CCA-143

546.817-86:547.29:545.33:543.876:53.081

Polarografska studija olovnih monokarboksilato-kompleksa. I. Konstante stabilnosti kompleksa*

V. Klemenčić** i I. Filipović

Zavod za anorgansku kemiju Tehnološkog fakulteta Sveučilišta u Zagrebu

Primljeno 10. travnja 1959.

Polarografskom metodom određene su konstante stabilnosti olovnih monokarboksilato-kompleksa u vodenim otopinama. Dobivene su ove vrijednosti: formijato-kompleksi $K_1 = 27$, $K_2 = 47$ i $K_3 = 42$; acetato-kompleksi $K_1 = 180$, $K_2 = 750$ i $K_3 = 1350$; monokloracetato-kompleksi $K_1 = 22$, $K_2 = 40$ i $K_3 = 42$; propionato-kompleksi $K_1 = 180$, $K_2 = 1320$ i $K_3 = 2200$; butirato-kompleksi $K_1 = 190$, $K_2 = 1000$, $K_3 = 2000$ i $K_4 = 1800$; *n*-valerato-kompleksi $K_1 = 190$, $K_2 = 1500$, $K_3 = ?$ i $K_4 = 5358$; *izo*-valerato-kompleksi $K_1 = 190$, $K_2 = 1500$, $K_3 = ?$ i $K_4 = 3770$. Ustanovljeno je, da postoji odnos između bazičnosti i veličine liganda i stabilnosti odgovarajućeg monokarboksilato-kompleksa, t. j. da usporedno s porastom bazičnosti i veličine monokarboksilat-iona u većini slučajeva raste i stabilnost kompleksa.

Od olovnih monokarboksilato-kompleksa do sada je u literaturi publicirano više radova samo o kompleksima s acetatom¹⁻⁵; kompleksi s formijatom^{6,7}, propionatom⁸ i monokloracetatom^{9,10} vrlo su malo obrađivani, a o ostalim monokarboksilato-kompleksima (butiratima i valeratima) nema u literaturi podataka. U većini slučajeva različiti su autori dobili različne rezultate, čak i kod primjene istih metoda. Zbog toga se pristupilo ispitivanju olovnih monokarboksilato-kompleksa, od formijata do valerata, polarografskom metodom, kako bi se dobili podaci o utjecaju bazičnosti aniona te duljine i razgranatosti lanca na broj liganada i stabilnost nastalih kompleksa¹¹.

EKSPERIMENTALNI DIO

Polarografski uređaj. Mjerenja su izvršena Leyboldovim polarografom (model 35). Zrcalni galvanometar imao je osjetljivost 6.2×10^{-9} A/mm/m. Perioda njihanja za $90^{0/0}$ otklona iznosila je 2,5 sek. Napon na mostu polarografa bio je 1018,4 mV, što je prije svakoga mjerenja kontrolirano normalnim Weston elementom. Na taj je način razmak apscisa na snimljenom polarogramu odgovarao 1018,4/20 = 50,9 mV.

Upotrebljavane su dvije, t. zv. termometar-kapilare, od kojih je jedna imala brzinu istjecanja žive m = 2,53 mg/sek i vrijeme kapanja t = 2,39 sek, a druga m = 1,71 mg/sek i t = 2,14 sek kod 50 cm visine živina stupca iznad otvora kapilare, mjereno kod potencijala 407,2 do 559,9 mV prema zasićenoj kalomelovoj elektrodi (z. k. e.).

^{*} Izvadak iz dijela doktorske disertacije Vanje Klemenčić

^{**} Zavod za tehnologiju Ekonomskog fakulteta Sveučilišta u Zagrebu

Polarografska ćelija, koja je upotrebljena kod svih mjerenja, prikazana je na sl. 1. Sastoji se od dva dijela: dio za kapajuću živinu katodu i dio za usporednu vanjsku anodu. Oba dijela spojena su na donjem kraju s cijevi u obliku sifona, a u gornjem dijelu putem gumene cijevi, koja se može po volji zatvoriti metalnom štipaljkom. Takva konstrukcija polarografske ćelije onemogućuje preveliku difuziju elektrolita usporedne vanjske anode u ispitivanu otopinu oko kapilare kapajuće živine katode. Na taj način ne može, za vrijeme jednog mjerenja, nastati promjena u potencijalu kapajuće živine katode — zbog dodifundiranog elektrolita vanjske anode.

Kao vanjska anoda upotrebljena je kalomelska elektroda. Konvencionalna kalomelska elektroda sa zasićenom otopinom kalijeva klorida nije dala rezultate, koji bi se mogli reproducirati i to zbog taloženja kalijeva perklorata na dodirnoj plohi s otopinom natrijeva perklorata kao osnovnog elektrolita. Zbog toga je u kalomelskoj elektrodi najprije upotrebljena otopina od 1 M natrijeva perklorata i 0,1 Mnatrijeva klorida, koje je potencijal bio + 0,100 V prema z. k. e.¹² Zbog nestabilnosti njezina potencijala pri duljoj upotrebi prešlo se, međutim, na rad s kalo-

Sl. 1. Polarografska ćelija: 1 posudica, 2 kapajuća elektroda s kapilarom i zvonom, 3 vanjska anoda.

Fig. 1. Polarographic cell: 1 vessel, 2 dropping electrode with capillary tube and bell-shaped cover, 3 external anode.

melskom elektrodom sa zasićenom otopinom natrijeva klorida. Potencijal te elektrode nalazi se unutar 1 mV potencijala konvencionalne elektrode kod 25°C ⁵, pa su se tako izmjereni potencijali kapajuće živine katode odnosili na konvencionalnu elektrodu unutar točnosti mjerenja potencijala u polarografiji. Spojna cijev kalomelske elektrode bila je ispunjena 3°/0-tnim gelom agar-agara u zasićenoj otopini natrijeva klorida. Na vrhu cijevi bio je stakleni filtar poroznosti G4.

Kisik je istjeran iz ispitivane otopine strujom vodika, koji je prethodno očišćen u $5^{0/0}$ -tnoj otopini pirogalola u $25^{0/0}$ -tnoj otopini kalijeve lužine. Za vrijeme mjerenja vodik je provođen iznad otopine. Za vrijeme mjerenja polarografska se ćelija s ispitivanom otopinom nalazila u vodenom termostatu kod temperature od $25,0\pm0,2^{\circ}$ C. Rad s polarografskom posudicom odvija se ovako: u anodni dio posudice stavi se kalomelska elektroda, štipaljkom se zatvori gumena spojna cijev između oba dijela posudice, a zatim se kroz donju cijev u obliku sifona pusti lagana struja vodika. Nato se doda oko 10 ml ispitivane otopine, koja zbog provođenja vodika ne može doći u dodir s anodom. Pošto smo 20 do 30 minuta provodili vodik, postavi se kapajuća živina elektroda; nakon 5 minuta ukloni se štipaljka sa spojne gumene cijevi, pri čemu ispitivane otopine, dokle god traje mjerenje.

Kemikalije i otopine za ispitivanje. Kemikalije za pripremu otopina bile su kemijski čiste (pro analysi) — osim glikolne kiseline, koja je bila čistoće purum. Koncentracija olova, u obliku olovnog nitrata, bila je u svim ispitivanim otopinama 0,4 mM. Koncentracije monokarboksilat-iona varirane su od 0 do 3 M. Da se suzbije hidroliza monokarboksilato-kompleksa, sve ispitivane otopine, osim valerata, sadržavale su konstantnu koncentraciju od 2 M odgovarajuće monokarbonske kiseline. U slučaju slabije topivih valerijanskih kiselina otopine su sadržavale 20%, odnosno 0,1 M slobodne kiseline. Otopine monokarboksilata koncentracije do 1 M sadržavale su odgovarajuću količinu natrijeva perklorata, tako da je njihova ionska nje dodavan natrijev perklorat.

Sve ispitivane otopine sadržavale su 0,005% želatine, iako u nenazočnosti želatine nisu nastajali maksimumi na polarografskim valovima. U nazočnosti želatine bili su polarografski valovi, zbog pravilnijih oscilacija struje, ljepše izraženi.

Mjerenje poluvalnog potencijala i difuzijske struje. Poluvalni potencijal mogao se odrediti na 1 mV točno, a reproducirati se mogao na 1 do 2 mV kod slabijih koncentracija monokarboksilata, a na 2 do 4 mV kod jakih koncentracija, pogotovo valerata i glikolata. S polarograma očitani poluvalni potencijal korigiran je na pad napona $(i_d/2)R$ volta, jer je otpor polarografske ćelije varirao u granicama od 4000 do 6000 ohma. Poluvalni potencijal slobodnog olovnog iona određen je ekstrapolacijom krivulje poluvalni potencijal — koncentracija monokarboksilata dobivena je ista vrijednost za poluvalni potencijal slobodnog olovnog iona: $(E_{1/2})_0 = -0,367$ volta prema z. k. e.

Na osnovu difuzijske struje, očitane s polarograma, izračunata je — primjenom Ilkovičeve jednadžbe — konstanta difuzijske struje. Ekstrapolacijom krivulje *konstanta difuzijske struje — koncentracija monokarboksilata* na koncentraciju monokarboksilata jednaku nuli dobivene su vrijednosti za konstantu difuzijske struje slobodnog olovnog iona u odgovarajućoj otopini monokarboksilata.

Reverzibilnost elektrodnoga procesa ispitana je u svim otopinama monokarboksilata. Odnos potencijala (korigiranog za pad napona iR) prema $\log [(i_d - i)/i]$ dao je pravac s nagibom od oko 30 mV, što je dokaz, da je elektrodni proces reverzibilan.

EKSPERIMENTALNI REZULTATI

Za određivanje sastava i konstanata stabilnosti kompleksa upotrebljena je DeFord - Humeova¹³ grafička metoda, jer je riječ o sistemima, u kojima je veći broj kompleksa u ravnoteži. Za pomak poluvalnog potencijala s promjenom koncentracije monokarboksilata vrijedi onda odnos:

$$\log \sum_{o}^{j} K_{j} [A]^{j} = \frac{n}{0.0591} \left\{ \left[(E_{1/2})_{o} - (E_{1/2})_{k} \right] + \log \frac{I_{o}}{I} \right\}$$
(1)

gde je K_j konstanta stabilnosti j-tog kompleksa; [A] je koncentracija monokarboksilata; n je broj izmijenjenih elektrona u elektrodnom procesu; $(E_{1/2})_0$ je poluvalni potencijal slobodnog (hidratiziranog) iona; $(E_{1/2})_k$ je poluvalni potencijal kompleksno vezanog iona; I_0 je konstanta difuzijske struje slobodnog (hidratiziranog) iona; I je konstanta difuzijske struje kompleksno vezanog iona. Stavimo li:

$$\sum_{\mathbf{o}}^{\mathbf{j}} K_{\mathbf{j}} \left[A \right]^{\mathbf{j}} = F_{\mathbf{j}} \left(\left[A \right] \right)$$
(2)

dobit ćemo:

$$F_{j}([A]) = \operatorname{antilog} \left\{ 16,95n \left[(E_{1/2})_{o} - (E_{1/2})_{k} \right] + \log \frac{I_{o}}{I} \right\}$$
(3)

Razvijemo li lijevu stranu izraza (2) u red, dobijemo:

$$F_{j}([A]) = K_{0} + K_{1}[A] + K_{2}[A]^{2} + \ldots + K_{j}[A]^{j}$$
(4)

Uvrstimo li u izraz (3) eksperimentalne vrijednosti za poluvalne potencijale i konstante difuzijske struje za svaku odgovarajuću koncentraciju monokarboksilata, dobijemo vrijednost za prvu funkciju $F_0([A])$:

$$F_{0}([A]) = \operatorname{antilog}\left\{16,95n\left[(E_{\frac{1}{2}})_{0}-(E_{\frac{1}{2}})_{k}\right] + \log\frac{I_{0}}{I}\right\}$$
(5)

Stavimo li ove vrijednosti od F_0 ([A]) u graf u zavisnosti od koncentracije monokarboksilata, dobijemo eksponencijalnu krivulju. Ekstrapoliramo li konačno tu krivulju na [A] = 0, dobijemo odsječak na ordinati, t. j. konstantu slobodnog iona $K_0 = 1$:

$$\lim_{[A]\to 0} F_{o}([A]) = K_{o} = 1$$

Kako je K_1 iz izraza (4) prva derivacija od K_0 , smjer funkcije F_0 ([A]), t. j. tangenta na krivulju F_0 ([A]) u [A] = 0, daje vrijednost od K_1 . Funkciju F_1 ([A]) dobije se računski iz funkcije F_0 ([A]) iz izraza (4), t. j.:

$$F_{1}([A]) = \frac{F_{0}([A]) - K_{0}}{[A]}$$
(6)

Stavimo li tako izračunate vrijednosti od $F_1([A])$ u graf u zavisnosti od koncentracije monokarboksilata, dobijemo krivulju, koja, ekstrapolirana na [A] = 0, daje prvu konstantu stabilnosti kompleksa K_1 :

$$K_1 = \lim_{[A] \to 0} F_1([A])$$

Smjer funkcije $F_1([A])$ daje opet vrijednost od druge konstante stabilnosti kompleksa K_2 , što može poslužiti za kontrolu vrijednosti od K_2 dobivene analognom ekstrapolacijom funkcije $F_2([A])$:

$$F_{2}([A]) = \frac{F_{1}([A]) - K_{1}}{[A]}$$

$$K_{2} = \lim_{[A] \to 0} F_{2}([A])$$
(7)

I tako redom do funkcije F_j ([A]), odnosno posljednje konstante stabilnosti kompleksa K_j . Posljednja derivacija funkcije F_j ([A]) predstavlja pravac para-

7

lelan s osi [A]. Na taj način ta funkcija daje i posljednji, t. j. najviši kompleks nazočan u ispitivanoj otopini. Isto tako i konstanta dobivena ekstrapolacijom te funkcije na [A] = 0 predstavlja konstantu stabilnosti najvišega kompleksa. Predposljednja funkcija je kosi pravac s pozitivnim koeficijentom smjera. Vidimo, da ovom grafičkom metodom ekstrapolacije krivulje F_j ([A]) na [A]=0dobijemo točnije konstante prvih kompleksa. Konstante kompleksa s većim brojem liganada sve su nesigurnije, budući da se kod ponovljenog deriviranja neprestano povećava računska pogreška, te budući da je k tome ekstrapolacija krivulje na [A] = 0 sve nesigurnija kod viših kompleksa, koji su sve manje nazočni u blizini [A] = 0. Na temelju rasipanja eksperimentalnih točaka i točnosti mjerenja poluvalnog potencijala moglo se ustanoviti, da pogreška za prvu konstantu stabilnosti kompleksa (K_1) iznosi: kod formijata i monokloracetata oko $\pm 10^{0/0}$, kod acetata, propionata i butirata oko $\pm 20^{0/0}$, a kod valerata oko $\pm 30^{0/0}$. Kod konstanata odgovarajućih viših kompleksa moramo, dakle, računati s još većim pogreškama.

Na osnovu dobivenih konstanata stabilnosti kompleksa K_j možemo izračunati koncentraciju pojedinog kompleksa za svaku koncentraciju monokarboksilata, odnosno procentni udio olovnog iona vezanog u monokarboksilatokompleks:

$$100 \frac{[\text{Pb}A_{j}]}{[\text{Pb}]_{\text{tot}}} = 100 \frac{K_{j} [A]^{j}}{1 + \Sigma K_{j} [A]^{j}}$$

Otopine formijata, acetata, monokloracetata, propionata i n-butirata. U tablicama od 1 do 5 nalaze se rezultati mjerenja za ove otopine kao i odgovarajuće funkcije $F_j([A])$ i konstante stabilnosti odnosnih monokarboksilatokompleksa. Na slici 2 stavljene su funkcije $F_j([A])$ u zavisnost od koncentracije formijata. Odsječci na ordinati daju vrijednosti konstanata stabilnosti formijato-kompleksa nazočnih u ispitivanim otopinama. Za ostale monokarboksilate dobiveni su analogni grafovi. Na slikama od 3 do 7 vide se procentni udjeli svakog pojedinog kompleksa kao funkcije koncentracije odgovarajućeg monokarboksilata. U otopinama formijata, acetata, monokloracetata i propionata postoje, dakle, samo tri vrste kompleksa, a u otopinama butirata nalazi se i četvrti kompleks s četiri liganda vezana na olovni ion.

Otopine valerata. U tablicama 6 i 7 nalaze se rezultati mjerenja za otopine izo-valerata i n-valerata. pH ovih otopina, zbog nazočnosti svega 20%, odnosno 0,1 M slobodne kiseline, znatno je viši (izo-valerati pH=5,48-7,40 i n-valerati pH=3,70-6,50), nego kod otopina od formijata do butirata (formijati pH==1,58-3,60, acetati pH=2,22-5,15, propionati pH=2,40-5,04, butirati pH=2,46-6,08 i monokloracetati pH=1,12-3,15). Zbog toga se može pretpostaviti, da su valerato-kompleksi hidrolizirani. Da u ovakvim otopinama postoje, uz valerato-komplekse, i druge vrste kompleksa (valjda hidroksovalerato-kompleksi), vidi se po krivuljama $E_{\frac{1}{2}}$ — log C_A , koje se nalaze na slikama 8 i 9. U području koncentracije od oko 0,5 do 2 M valerata krivulje $E_{\frac{1}{2}}$ — log C_A teku horizontalnije, a iznad 2 M valerata teku ponovno strmije linearno. Ovom prijelazu u strmiju krivulju $E_{\frac{1}{2}}$ — log C_A kod vrlo visoke koncentracije valerata uzrok je po svoj prilici pomak ravnoteže u smislu nastajanja valerato-kompleksa:

 $[Pb (C_4H_{10}COO)_3 (OH)]^{-2} + C_4H_{10}COO^{-} \gtrsim [Pb (C_4H_{10}COO)_4]^{-2} + OH^{-1}$

Nagib završnog linearnog dijela krivulje $E_{\frac{1}{2}}$ — log C_A je oko 110 mV po jedinici log C_A , što nekako odgovara vezanju četiriju valerat-iona na jedan olovni ion. Posljednji kompleks u otopinama valerata sadrži, dakle, četiri liganda kao i kod butirata. Na osnovu pomaka poluvalnih potencijala za taj završni linearni dio krivulje $E_{\frac{1}{2}}$ — log C_A mogle su se izračunati posljednje konstante stabilnosti *izo*-valerato-kompleksa i *n*-valerato-kompleksa: $K_4 =$

Sl. 2. Funkcije $F_j([A])$ u ovisnosti o koncentraciji formijata. Fig. 2. The functions $F_j([A])$ plotted against the concentration of formate.

= 3770 za izo-valerato-kompleks i K_4 = 5358 za *n*-valerato-kompleks. Određivanje nižih konstanata stabilnosti kompleksa po DeFord-Humeovoj metodi vrlo je nesigurno zbog hidrolize kompleksa. Zanemarimo li hidrolizu u otopinama koncentracije valerata do 0,5 *M*, dobijemo, primjenivši DeFord-Humeovu metodu, ove vrijednosti za prvu i drugu konstantu izo-valerato i *n*-valeratokompleksa: K_1 = 190 i K_2 = 1500 (vidi tablice 6 i 7).

C_{A} M	i _d µA	Ι	(E½)eksp. V z. k. e.	(E½) _{kor} . V z. k. e.	$F_{0}(A)$	$F_1(A)$	$F_2(A)$	$F_3(A)$
0,0000 0,0135 0,0159 0,040 0,052 0,080 0,100 0,120 0,160 0,260 0,320 0,500 0,712 1,00 1,60 2,40 3,00	2,83 2,65 2,52 2,46 2,44 2,43 2,39 2,39 2,39 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35	4,36 4,08 3,89 3,76 3,75 3,68 3,68 3,68 3,66 3,63 3,62 3,62 3,62 3,62 3,62 3,45 3,19 2,94	$\begin{array}{c} -0,372\\ -0,376\\ -0,377\\ -0,381\\ -0,382\\ -0,386\\ -0,387\\ -0,389\\ -0,393\\ -0,403\\ -0,404\\ -0,404\\ -0,404\\ -0,421\\ -0,424\\ -0,422\\ -0,450\\ -0,459\\ \end{array}$	$\begin{array}{c} -0,367\\ -0,371\\ -0,372\\ -0,376\\ -0,377\\ -0,381\\ -0,383\\ -0,385\\ -0,389\\ -0,396\\ -0,409\\ -0,409\\ -0,409\\ -0,417\\ -0,426\\ -0,439\\ -0,447\\ -0,457\end{array}$	$\begin{array}{c} -\\ 1,37\\ 1,58\\ 2,32\\ 2,56\\ 3,58\\ 4,21\\ 4,99\\ 6,69\\ 11,9\\ 15,7\\ 31,5\\ 61,3\\ 117\\ 345\\ 903\\ 1636 \end{array}$	$\begin{array}{c} -\\ 27,1\\ 36,2\\ 33,1\\ 29,9\\ 32,2\\ 32,1\\ 33,3\\ 35,6\\ 41,9\\ 42,8\\ 61,0\\ 84,7\\ 116\\ 215\\ 376\\ 545\\ \hline K_1=27\\ \end{array}$	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $

TABLICA 1Otopine formijata s 2 M slobodne mravlje kiseline

Otopine acetata s 2 M slobodne octene kiseline

-					A DESCRIPTION OF A DESC				1
C M	A	$i_{\rm d}$ $_{\prime\prime}A$	I	$(E_{\frac{1}{2}})$ eksp. V z. k. e.	(E½) kor. V z. k. e.	$F_0(A)$	$F_1(A)$	$F_2(A)$	$F_3(A)$
0,0	000	2,50	3,85	-0,372	-0,367	_	_		_
0,0	003	2,38	3,66	-0,379	-0,373	1,73	244	-	-
0,0	010	2,13	3,29	-0,386	-0,380	3,32	232		
0,0	040	2,10	3,24	-0,399	-0,393	8,74	193		
0,0	080	2,09	3,22	-0,409	-0,403	19,8	235	_	
0,1	00	2,09	3,22	-0,413	-0,407	27,7	267	868	1180
0,1	20	2,07	3,19	-0,415	-0,410	35,6	288	900	1250
0,1	60	2,07	3,19	-0,421	-0,416	55,2	339	993	1519
0,2	212	2,06	3,18	-0,426	-0,421	85,8	400	1038	1824
0,3	320	2,05	3,16	0,436	-0,431	176	545	1142	1223
0,4	60	2,05	3,16	-0,445	-0,440	371	804	1357	1319
0,5	500	2,05	3,16	-0,447	-0,442	439	875	1390	1280
0,7	790	2,00	3,08	-0,461	-0,456	1339	1694	1916	1349
1,0	00	1,98	3,06	-0,463	-0,453	2303	2302	2122	1372
1.5	50	1,85	2,86	-0,482	-0,478	7764	5175	2329	1719
2.0	00	1,62	2,50	-0,489	-0,486	14641	7320	3570	1410
3,0	00	1,30	2,01	-0,499	-0,496	47521	15840	5220	1490
			. Z				$K_1 = 180$	$K_2 = 750$	K ₃ =1350

9

	Otopine		nucciulu 3	2 IN 57000	ane mond	niorocien	e nisellille	
$C_{ m A} \ M$	i _d µA	I	$(E_{\frac{1}{2}})_{eksp.}$ V z k. e.	$(E_{\frac{1}{2}})_{kor}.$ V z. k. e.	$F_{o}(A)$	$F_1(A)$	$F_{i}(A)$	$F_3(A)$
0,000	2,33	3,60	-0,372	-0,367		_		
0,036	2,21	3,41	-0,378	-0,374	1,86	23,6	-	
0,047	2,21	3,41	-0,382	-0,376	2,05	22,3	_	
0,080	2,14	3,30	-0,386	-0,380	3,05	25,6	_	···
0,100	2,13	3,28	-0,388	-0,382	3,64	26,4	-	_
0,160	2,08	3,20	-0,394	-0,388	5,71	29,4	-	_
0,240	2,03	3,13	-0,400	-0,394	9,17	34,0		_
0,320	1,99	3,06	-0,404	-0,398	13,5	39,1	53,4	41,8
0,500	1,93	2,97	-0,412	-0,407	28,2	54,4	64,7	49,4
0,800	1,85	2,85	-0,422	-0,417	65,4	80,4	73,0	41,2
1,00	1,82	2,81	-0,428	-0,423	107	106	83,5	43,5
1,60	1,70	2,62	-0,441	-0,436	315	196	109	43,1
2,00	1,62	2,50	-0,448	-0,443	545	272	126	43,0
2, 40	1,52	2,34	-0,452	-0,448	836	348	136	39,8
3,00	1,37	2,11	-0,458	-0,454	1495	498	159	39,5
						K ₁ = 22	$K_2 = 40$	$K_3 = 42$

TABLICA 3 Otopine monokloracetata s 2 M slobodne monokloroctene kiseline

TABLICA 4Otopine propionata s 2 M slobodne propionske kiseline

$C_{ m A}$ M	$rac{m{i}_{ m d}}{\mu A}$	I	(E½)eksp. V z. k. e.	(E½)kor. V z. k e.	$F_0(A)$	$F_1(A)$	$F_2(A)$	$F_3(A)$
0,0000	2,20	3,40	-0,372	-0,367				
0,0035	2,13	3,28	-0,378	-0,372	1,56	161		
0,010	2,06	3,17	-0,385	-0,379	2,78	179		
0,040	1,97	3,03	-0,399	-0,393	8,66	191		
0,080	1,93	2,98	-0,410	-0,404	21,3	269		
0,100	1,92	2,96	-0,415	-0,410	34,2	332	1520	2200
0,160	1,88	2,90	-0,425	-0,420	73,0	450	1687	2293
0,260	1,85	2,86	-0,436	-0,431	177	677	1911	2269
0,320	1,82	2,81	-0,441	-0,436	260	811	1971	2034
0,380	1,80	2,78	-0,445	-0,440	385	1011	2189	2286
0,500	1,78	2,75	-0,453	-0,448	695	1388	2416	2192
0,710	1,71	2,64	-0,462	-0,457	1498	2103	2716	1966
1,00	1,65	2,54	-0,472	-0,468	3744	3743	3563	. 2243
2,00	1,35	2,08	-0,493	-0,489	22981	11490	5655	2167
3,00	1,04	1,60	-0,504	-0,501	78241	26080	8633	2438
						$K_1 = 180$	K ₂ =1320	K ₃ =2200

C_{A} M	i _d u A	Ι	$(E_{\frac{1}{2}})_{eksp.}$ V z. k. e.	(E½) _{kor.} V z. k. e.	$F_{0}(A)$	$F_1(A)$	$F_2(A)$	$F_3(A)$	$F_4(A)$
0.0000	2.09	3.23	-0,372	-0,367				-	-
0.0087	2.01	3.10	-0,378	-0,372	1,53	61,5	-	-	
0.012	1.87	2.88	-0,384	-0,379	2,86	155	-	-	
0.040	1.76	2.71	-0,397	-0,392	8,38	184	-		-
0.080	1.70	2.63	-0,409	-0,404	22,0	263	910	-	
0,000	1.69	2.60	-0,413	-0,408	30,4	294	1037	_	-
0 160	1.62	2.50	-0,421	-0,417	63,6	391	1258	1613	-
0,100	1.53	2.36	-0.438	-0,434	255	797	1896	2801	2501
0,520	1.51	2.33	-0.451	-0,447	710	1419	2456	2912	1824
0,300	1 42	2.19	-0.465	-0,461	2258	2857	3376	3008	1275
1.00	1 34	2.06	-0.474	-0,470	4852	4851	4661	3661	1661
1,00	1.19	1.84	-0.491	-0,488	22769	14230	8775	4859	1786
2 40	0.95	1.47	-0.507	-0,504	96077	40032	16601	6500	1875
3,00	0,82	1,23	-0,516	-0,514	244480	81493	27101	8700	2233
						$K_1 = 190$	$K_2 = 1000$	$K_3 = 2000$	$K_4 = 1800$

TABLICA 5

Otopine butirata s 2 M slobodne maslačne kiseline

Sl. 3. Procentni udio svakog formijato-kompleksa olova kod različitih koncentracija formijata. Fig. 3. Percentage of the formato complexes of lead at various concentrations of the formate.

Otopine glikolata. U tablici 8 nalaze se rezultati mjerenja u otopinama glikolata. Premda se glikolna kiselina vrlo dobro otapa u vodi, ispitivane su samo otopine glikolata s 20% slobodne glikolne kiseline, u odnosu na koncentraciju glikolata. Upotrebljena glikolna kiselina bila je naime čistoće

11

purum, te je davala ispred vala olova val, koji je kod suviše velikih koncentracija kiseline smetao kod mjerenja olovnog vala. Zbog toga se ta mjerenja u otopinama glikolata mogu smatrati samo preliminarnim. Konsekutivne konstante stabilnosti kompleksa, određene primjenom DeFord-Humeove metode,

Sl. 4. Procentni udio svakog acetato-kompleksa olova kod različitih koncentracija acetata. Fig. 4. Percentage of the acetato complexes of lead at various concentrations of the acetate.

Sl. 5. Procentni udio svakog monokloracetato-kompleksa olova kod različitih koncentracija monokloracetata.
 Fig. 5. Percentage of the monochloracetato complexes of lead at various concentrations of the monochloracetate.

suviše su nesigurne i zbog premale točnosti mjerenja i zbog hidrolize kompleksa. Interesantna je krivulja $E_{\frac{1}{2}}$ — log C_A , kako se vidi na slici 10. U otopinama glikolata, kojega je koncentracija manja od 1 M, krivulja $E_{\frac{1}{2}}$ —log C_A teče kao i kod ostalih monokarboksilata, iako položitije. U otopinama

Sl. 6. Procentni udio svakog propionato-kompleksa olova kod različitih koncentracija propionata.
 Fig. 6. Percentage of the propionato complexes of lead at various concentrations of the propionate.

Sl. 7. Procentni udio svakog butirato-kompleksa olova kod različitih koncentracija butirata. Fig. 7. Percentage of the butyrato complexes of lead at various concentrations of the butyrate.

koncentracije glikolata iznad 1 *M* krivulja $E_{\frac{1}{2}}$ — $\log C_A$ naglo mijenja smjer, pa dalje teče linearno, s nagibom od 40 mV po jedinici log C_A , što bi odgovaralo vezanju triju glikolat-iona na dva olovna iona. Na osnovu nagiba toga linearnog dijela krivulje $E_{\frac{1}{2}}$ — $\log C_A$ mogla se izračunati konstanta stabilnosti toga dinuklearnog kompleksa: $K_k = 3.5 \times 10^4$. Riječ je po svoj prilici o helatnom kompleksu, u kojemu su karboksilna i hidroksilna grupa glikolationa elektron-donori.

Otopine izo-valerata s 20% slobodne izo-valerijanske kiseline

$C_{ m A} \ M$	$i_{ m d}_{\mu m A}$	Ι	$(E_{lash_2})_{ m eksp.}$ V z. k. e.	(<i>E</i> 1⁄2) kor. V z. k. e.	$F_{o}(A)$	$F_1(A)$	$F_2(A)$
0,000	3,30	3,88	-0,372	-0,367	· · · ·		
0,004	3,23	3,81	-0,381	-0,376	2,06	_	
0,008	3,20	3,76	-0,388	- 0,382	3,32		
0,016	3,17	3,72	-0,393	-0,387	4,96		
0,032	3,09	3,63	-0,397	-0,392			
0,040	3,00	3,52	-0,402	-0,396	10,6	240	1250
0,060	3,02	3,55	-0,407	-0,401	—		
0,080	3,00	3,52	-0,415	-0,409	29,2	353	2030
0,100	3,00	3,52	-0,420	-0,414	43,1	421	2313
0,120	2,91	3,42	-0,425	-0,419	-	_	-
0,160	2,90	3,40	-0,429	- 0,423	90,3	558	2300
0,240	2,76	3,24	-0,439	-0,433	207	859	2790
0,320	2,69	3,16	-0,447	-0,441	397	1239	3280
0,440	2,58	3,03	-0,454	-0,449	771	1750	3550
0,560	2,47	2,90	-0,461	-0,456	1394	2488	4110
0,800	2,30	2,70	- 0,476	-0,471			77 4500
1,00	2,16	2,54	-0,484	-0,480		$K_1 = 190$	$K_2 = 1500$
1,20	2,10	2,47	-0,498	-0,491			
1,60	1,78	2,09	-0,507	-0,501			
2,00	1,49	1,75	-0,514	-0,509			
2,16	1,38	1,62	-0,516	-0,512			
2,40	1,29	1,52	-0,521	-0,517			
2,56	1,20	1,41	-0,525	-0,521			
2,81	1,05	1,24	-0,528	-0,525	8		
2,96	1,03	1,21	-0,531	-0,528		* > ====	
3,20	0,99	1,16	-0,535	-0,532			
3,36	0,92	1,08	-0,538	-0,535			
3,60	0,86	1,01	-0,542	-0,538			
3,84	0,77	0,91	-0,546	-0,543			

Otopine n	n-valerata	S	0,1	М	slobodne	n-va	lerijanske	kiseli	ine
-----------	------------	---	-----	---	----------	------	------------	--------	-----

				and the second sec	the second s	Contraction of the second state of the second	the second se
${C_{ m A} \atop M}$	$i_{\rm d}$ μA	1	$(E_{\frac{1}{2}})$ eksp. V z. k. e	(<i>E</i> ½) _{kor.} V z. k. e.	$F_0(A)$	F ₁ (A)	$F_2(A)$
0,0000	3,56	4,20	-0,372	-0,367	- +		_
0,0032	3,50	4,13	-0,381	-0,378	2,41		- '
0.0064	3,43	4,05	-0,384	-0,381	3,31	-	-
0.013	3,32	3,92	-0,386	-0,383	3,59	199	_
0,019	3,25	3,82	-0,399	-0,389	6,12	269	-
0,026	3,16	3,71	-0,397	-0,391	_		-
0,032	3,03	3,56	-0,400	-0,394	8,98	249	1800
0,048	2,89	3,40	-0,405	-0,399	13,9	268	1625
0,064	2,87	3,39	-0,410	-0,404	22,4	333	2240
0,080	2,86	3,36	-0,417	-0,411	38,5	468	3480
0,096	2,82	3,33	-0,420	-0,414	46,6	475	2970
0.128	2,80	3,29	-0,425	-0,419	68,4	526	2620
0,192	2,73	3,21	-0,435	-0,429	160	826	3310
0,256	2,67	3,14	-0,439	-0,434	231	1059	3400
0.352	2,63	3,09	-0,448	-0,443	463	1312	3190
0.448	2,50	2,94	-0,456	-0,451	926	2065	4170
0,641	2,34	2,75	-0,471	-0,466			
0,800	2,12	2,49	-0,480	-0,476		$K_1 = 190$	$K_2 = 1500$
0,962	1,90	2,23	-0,488	-0,484			
1,28	1,66	1,95	-0,503	-0,498		5	
1,60	1,47	1,73	-0,514	-0,509			
1,92	1,35	1,59	-0,519	-0,515			
2,24	1,24	1,46	-0,525	-0,521			
2,56	1,15	1,35	-0,532	-0,528			
3,07	1,02	1,20	-0,543	-0,536			
		1. C	1			1	

DISKUSIJA

Utjecaj bazičnosti liganda na stabilnost kompleksa. U tablici 9 nalaze se konstante stabilnosti ispitivanih olovnih monokarboksilato-kompleksa kao i negativni logaritmi konstanata ionizacije (pK_A) odgovarajućih monokarbonskih kiselina. Na sl. 11 dana je ovisnost logaritma konstante stabilnosti olovnog monokarboksilato-kompleksa ($\log K_j$) o negativnom logaritmu konstante ionizacije (pK_A) odgovarajuće monokarbonske kiseline (nesupstituirane). U homolognom nizu nesupstituiranih monokarbonskih kiselina formijato-kompleksi olova su najslabiji, što je u skladu s najslabije izraženim bazičnim karakterom formijat-iona. Jak porast bazičnosti acetat-iona izaziva jako povećanje stabilnosti acetata je oko 1, što upućuje na paralelnost između bazičnosti i sposobnosti koordiniranja

jednoga formijat-iona, odnosno acetat-iona. Nagibi analognih pravaca za drugu (K_2) i treću (K_3) konstantu stabilnosti kompleksa veći su, međutim, od 1, što pokazuje, da na sposobnost koordiniranja drugog i trećeg formijat-iona, odnosno acetat-iona utječu i drugi faktori. To vrijedi osobito za ostale monokarboksilato-komplekse u homolognom nizu, jer njihove vrijednosti u dijagramu pK_A —log K_j uvelike otstupaju od linearnosti za prvu konstantu (odstupanja za drugu i treću konstantu mnogo su manja). Vrijednost druge (K_2) i treće (K_3) konstante stabilnosti kompleksa opada, od propionata prema butiratu, paralelno s opadanjem bazičnosti liganda. Glavni je faktor, koji utječe na spo-

sobnost koordiniranja dvaju i triju monokarboksilat-iona (od formijata do butirata), dakle, bazičnost liganda. Čini se, da paralelnost između bazičnosti liganda i njegove sposobnosti koordiniranja postoji, kada je kompleks zasićen, t. j. kad je broj vezanih monokarboksilat-iona najveći.

Utjecaj veličine liganda na stabilnost i sastav kompleksa. Utjecaj veličine monokarboksilat-iona na stabilnost kompleksa može se razabrati iz odnosa logaritma konstante stabilnosti kompleksa i granične ionske vodljivosti (u_i) , odnosno pokretljivosti iona,^{14,15} jer je — prema Stokesovu zakonu — pokretljivost iona direktno proporcionalna srednjem radiusu iona. Na slici 12 prikazana je ovisnost između log K_j i u_i . Vidi se, da stabilnost prvoga kompleksa

POLAROGRAFSKA STUDIJA Pb-MONOKARBOKSILATO-KOMPLEKSA. I 17

(PbA⁺) raste, usporedno s porastom veličine monokarboksilat-iona, samo kod prijelaza s formijato na acetato-kompleks. Međutim, stabilnost drugog (PbA₂) i trećeg kompleksa (PbA₃⁻) raste usporedno s porastom veličine monokarboksilat-iona. Jedino kod butirato-kompleksa postoji diskontinuitet, t. j. stabilnost nešto opada. Utjecaj veličine monokarboksilat-iona na stabilnost kompleksa u vezi je s permanentnim dipolom aniona, koji raste usporedno s porastom veličine aniona. Dipolni moment molekula raste u nizu od mravlje do propionske kiseline, s izrazitim skokom od mravlje do octene kiseline¹⁶ (1,52 D, 1,74 D i 1,75 D). Usporedno s povećanjem broja atoma od formijata do valerata postaje k tome elektronski oblak monokarboksilat-iona sve razvučenijim, a sklonost liganda k polarizaciji raste. Zbog toga raste stabilnost kompleksa od formijata do valerata. Taj utjecaj polarizacije monokarboksilat-iona djelomično je kompenziran, međutim, povećanjem razmaka centara naboja olovnog

iona i monokarboksilat-iona. Zbog toga krivulja log $K_i - u_i$ i ima sve manji nagib — usporedno s porastom veličine monokarboksilat-iona; to je naročito izraženo kod prvoga kompleksa (PbA⁺). To treba i očekivati, jer je postotak ionskoga karaktera veze između olovnog ina i jednog monokarboksilat-iona najveći. Kod viših kompleksa (PbA₂, PbA₃⁻ i PbA₄⁻²) raste kovalentni karakter

$C_{A} M$	i _d	Ι	$(E_{\frac{1}{2}})_{eksp}$	$(E_{\frac{1}{2}})_{kor}$.
			V 2. K C.	V 2. K. C
0,000	3,60	4,23	-0,372	-0,367
0,016	3,58	4,20	-0,395	-0,388
0,024	3,42	4,08	-0,397	-0,390
0,032	3,36	3,95	-0,399	-0,392
0,040	3,32	3,90	-0,404	-0,397
0,060	3,28	3,85	-0,407	-0,401
0,08 0	3,24	3,80	-0,412	-0.405
0,100	3,19	3,75	-0,416	-0,410
0,160	3,15	3,71	-0,428	-0.422
0,240	3,06	3,60	-0,440	-0,434
0,320	3,02	3,55	-0,449	-0.443
0,5 60	2,94	3,45	-0,471	-0.465
0,800	2,85	3,35	-0,489	-0.483
1,00	2,77	3,25	-0,501	-0.495
1,20	2,72	3,20	-0,506	-0.500
1,60	2,54	2,98	-0,513	-0.508
2,00	2,26	2.66	-0.516	-0.511
2,40	2,16	2,54	-0,518	-0.514
2,80	1,99	2.33	-0.522	-0.518
3,60	1,71	2.01	-0.525	-0.521

Otopine glikolata s 20% slobodne glikolne kiseline

TABLICA 9

Konstante stabilnosti olovnih monokarboksilato-kompleksa i negativni logaritmi konstanata ionizacije $(pK_{\rm A})$ odgovarajućih monokarbonskih kiselina

	Formijati	Acetati	Monoklor- acetati	Propionati	n-Butirati	<i>n</i> -Vale r ati	izo-Valerati
K_1	27	180	22	180	190	190	190
K_2	47	750	40	1320	1000	1500	1500
K_3	42	1350	42	2200	2000	?	?
K_4					1800	5358	3770
¢K _A	3,75	4,76	2,86	4,87	4,82	4,81	4,77

veze, pogotovu kod većih monokarboksilat-iona, koji se lakše deformiraju. Kovalentnom karakteru veze pridonosi i dosta velika sklonost olovnog iona polarizaciji ($\alpha_0 = 4.34 \times 10^{-24} \text{ cm}^3$)¹⁷.

Kod kompleksa s više izraženim ionskim karakterom veze — od formijata do propionata — vezana su na olovni ion samo tri liganda, jer vezanje četvrtoga monokarboksilat-iona na već negativno nabijeni kompleksni ion (PbA₃⁻) zahtijeva znatnu energiju veze, da se nadvlada elektrostatsko odbijanje. Me-

Sl. 10. Odnos između poluvalnog potencijala i logaritma koncentracije glikolata. Fig. 10. Relationship between the half-wave potential and the logarithm of concentration of glycolate.

dutim, elektrostatsko odbijanje je slabije kod većih monokarboksilat-iona, jer je gustoća naboja manja. Ta činjenica, kao i doprinos energiji veze jačim deformiranjem većih liganada, omogućuje vezanje četvrtoga monokarboksilat-iona (Pb A_4^{-2}) kod butirata i valerata.

Sl. 11. Ovisnost logaritama konstanata stabilnosti olovnih monokarboksilato-kompleksa (log K_j) o negativnom logaritmu konstanata ionizacije odgovarajućih monokarbonskih kiselina $(pK_A) \cdot \bigoplus K_1, \ \bigoplus K_2, \ \bigoplus K_3.$

Fig. 11. Relationship between the logarithm of stability constants of monocarboxylato complexes of lead $(\log K_j)$ and the negative logarithm of ionisation constants of corresponding monocarboxylic acids $(pK_A) \cdot \bigoplus K_1, \bigoplus K_2, \bigoplus K_3.$

Sl. 12. Ovisnost logaritama konstanata stabilnosti olovnih monokarboksilato-kompleksa (log K_j) o graničnim ionskim vodljivostima odgovarajućih monokarboksilat-iona

 (u_i) . K_1 , K_2 , K_3 .

Fig. 12. Relationship between the logarithm of stability constants of monocarboxylato complexes of lead $(\log K_j)$ and the limiting ion mobilities of corresponding monocarboxylate ions (u_i) . (**b** K_1 , **b** K_2 , (**b** K_3 .

Autori izražavaju svoju zahvalnost Rektoratu Sveučilišta u Zagrebu za novčanu pomoć dodijeljenu za ovaj rad.

LITERATURA

- 1. S. M. Edmonds i N. Birnbaum, J. Am. Chem. Soc. 62 (1940) 2367.
- 2. B. C. Purkayastha i R. N. Sen-Sarma, J. Ind. Chem. Soc. 23 (1946) 31.
- 3. V. F. Toropova i F. M. Batyrshina, Zhur. Anal. Khim 4 (1949) 337.
- 4. S. Aditya i B. Prasad, J. Ind. Chem. Soc. 30 (1953) 213.
- 5. E. A. Burns i D. N. Hume, J. Am. Chem. Soc. 78 (1956) 3958.
- F. M. Batyrshina i V. F. Toropova, Uchenye Zapiski Kazan. Gosudarst. Univ. im. V. I. Ulyanova-Lenina, Obshcheuniv. Sbornik 116, No. 5 (1956) 91.
- 7. H. M. Hershenson, R. Thompson-Brooks i M. Murphy, J. Am. Chem. Soc. 79 (1957) 2046.
- 8. R. C. Mohanty i S. Aditya, J. Ind. Chem. Soc. 32 (1955) 234.
- 9. R. C. Mohanty i S. Aditya, J. Ind. Chem. Soc. 32 (1955) 249.
- F. M. Batyrshina i V. F. Toropova, Uchenye Zapiski Kazan. Gosudarst. Univ. im. V. I. Ul'yanova-Lenina, Obshcheuniv. Sbornik 116, No. 5 (1956) 95.
- 11. V. Klemenčić i I. Filipović, Croat. Chem. Acta 30 (1958) 99.

- 12. H. M. Hershenson, N. E. Smith i D. N. Hume, J. Am. Chem. Soc. 75 (1953) 507.
- 13. D. D. DeFord i D. N. Hume, J. Am. Chem. Soc. 73 (1951) 5321.
- 14. J. F. J. Dippy, J. Chem. Soc. 1938, 1222.
 15. H. S. Harned i B. B. Owen, The Physical Chemistry of Electrolytic Solutions. New York 1950. str. 172.
- 16. D. C. Hodgman, Handbook of Chemistry and Physics. Cleveland, Ohio 1957. str. 2352.
- 17. F. C. Frank, Trans. Faraday Soc. 33 (1937) 513.

ABSTRACT

A Polarographic Study of the Monocarboxylato Complexes of Lead. **I.** Stability Constants

V. Klemenčić and I. Filipović

The formation of monocarboxylato complexes of lead has been investigated by a polarographic method in aqueous solutions containing an excess of sodium formate, acetate, monochloracetate, propionate, butyrate, n-valerate, iso-valerate, and glycolate, respectively. The concentration of the monocarboxylate ranged from 0 to 3 M. To avoid the hydrolysis of the monocarboxylato complexes, the solutions contained a constant concentration (2 M) of the corresponding monocarboxylic acid. and, in the case of less soluble valeric acids, $20^{0}/_{0}$ of free acid. The solutions of monocarboxylates ranging from 0 to 1 M were held with sodium perchlorate at a constant ionic strength of 1.00. To get a better diffusion current, all solutions contained 0.005% of gelatin.

The polarographic results were interpreted by the method of DeFord and Hume. The extrapolation of the F([A]) curves to zero monocarboxylate concentration gave values for the successive stability constants as follows:

Formato complexes: $K_1 = 27$, $K_2 = 47$, $K_3 = 42$.

Acetato complexes: $K_1 = 180$, $K_2 = 750$, $K_3 = 1350$.

Monochloracetato complexes: $K_1 = 22$, $K_2 = 40$, $K_3 = 42$.

Propionato complexes: $K_1 = 180$, $K_2 = 1320$, $K_3 = 2200$.

Butyrato complexes: $K_1 = 190$, $K_2 = 1000$, $K_3 = 2000$, $K_4 = 1800$.

n-Valerato complexes: $K_1 = 190$, $K_2 = 1500$, $K_3 = ?$, $K_4 = 5358$. iso-Valerato complexes: $K_1 = 190$, $K_2 = 1500$, $K_3 = ?$, $K_4 = 5358$. It has been found that the stability of the complex increases with increasing base strength and the radius of the corresponding ligand.

INSTITUTE OF INORGANIC CHEMISTRY FACULTY OF TECHNOLOGY UNIVERSITY OF ZAGREB ZAGREB, CROATIA, YUGOSLAVIA

Received April 10, 1959