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An equation was worked wout for the solubility of a substance
in the mixture of two solvents which reads d Ms/MszK-M; -d My,

where M; is the molar fraction of the dissolved matter, My is the
molar fraction of one of the components of the mixed solvent.
From this equation subsequent equations for different magnitude
of n were derived and was shown that some other reported
equations represent special cases of this equation.

The laws regulating the solubility of solid substances in a mixture of
two solvents have been studied for a long time and so far a considerable
number of mathematical relations have been derived to interpret the expe-
rimentally obtained data. In references'™3 some of those papers are quoted.
However, the equations suggested are very often valid only for those ternary
systems for which they were evolved. In addition, at first glance it seems as
if these relations differ essentially in their mathematical form as well.

Considering that in formation of the equillibrium of a great number of
different saturated ternary systems the same or very similar physico-chemical
phenomenon is involved, it can be assumed that it could be formulated by
an equation which will be able to satisfy many experimental data regardless
of subsidiary processes which may develop during the solving process itself.
Many equations derived so far, should appear as special cases of such a
generalisation.

Having this in mind we started from the point of view that the change
of the solubility M, (expressed by molar fraction) of a certain substance is
dependent on the change of the molar fraction M, of one of the components
of the mixed solvent. Expressed in the form of an equation it would give:

d M,
M

=K - Mx - dM, ¢Y)

8

Here K represents the constant of proportionality while the exponent n
takes into account the fact that the nature of the supposed mathematical
dependence could differ considerably.
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By integration of the equation (1) we obtain for all finite values of =
exept for n = —1:

InM, = MY+ R )

n+1
or for n =1 we get:
‘ InM, =K InM +R 3)

This shows that the expression (2) represents a series of families of
exponential curves, while the equation (3) represents the algebraic equation
of any order. ‘

If n takes the value 0, the integral (2) acquires the form
InM,=K- M, +R (2a)

If we neglect the molar fraction of the solute as a value of a smaller
order of magnitude compared with the values of the molar fractlons of both
components of the solvent the relation

M.+ M, =1

will be valid. (M, is the molar fraction of the other component of the mixed
solvent). Accordingly, equation (2a) could be written as follows:

M, = Mg ¥ My (2b)

where M, means the solubility in pure solvent x.

From the equation (2b) it can be easily seen that it is valid for the
case where the substance is soluble in both components of the mixed
solvent because if My = 1 we obtain M, = My,, while if M, =0 we obtam
M, = My, - eX = Mggy)-

On the other hand if we take the antilogarithm of the integral (3), it
follows that

M, = My - MY , (3a)

When M, = 1, M, becomes My, and when M = 0, M is equal to 0 and that:
is equlvalent to M syy which from it follows that the mtegral (3) is applicable
only for the systems where a substance is soluble exclusively in one of the
two components of the binary solvent.
It is evident from the equation (2b) that the constant K could be given
in the form
Ms(x)

K=1In— " 4)
M)

This relation suggests the physico-chemical significance of the constant K:

a) If Mgy = Mgy then K = 0. — The solubility of the substance is
equal in both components of the binary solvent so that no changes
happen when their ratio is changed (see the line 1, Fig. 1). In other words,
both components of the solvent contribute equally -to the solving process,
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while no subsidiary processes exist between the components themselves
(solvatation and the like).

b) If Mgy, >Ms(y) then K>0 and M, Ms(x e KMy __ The solu-
bility is greater in one of the components (x) of the mixed solvent (see the
curve 2, Fig. 1). Since no linear course of the isotherm of solubility exists, it
might be supposed that there is some sort of interaction between the com-
ponents of the solvent itself.

¢) If Mgy < My then K <T0 and M, = My, - e-K- My, _ The solubility
is greater in the second component of the solvent (y) and the nature of the
interaction is of a different type (see the curve 3, Fig. 1).

M= ’Ms{‘x) . C-K'My

\

70 x

Ry J
My= M=
M;‘S My=0

Similarly it could be derived from equation (3a) that

a) If K =0 then My = Mgy, eK-My. — The solubility does not change
which means that only one solvent is present (see the line 1, Fig. 2).

b) If K=1 then My = Mgy, - M,. A linear change of solubility occurs
from 0 to the value of solubility in the pure solvent x (see the curve 2,
Fig. 2). This means that the presence of the second component does not change
the solubility of the substance in the first component but only dilutes the
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latter. The course of solubility isotherme is linear meaning that no interaction
takes place between the two components of the solvent.

¢) If K>1 then M,= Mgy, - My . At the beginning the change of
solubility is smaller, later on becoming greater than that in case b) (see the
curve 3, Fig. 2). This means that with a smaller concentration of the solvent
x all its molecules are not available for the solving process but bound in a
certain way to the second component of the solvent (solvatation). Only when
these bonds are saturated the surplus of the solvent x can serve for the

solving process itself.

d) If K<{1 then M, = My, - MY . — At first the change of solubility
is greater, becoming later on smaller than that in case b) (see curve 4, Fig. 2).

Me=Mgg) My

-

Mx

N
s e s s, co— — — —— ——

\

x
|

My =0 _g)

My-_- 1 My"'

The product resulting from the interaction between the components of the
mixed solvent helps the solving process of the substance in the pure
component x.

From the examples described it can be seen that the equations (2b) and
(3a) besides offering a remarkable number of possibilities for an approxi-
mation of the isotherms of solubility in binary liquid systems, can also be
explained from a physico-chemical point of view.

Furthermore it could be shown that many of the equations cited in lite-
rature can be represented after a simple transformation as special cases of
the equation (1) or of the integral (2a) or (3), respectively.
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Since our equations (2a) and (3) contain only the molar fraction of
one of the solvents as a variable on which solubility depends, it is quite
natural that only such empiric and theoretically derived equations can
be reduced to them which @) do not contain an other variable except this,
or b) contain only such variables which are in a known dependence on the
molar percentage of one of the two solvents.

Here are a few examples for both kinds of such equations of solubility:

ad a) 1. The equation of solubility after Bodldnder® reads in the original
notation as follows:
W=KVS ) or InW=InK+13InS (53

Upon inserting our designations for W = M, and S = M, and upon solution the
ratio we obtain: .
InM,=3InM,—3InK (5b)

When in this equation we substitute —3InK =R and 3 = K we obtain our
equation (3). ,
ad a) 2. After Treadwell® the equation in question reads:

S=8,-Cw-K (6)
i. e. in our notation:
M, = Mgy - M} - K (6a)
By means of logarithms we obtain:

InM, = 2In M, +InMsx) +InK (6b)

i.e. by contracting the constant values In Mgy +InK =R and 2=K we
obtain our equation (3).
ad a) 3. Angelescu, Leone and Dumitrescu'®**** use the following equation:

B S K- P 2, )

Upon inserting our designations for S, = M, S; = Msx) , P=K, C = M, and
applying the natural logarithm we obtain:

InM,=1In Msxy—InK + K- InM, (Ta).

while upon contracting the constants In K’ + In MS(X) = R we obtain our
equation (3).
ad a) 4. The equation of solubility after Tamman'' reads:

log (S,/S) =% - C . ®)

Upon inserting our designation for C = M,, S, = Mgy, , S = MB, A=K one
can write as follows:

In (Mg /M) = K (1 — M,) (82)
or In M, = In Mg, + K - M, —K (8b)

Upon contracting the constant values In M ssy —K =R we obtain our
equation (2a).
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ad a) 5. Ahumov’s equation'®*® reads in its original notation:
logy =logy, + n-log(l—wx) 9)

Upon substitution of our symbols for y = M, ¥, = Mgx), £ = M; and n =K
and after application of the natural logarithms we obtain:

InM, =InMgy +K-In(1—M,) (9a)

If we insert here In Mgy, = R and M, = 1— M, we obtain our equation (3).
“ad a) 6. Kritevski* brings the following equation:

InM,=M,  -Ins;, + M, -Ins, (10)

Upon substitution M, = 1 — M, we obtain
InM,=M, -Ins,+1Ins; - (1—My) (10a)
resp. InM,=M,(Ins, —1Insy) +1Ins, (10b)

If we contract the constant values Ins, —Ins, = K and Ins; = R we obtain
our equation (2a).

ad b) 1. The general form of Born’s equation* of solubility in a b1nary
mixture of solvents could be written:

1 1
log Sy = log Sw —K( — ) (11)
where S, stands for solubility and D, is the dielectric constant either of one
of the so]vents or of the mixture of two solvents, while Sw and Dw are the
solubility and dielectric constant of the other solvent (water). In our nota-
tion Born’s equation reads:
K’ K’

1nMs=lnMS(y)——B'v + D.

(11a)

In order to reduce also this equation to our equation, we must express the
dielectric constant D, of the solution as a function of the molar fraction M,.-
Akerlof and Short?® showed on a diagram that the dielectric constant of the
binary mixture water — acetone is the linear function of the percentage of
acetone:

D,=—K’ -M +K" A (12)

At temperature of 20°C this linear ratio is valid up to circa 60%, at 80°C up
to circa 40%s of acetone in the mixture. If we are allowed to apply the equation
(12) also to ternary systems, then Born’s equation (1la) will assume in our
notation the following form:

K’ K’

lnMS=lnMs(Y)_—Ky':__K)',M‘ +E (llb)

KI
Upon inserting In Mgy, + 5. = R  we obtain
B

. K’
InM,=— Tl = i + R (11c)
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For those systems where (12) is valid, we can insert into the equation (11lc)
M, = 1—M, and then we obtain:

K
InMB—— K',’—K”"}'K’,'My +R (lld)
Upon contracting K’’’ — K’’ = —K there follows
K
lnMs=—-—m +R (11e)
The same type of equation can be obtained from our equation (2). Namely,
if in this equation we insert n = — 2 we obtain
-K
In My = — + R (2¢)
If we insert here K = g and My =1—M, it follows
-K’ 1 K
= — . R +
ln MS _K, 3y 1 - My K’ Y, My St K’ B R (Zd)

By comparing the equation (2d) with above transformed Born’s equation (11le)
we can observe that both these equations are identical as to their forms, and
that they differ only by the notation of a constant in the denominator of the
first term.

ad b) 2. The empiric equation of solubility mentioned by Ricci and Davis‘-é
reads as follows:

log S, —log S, = 3 (log Dy —1log D,) - (13)
f we substitute here also D, = —K - M; + K’’’ we obtain
log S, =3log (K''’—K - M,) + logSw-—3logD (13a)

If in this expression we contract the constants log Sw —3logD, = R’ and
insert My = 1—M, and 3 = K’’’ we obtain

logS =K’’’ - log (K"’ —K + K - M) + R’ (13b)

and if then we contract K'’’— K = K’’ we obtain in our notation the fol-
lowing equation:

InM,=K"’ - -In(K”’+K-M,)+R. (13c)
The same form of equation can be obtained also from our equation (3):
InM;=K- -InM, +R 3)

Namely, if we insert M, =1—M, and K = K’’’ and carry out a transfor-
mation, we obtain

InM,=K" -In(l—M,) +R (3b)

K’'(1—M
InM, =K - M)

K!
resp. InM, =K’ -In(K’—K’ M)—InK’+R (3d)

~ +R (3c)
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After inserting =~ In K’ + K = R’ - it follows:
InM, =K’ -In(K'’'—K'"’- M) +FR (3e)

By comparing the equation (3e) with the equation (13c) it can be seen,
that they differ only in the notation of a constant in-brackets.

It was shown above that many well known ‘solubility equations can be
easily transformed to one of the forms of our solubility equation and that
they therefore represent its special cases.

This fact allows the supposition that our general equation formulates a
widely spread regularity of the equ111br1um of the saturated ternary systems.
The differences among many solubility equations are only apparent and are
caused by the different manner of expressing experimental data.
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IZVOD
Zasiceni ternarni sistemi. II. JednadZba topivosti jedne tvari u smjesi dvaju otapala
H. Ivekovi¢ i M. Miliéevié
. Izvedena je ]ednadzba za topivost neke tvari u smjesi dvaju rotapala koja
glasi: d Ms/Ms =K - My D .dMx gdjie je Ms molarni razlomak otopljene tvan a
My molarni razlomak ]edne od komponenata mijeSanog otapala. Od ove Jednadzbe
1zvedene su daljnje jednadzbe za razne velitine n. Pokazano je, da neke iz lite-

rature poznate jednadZbe toplvos'cl predstavljaju specijalne slutajeve gore navedene
jednadzbe.
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