PRILOG ANALIZI UZROKA POVRĘDIVANJA PRI SKIJANJU I MOGUĆNOSTIMA PREVENCIJE

RADOVAN MEDVED i KRESIMIR STUKA

Odjel za kineziološku fiziologiju i patologiju
A CONTRIBUTION TO THE ANALYSIS OF CAUSES OF INJURY IN SKIING AND POSSIBILITIES OF PREVENTION

From the standpoint of traumatology skiing presents one of the most interesting sports. During skiing lessons at the High School of Physical Culture an extremely large number of injuries was observed. It was tried to find the causes of injuries on the basis of a detailed analysis of the mechanism of injuries.

The causes of such an increased number of injuries were found to be:

a) deep, wet snow
b) icy snow
c) inadequate safety bindings — trademark «Thunder».

In a total of 43 injuries, where owing to the mechanism of injuries, the opening of the binding was expected it opened only in five cases and this gave rise to the suspicion in the safe working of the binding «Thunder».

By further experimental laboratory testings by electric dynamometer the inadequate working of this binding was proved. This means that the main cause of a great number of injuries during skiing lessons was the safety binding «Thunder», which is technically constructed in such a way as to be unsuitable for pointed ski-shoes that our students were wearing.

ОЧЕРК АНАЛИЗА ПРИЧИН ПОВРЕЖДЕНИЙ В ЛЫЖНОМ СПОРТЕ И СПОСОБЫ ПРЕВЕНЦИИ

Лыжный спорт представляет с точки зрения травматологии один из самых интересных спортив. На лекциях лыжного спорта Высокой школы для физической культуры 1969/70 года замечено исключительно большое число повреждений, а причинах пытались найти на основании тщательного анализа механизма повреждений.

Найдено что причинами такого несоразмерного повышения случаев повреждений являются:

а) грубый, мокрый снег
б) замерзший снег
в) неотвечающие обеспечивающие крепления клеяма «Тандер».

В 43 повреждениях, в которых смотря на механизм их возникновений ожидалось отворение обеспечивающего крепления, только в пять случаях это случилось, так и появилось сомнение что крепление клеяма «Тандер» на действует обеспечивающее.

Несоответствующее действие крепления проверено в опытах в лаборатории с помощью электрического динамометра и после этого можно оценить что главной причиной большого числа повреждений является обеспечивающее крепление „Тандер", которое технически конструировано так что не отвечает квадратным лыжным ботинкам, которых можно достать в нашей стране, а у наших студентов были именно такие же ботинки.
(1) UVOD

Skijanje predstavlja sa stanovišta traumatologije sasvim sigurno jedan od najzanimljivijih sportova kako po broju povreda tako i po tipičnom mehanizmu njihova nastajanja. Glavni uzrok relativno velikog broja povreda pri tom sportu sasvim je sigurno osnovni rekvizit potreban u tom sportu — to je skijanje. Skijanjem uz umjetni način produžavamo naše stopalo na 2 m, tako da sile koje nastaju pri padu djeluju preko ove velike površine čime se djelovanje značno pojačava. Drugi faktor je snijeg koji s jedne strane zbog svoje okliznosti omogućuje velike brzine kretanja, a sa druge strane postavlja ponekad sudbino kapacitetu za prekriženje, u koje se skijaš zaplaca i pada.

Skijanje je obavezni nastavni predmet za studente fizičkog odgoja. Kako je u školskoj godini 1969./70. u studenata Visoke škole za fizičku kulturu zabilježen, u odnosu na prošle godine, izvanredno velik broj povreda, odlučili smo da analiziramo što je izuzetno toga.

<table>
<thead>
<tr>
<th>SEMENIK 1248 D.S.</th>
<th>KRVAVEC 1118 D.S.</th>
<th>K. GORA 658 D.S.</th>
<th>UKUPNO 3022 D.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGANUĆE KOLJENA</td>
<td>20</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>GANUĆE SKOČNOG ZOJL</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PHELON</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>UPAR</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>RANA</td>
<td>1</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>OSTALO</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>UKUPNO</td>
<td>40</td>
<td>25</td>
<td>9</td>
</tr>
</tbody>
</table>

Tabela 1

Distribucija prema vrstama povreda na tri skijaška tečaja studenata VSFK, Zagreb održana u veljači 1970. godine.

(2) Naša zapažanja

Brojčani pokazatelji frekvencije povrede svrstanih prema vrstama nalaze se u tabeli 1. Pošto je ublažano da se epidemiološka obrada vrši prema takozvanim danima skijanja (D.S.), to i mi u tabeli navodimo koliko je u pojedinom tečaju bilo dana skijanja. Ova se vrijednost dobiva množenjem broja učesnika sa brojem dana tečaja.

Kao što je vidljivo iz tabeli 1, ukupan broj povreda bio je 74, što sasvim sigurno predstavlja veoma velik broj. Da bi mogli ocijeniti relativnu veličinu tog broja, mi smo se poslužili usporednim, te u literaturi poznavnim i prihvaćenim normativima povredovanja. Izabrali smo poznatu Mockovu statistiku, a on je dobio slijedeći riziko povredovanja pri skijanju; 1% težih povreda (načelno počestog prelom) i 5% lakših povreda (uglavnom uganuća i kontuzije). To drugim riječima znači da se na 1000 dana skijanja može očekivati 1 teža i 5 lakših povreda.

<table>
<thead>
<tr>
<th>OČEKIVANA I REALIZIRANA FREKVENCA POVREDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMENIK</td>
</tr>
<tr>
<td>OČEKIVANA</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>TEŽE</td>
</tr>
<tr>
<td>LAKŠE</td>
</tr>
<tr>
<td>UKUPNO</td>
</tr>
</tbody>
</table>

Tabela 2

Očekivana i realizirana frekvencija povreda na nastavi skijanja studenata VSFK.

Kako se frekvencija povredovanja u naših opaženik na osnovu očekivanje povredovanja premo u Mocku, vidi se iz tabeli 2. Veoma je lako uočljivo da je na svim tečajevima, a naročito na osnovnom i naprednom tečaju studenata II godine (Semenik i Krvavec) bilo znatno više povreda, nego što bi se to moglo očekivati. Gotovo dvostruku broj teških povreda, te više nego šesterokrat broj lakših povreda od očekivanih, potaknuo nas je da podvrgnemo analizi neke momente u vezi njihova nastajanja.

Opća distribucija prema vrstama povreda odgovarala je načelno uočivšćenoj distribuciji (tabeli 1). Najviše je bilo povreda koljlog zgloba, a to iste nogu medijalne pobočne sveze (28). Ova se povrda smatra načelno ne samoj čestčom, već u najtipičnijom povredom pri skijanju. Osobito u modernom skijanju, primjereno relativno visoko i tvrdih skijaških pipela koje dobro zaštituju zglob, relativno se je broj ovih povreda povećao. Na drugom mjestu po čestoci su uganuća skočnog zgloba, ukupno 14. Vidimo da se je broj uganuća u drugom tečaju (Krvavec), unatoč prihvaćenom istom broju dana skijanja, bitno smanjio. Uzrok bi mogao biti taj što je već u toku prvog tečaja izvršena neka vrsta selekcije: studenti sa konstitucionalno slabijim zglobnim svezama, te
oni koji su inače skloni povredama, povredili su se već u prvom tečaju. Osim toga, sniježne prilike su u oba tečaja bile bitno različite. Na Semeniku bilo je mnogo svježeg, povremeno i vlažnog, tj. "teškog" snijega koji je unodično pogodan za nastanak uganuća i preloma, dok je u Krvavcu prevladavao tvrdi i utaban snijeg. Kako je takav snijeg dozvoljavao i omogućavao veće brzine, a radilo se je i o naprednom tečaju, to je razumljivo da su se na tom tečaju (Krvavec) desavale u većoj mjeri povrede od udaraca, te razne rane. Ove potonje su posljedica djelovanja oštrih metalnih rubova vlastite ili tuge skije.

(3) Zapažanja o uzroconima

Imali smo prilike da kroz 9 proteklih godina pratimo isto takve tečajeve studenata Visoke škole za fizičku kulturu, te kroz svih 9 godina, sa preko 10.000 dana skijanja nismo registrirali niti jedan lom kostiju, a broj uganuća bio je ispod očekivane frekvencije. Kako se opći uslovi održavaju ovih tečajeva nisu međusobno razlikovali, a

Slika 1
Rentgenska snimka spiralnog preloma potkoljenice studenta M. B. zadobivenog na nastavi skijanja na Semeniku.

Iako su gotovo sva uganuća bilo lakšeg ili srednjeg stepena (I—II stepen), to se ne bi moglo reći za koštane prelome koji su već "a priori" teže odnosno teške povrede. Posebno je bitno istaći oba preloma koja su se desila na tečaju na Semeniku. S obzirom na iste povrede i na okolnosti pod kojima su se one desile, dozvoljavaju zajednički opis. Radilo se je o tipičnom spiralnom multifragmentarnom lomu obaju kostiju podkoljenice (Slika 1). Obje su se povrede desile početnicima, i to pod kraj dnevne nastave, u kasnim posljepodnevnim satima. Prigodom pada kretali su se malom brzinom, ali su vrhovima skija zašli u dubok, neizvožen i "težak" snijeg koji je davao velik otpor skijama. Pri rotacionom padu prema napred došlo je do loma kostiju podkoljenice.

Slika 2
Mogućnosti postavljanja cipele u prednjem vezu tipa "Thunder".

a) Ispravno
b) loše "u lijevo" (što će izazvati teže otvaranje na desnu stranu, a olakšano u lijevu stranu)
c) loše "u desno" (što će izazvati teže otvaranje veza na lijevu stranu, a suviše lagano otvaranje na desnu stranu)
i nastavni kadar bio je isti, a jedina razlika bila je u primijenjenim vezovima, to nam se je na-
metnula logička misao da su vezovi primijenjeni
na tečaju na Semeniku i Krvavcu (tečajci tečaja u
Kranjskoj Gori imali su vezove kao i predhodi tečajci) uzrok toliko velikog broja povreda. Naime u punih 9 tečaja svi su učenici imali vezove
na tečaju na Semeniku i Krvavcu imali vezove »Thunder«.

Rijetko se u kojoj sportskoj grani može toli-
ko učiniti na prevenciji povreda, koliko je to mo-
že u skijanju.7 U tom pogledu zabilježen je
upravo posljednjih godina vidan napredak zahva-
ljujući konstrukciji i upotrije tзв. »sigurnosni-
vezovi«. Ti vezovi djeluju na principu poveziva-
ja skije s cipelom, ali samo do trenutka kada postaje djelovanje torzijonsih sila toliko jako, da
prijeti povreda ligamenta ili kostiju. U tom ča-
su, a to je u pravilu onda kada se skijaš već na-
lazi u padu, vez oslobađa skiju od cipele i tako
sprečava da torzije sile djeluju preko skije i
cipele na donjem ekstremiteta.

Henkelí iznosi statističke podatke iz skijaške
škole američke vojske u Garmischu, koji jasno
govore u korist upotrebe sigurnosnih vezova. Ta-
ko je u sezone 1951/52. god. u navedenoj školi bilo
posuđeno 6.000 pari skija bez sigurnosnih vezova —
 bile su 34 fotuke podkoljenice ili 0,6%. Iduće sezone bilo je također posuđeno 6.000 pari
skija, ali sa sigurnosnim vezovima — rezultat:
samo 1 fotuka ili 0,02%. Idućih godina rezultat se kretao slično, a najviše do 0,06%. Na ukupno
182.630 posudbi skija kroz 6 godina Henkel opi-
suje ukupno 86 fotuke podkoljenice što je u pro-
sjeku 0,04%, te zaključuje da je upotreba tih ve-
zova veoma korisna.

Isperva su sigurnosni vezovi bili djelotvorni sa-
mo pri nepoštenim torzijonskim pokretima, a danas
se proizvode vezovi sa kombiniranim djelovanjem,
tj. osim pri rotacionim padovima, oni djeluju i pri
frontalnim padovima.

Sigurnosni vez djeluje dakle na taj način da u
određenom trenutku kada mehanička sila djelova-
nja postaje toliko snazna da prelazi otpornu snagu
lokomotornog aparata i prijeti da dovede do loma
kosti prekida vezu između skijaške cipele i skije.
Prema tome dobar sigurnosni vez nesmije da se
otvara niti prerano, jer tada dolazi do nepotrebnog
i eventualno opasnog pada još u toku vožnje, ali niti prekasno.

Ispitali smo kakvo je bilo djelovanje veza u
naših opaženika koji su zadobili uganučić ili pre-
lom (pri toj vrsti povreda su naime vezovi djelo-
tvorni) na tečaju na Semeniku i Krvavcu. U tabeli
broj 3 prikazano je, u kojem se je broju vez pri
padu povređenih otvorio, a kada ne. Vidljivo je
da se vez u slučaju kada se je desilo uganuće ko-
ljena — ukupno 25 slučajeva — u pretežnom bro-
uju slučajeva nije otvorio, tj. djelovao je kao obični
staromodni krut vez. Samo u dva slučaja vez se
je otvorio, a do povrede je ipak došlo. Od ukupno
14 uganuća skočnog zglobova samo u 3 slučaja vez
se je otvorio, a u većini slučajeva — 11 — vez nije
djelovao. Možemo dakle zaključiti da je djelovanje
sigurnosnih vezova očito zatajilo. Prigodom 4 slu-
čaja loma kosti, vez se nije niti jednom otvorio.

Da to nije bilo samo sticanjem slučajnih okol-
nosti, već da je upravo konstrukcioni-tehničke pri-
rode, ustanovili smo slijedećim ispitivanjem koje
smo proveli.

Nasumice smo izabrali 6 komada (3 para) skija
i cipela naših studenata i pomoću električnog di-
amometra baždarenog izvorom sile ispitali:

a) da li je potrebna ista sila za aktivaciju
veza pri djelovanju rotacione sile u desno
carlo i u lijevo. Ako je naime potrebna raz-
ličita sila, tada taj vez sasvim sigurno nije
dobar,
b) da li su oznake (plavo, bijelo i crveno) boje
na takozv. sigurnosnoj peti označavaju ste-
pen podešenosti veza u odnosu na silu pri
frontalnom padu pouzdane, tj. da se na

<table>
<thead>
<tr>
<th>RAW MATERIALS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEZA TIPA «THUNDER» u kp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. POKIJE</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>62</td>
<td>60</td>
<td>52</td>
</tr>
<tr>
<td>2. POKIJE</td>
<td>72</td>
<td>66</td>
<td>72</td>
<td>54</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>3. POKIJE</td>
<td>60</td>
<td>60</td>
<td>84</td>
<td>94</td>
<td>36</td>
<td>48</td>
</tr>
<tr>
<td>4. POKIJE</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>5. POKIJE</td>
<td>66</td>
<td>66</td>
<td>48</td>
<td>66</td>
<td>30</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RAW MATERIALS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEZA TIPA «THUNDER» u kp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela

Tabela 3

Učestalost otvaranja veza pri likom zadoblja-
nja povreda.

DINAMOMETRIJSKO ISPITIVANJE OTVARANJA PREDJEG VEZA TIPA «THUNDER» u kp
svim ispitanim skijama otvaraju na jedan-
ku silu podražaja.

Otvaranje prednjeg dijela veza, koji reagira na
torzione pokrete, ponovljeno je pri jednakoj po-
dešenosti, naizmjenično desno i lijevo, 5 puta.
ako bi vez bio pouzdan tada bi se on i pri ponov-
ljenim pokušajima, kako u jednu tako i u drugu
stranu, otvarao pri jednakoj sili. Međutim, kako
vidimo (vidi tabelu 4), postoje očite razlike u ot-
varanju veza desno i lijevo (npr. u skija broj 2
u 3 pokušaja otvorio se je desno pri sili 84 kp, a u
lijevo već pri sili od 36), također vidimo da se je i
pri ponovljenim pokusima vez otva-
rao pri djelovanju različito jakih sila, (npr. u
skije broj 5 pri 2 pokušaju u desno otvorio se je
vez kod 72 kp, a u 5-tom pokušaju na istu stranu
već pri sili od 29 kp).

DINAMOMETRIJSKO ISPITIVANJE STRAŽNJEG VEZA

<table>
<thead>
<tr>
<th>TIPO „THUNDER” u kp</th>
</tr>
</thead>
<tbody>
<tr>
<td>S K I J A</td>
</tr>
<tr>
<td>BIJELO MINIMUM</td>
</tr>
<tr>
<td>PLAVO</td>
</tr>
<tr>
<td>CRVENO</td>
</tr>
<tr>
<td>CRVENO MAKSIMUM</td>
</tr>
</tbody>
</table>

Tabela 5

Dinamometrijsko ispitivanje otvaranja straž-
njeg veza tipa »Thunder« (većimama sile u momentu otvaranja veza izražena je u kilopondima).

U tabeli 5 prikazani su rezultati ispitivanja reagiranja tzv. sigurnosne pete. Niti jedan od 6
vezoa nije se pri istoj podešenosti (bijelo minimum — plavo — crveno — maksimum) otvorio pri
istoj sili kao bilo koji drugi od 6 ispitanih ve-
zoa. To znači da se ne može imati povjerenje u
ove oznake koje bi trebale označavati razne ste-
pene namještenosti veza.

Postavlja se pitanje, kako je moguće da se
nalaze u prodaji vezoj koji praktički gotovo ne
djeluju kao sigurnosni. Proučavanjem tehničke
konstrukcije našli smo najvjerojatnije odgovor
na to pitanje. U Japanu se vrlo vjerojatno upo-
trebjavaju skijaške cipele čiji je prednji dio do-
na okruglo, dok su svagdje drugdje na svijetu
skijaške cipele spreda uglete. Japanski vezovi su
građeni za zaobljeni vrh cipele, tako da uglate
cipele naših opaženika nisu imale odgovarajuće
prednje uporište. Radi neodgovarajućeg oblika
cipele se nije moglo točno centrirati, što je od
eminentne važnosti kada se traži da vez djeluje
obostrano jednako. Dovoljno je da se cipela sa-
mo za koji milimetar pomakne u jednu stranu
(slika 2), pa da se onda u tu stranu lako otvara,
a toliko teže u drugu. Dok smo za prednji dio
ovog japanskog sigurnosnog veza našli siguran
uzrok neadekvatnog rada, to nismo našli za si-
gurnosnu petu, ali možemo predpostaviti da je
razlog također u lošem postavljanju cipele u pre-
dnji vez, što rezultira različitim silama otvaranja
stražnjeg veza.

Naš zaključak bio je da je glavni uzrok velikog
broja nezgod i povreda na tečajevima na Seme-
niku i Kranjskoj Gori bio loše konstruiran i u
svojem djelovanju neefikasan sigurnosni vez tipa
»Thunder« japanske proizvodnje.

Međutim, kako su sigurnosni vezovi samo jed-
an oblik prevencije, to oni sa epidemiološkog
stanovišta i ne mogu biti u pravom smislu uzroci,
već treba uzroke tražiti drugdje. Analizirajući pri-
like, pod kojima su se navedeni tečajevi odvijali,
možemo reći da su vrlo vjerojatno uzroci bili sli-
jedeći:

Tečaj na Semeniku:

a) dubok, mokar snijeg
b) zamor (većina povreda, a sve teže dogodile

Tečaj na Krvavcu:

a) zaleđen snijeg
b) veće brzine kretanja u naprednom tečaju

Tečaj u Kranjskoj Gori:

Na ovom tečaju nije se dogodila niti jedna
teva povreda. Registrirane su samo sasvim laga-
ne povrede, te je zbog toga njihov broj samo pri-
vidno dosta velik. Svi su polaznici ovog tečaja
imali pouzdanе sigurnosne vezove tipa Marker,
pa je to vjerojatno glavni razlog što je se desilo
samo jedno lako uganulo.

(4) Zaključak

Skijanje predstavlja sport, u kojem dolazi do
relativno većeg broja povreda. Broj povreda se
naročito povećava onda, ako se ne primijene, od
nosno ako se primijene loši sigurnosni vezovi. Na
primjeru dvaču tečajeva skijanja studenata Viso-
ke škole za fizičku kulturu u Zagrebu vidi se ka-
ko se u slučaju nedjelotvornosti sigurnosnih ve-
zova, a uz ostale nepovoljne okolnosti (mokar, loš
snijeg) dešava izvanredno veliki broj povreda, pa
čak i teških povreda u obliku koštanih preloma.
Sigurnosni vezovi japanske proizvodnje pokazali
su se kao sasvim nepodesni za primjenu u našim
prilikama, te ih treba isključiti iz upotrebe i pro-
daje.

Dr Medved

LITERATURA

1. Mock, O.
 Zwölf Jahre Skiartzt über 1000 m. Leipzig,
 1936.

2. Petitpierre, M.

3. Gjurić, Z.
 Uzroci i sprečavanje sportskih povreda. Zavod
 za fizički odgoj, 1954.

4. Saurer, A.
 Die Entstehungsbereitschaft für Wintersport-
 schäden aus der Sicht des Anatomen. 4. Kon-
 gress der Internationalen Gesellschaft fur Ski-
 Kongres Bericht: 7.

5. Medved, R.
 Neke nepravilnosti u gradi i držanju tijela na-
 ših vrhunskih skijaša. Sport-medioinske objave,
 1953, broj 1, str. 80—87.

6. Medved, R.
 Der Plattfuss des Schiläufers. Leibesübungen

7. Baumgartner, W.
 Die Sicherheit der Skiabfahrt aus Sicht des
 Sportarztes. 4. Kongress der Internationalen
 für Skitraumatologie. Garmisch-Partenkirschen,

8. Medved, R.
 Preventiva povreda smučara upotrebom sigur-
 nosnih vezova. Telesno vaspitanje, 1961. broj
 2, str. 6—14.

9. Henkel, K.
 Statistik einer Sicherheitsbindung, Ilies Journ-
 ness International de Traumatologie su Ski.

10. Medved, R.
 Skišaške povrede, Lič. vjesnik 1964, broj 8, str.
 83—91.