all its molecules are not available for the solving process but bound ii1 a 
certain way to the second component of the solvent (solvatation). Only wheri 
these bonds are saturated the surplus of the solvent x can serve for the 
solving process itselJ. 

d) If K < 1 then M , = M e.(xl • M~. - At first the change of solubility 
is greater, becoming later on smaller than that in case b) (see curve 4, Fig. 2). 

1 

The product resulting from · the interaction between the components of the 
mixed solvent helps the solving process of the substance in the pure 
component x. 

From the examples described it can be seen that the equations (2b) and 
(3a) besides offering a remarkable number of possibilities for an approxi­
mation of the isotherms of solubility in binary liquid systems, can also be 
explained from a physico-chemical point of view. 

Furthermore it could be shown that many of the equations cited in lite:. 
rature can be represented after a simple transformation as special cases· of 
the equation (1) or of the integral (2a) or (3), respectively. 
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Since our equations (2a) and (3) contain only the molar fractfoh of 
one of the solvents as a variable on which solubility depends, it is quite 
natural that only such empiric and theoretically derived equations can 
be reduced to ~hem which a) do not contain an other variable except this, 
or b) contain only such variables which are in a known dependence on the 
molar percentage of one of the two solvents. 

Here are a few examples- for both kinds of such equations of solubility: 
ad a) 1. The equation of solubility after Bodliinder2 reads in the original 

notation as follows: 
3 -

W = KVS (5) or lnW = lnK + 1131nS (5a) 

Upon inserting our designations for W ~ Mx and S = M5 and upon solution the 
ratio we obtain: 

lnM5 = 3 lnMx-3 lnK (5b) 

When in this equation we substitute -3 ln K = R and 3 = K we obtain our 
equation (3): 

ad a) 2. After 'l'rea.dwell9 the equation in question reads: 

2 
S = S0 · Cw· K (6) 

i. e. in our notation: 
2 

Ms = Ms<x> · M x · K (6a) 

By means of logarithms we obtain: 

ln Ms= 2 ln M , + Jn Ms(x) + ln K (6b) 

i . e. by contracting the constant values ln M s(x) + 1nK = R and 2 = K we 
obtain our equation (3). 

ad a) 3. Angelescu, Leone and Dumitrescu10
•
12

•
13 use the following equation: 

(7) 

Upon inserting our designations for Sc = Ms, S0 = M s(x) , P = K, C = Mx and 
applying the natural logarithm we obtain: 

lnMs = In Ms(x)- ln K' + K : lnMx 

while upon contracting the constants In K ' + In Ms(x) = R we obtain our 
equation (3). 

ad a) 4. The equation of solubility after Taniman11 reads: 

log (S0 /S) = A · C (8) 

Upon inserting our desi~nation for C = My, S 0 = Ms<x> , S = Ms, )., = K one 
can write as follows : 

or 

ln (Mscx/ Ms) = K (1 - Mx) 

lnM5 = lnMs(x) + K · Mx-K 

(Ba) 

(8b) 

Upon . contracting the constant values In NI s(x) - K = R we obtain our 
equation (2a). 
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ad a) 5. Ahumov's equation16
•
23 reads in its original notation: 

log y = log Y1 + n · log (1 - x) (9) 

Upon substitution of our symbols for y = M8, y 1 = M s(x), x = My and n = K 

and after application of the natural logarithms we obtain: 

In M8 =In Mscx> + K ·In (1-My) (9a) 

If we insert here In M s<x> = R and My = 1-Mx we obtain our equation (3) • 

. ad a) 6. Krieevski21 brings the following equation: 

lnM8 = Mx · lnsx + MY· lnsy 

Upon substitution My = 1 - Mx we obtain 

lnM8 = Mx · 1nsx + lnsy · (1-Mx) 

resp. 

(10) 

(lOa) 

(lOb) 

If we contract the constant values In sx - In Sy = K and In Sy = R we obtain 
our equation (2a). 

ad b) 1. The general form of Born's equation24 of solubility in a binary 

mixture of solvents could be written: 

log Sx = log Sw-K'( ~x - ~w ) (11) 

where Sx stands for solubility and Dx is _the dielectric constant either of one 
of the solvents or of the mixture of two solvents, while Sw and Dw are the 
solubility and dielectric constant of the other solvent (wate1·). In our nota­

tion Born's equation reads: 

K ' K ' 
In M5 = In M s(y) - - + -

D x Dy 
(lla) 

In order to reduce also this equation to our equation, we must express the 

dielectric constant Dx of the solution as a ft.:nction of the molar fraction Mx.­
Akerlof and Short25 showed on a diagram that the dielectric constant of the 

binary mixture water - acetone is the Hnear function of the percentage of 

acetone: 

D = - K' ' · M + K' '' "f- x 
(12) 

At temperature of 20°C this linear ratio is valid up to circa 600/o, at sooc up 

to circa 400/o of acetone in the mixture. If we are allowed to apply the equation 
(12) also to ternary systems, then Born's equation (lla) will assume in our 
notation the following form: 

K ' K ' 
lnM8 = lnMs(y)- K'''-K' '· M x + IJ; (llb) 

. K ' 
Upon inserting In Ms(y) + - = R we obtain 

D y 
K' 

lnM = - + R 
s K' , ' - K' •. M x 

(llc) 
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For those systems where (12) is valid, we can insert into the equa,tion (llc) 
Mx = 1 - M Y and then we obtain: 

K' 
lnM =- +R 8 K' '' -K' ' +K''·Mv 

(lld) 

Upon contracting K' '' - K '' = -K there follows 

K' 
lnM =- +R 9 K"·My-K 

(lle) 

The same type of equation can be obtained from our equation (2). Namely, 
if in this equation we insert n = - 2 we obtain 

-K 
lnM =- - +R 

s Mx 

K ' 
If we insert here K = -K', and Mx = 1 - My it follows 

-K' 
lnM = - · 

s -K'' 
1 

1-My 

K' 

K''·My-K'' 

(2c) 

+R (2d) 

By comparing the equation (2d) with above transformed Born's equation (lle) 
we can observe that both these equations are identical as to their forms, and 
that they differ only by the notation of a constant in the denominator of the 
first term. 

ad b) 2. The empiric equation of solubility mentioned by Ricci and Davis18 

reads as follows: 

log Sx ~ log Sw == 3 (log Dx - log Dy) (13) 

If we substitute here also Dx. = ~.K · Mx + K' .'' we obtain 

log Sx = 3 log (K'' '-K · Mx) + log Sw - 3 log DY (13a) 

If in this expression we contract the constants log Sw - 3 log DY= R' and 
insert Mx = 1-MY and 3 = K' ' ' we obtain .· 

log S = K' ' ' · fog (K' ' ' ' - K + K · My) + R' (13b) 

and if then we contract K' ' ' - K = K' ' we obtain in our notation the fol­
lowing equation: 

ln Ms = K' '' · ln (K'' + K · My) + R'. (13c) 

The ·same form of equation can be obtained als0 from our equation (3): 

(3) 

Namely, if we insert M" = 1-MY and K = K''' and carry out a transfor-:­
mation, we obtain 

resp. 

In Ms = K' ' ' · In (1 - My) + R 

K'' (1-M) 
lnM = K ''' · ln ------'-- + R 

s K' ' · 

ln M , = K '' ' · ln (K' ' - K '' · M ).)- ln K ' ' + R 

(3b) 

(3c) 

(3d) 
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After inserting· ~hi K' ' + K = R' · it follows: 

ln M 5 = K' ' ' · ln (K' ' - K' ' · M y) + R' (3e) 

By compaving the equation (3e) with the equation (13c) it can be seen, 
that they differ only in the notation of a constant in · .. brackets. 

It was shown above that many 'weli' known solubility equations can be 
easily transformed . to one of the forms of our solubility equation and that 
they therefore represent its special cases, 

This fa~t allows the supposi'tion that our general equat~on formulates a 
widely spre~d reguiarity_ of tP.e e.quilibrium of the ~aturaied ternary systems. 
The differences among many solubility equations ~e only apparent and are 
caused by the different manner. of expressing experimental data. 
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IZVOD 
Zasiceni ternami sistemi. 11; Jednadzba :topivosti jedne tvar:i u snijesi dvaju otapala 

H. Ivekovic i M . Milicevic 

Izvedena je jednadzba za topivost neke tvari 1u smjesi dvaju otapala koja 
glasi: dMJMs = K · M~ : dMx gdje je Ms molarni razlomak otopljene t,Vari, a 
M x molarni razlomak jedne od komponenata mijesanog otapala. Od ove jednadzbe 
izvedene su daljnje jednadZbe za ra:z;ne velicine n. Pokazano je, da neke iz lite­
rature poznate jednadzbe topivosti predstavljaju specij.alne slucajeve gore navedene 
jednadzbe. 
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