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Abstract 

The prediction of solubility of drugs usually calls on the use of several open-source/commercially-available 
computer programs in the various calculation steps. Popular statistics to indicate the strength of the 
prediction model include the coefficient of determination (r

2
), Pearson’s linear correlation coefficient 

(rPearson), and the root-mean-square error (RMSE), among many others. When a program calculates these 
statistics, slightly different definitions may be used. This commentary briefly reviews the definitions of 
three types of r

2
 and RMSE statistics (model validation, bias compensation, and Pearson) and how 

systematic errors due to shortcomings in solubility prediction models can be differently indicated by the 
choice of statistical indices. The indices we have employed in recently published papers on the prediction 
of solubility of druglike molecules were unclear, especially in cases of drugs from ‘beyond the Rule of 5’ 
chemical space, as simple prediction models showed distinctive ‘bias-tilt’ systematic type scatter. 

©2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

The ubiquitous coefficient of determination (r2) and root-mean-square error (RMSE) are statistics which 

enumerate the strength of a physical property prediction model [1-4]. Yet their estimated values depend 

conditionally not only on random errors in the observed data but also on systematic errors generated as a 

result of limitations in a particular prediction model. When comparing the strength of prediction from 

different studies based on different models, it is vital to ensure that the same kinds of statistics are 

invoked. 

Here, the commentary confines the discussion to statistics derived by linear regression of scatter plots 

of log S0
Obs vs. log S0

Calc (log S0 = logarithm of aqueous intrinsic solubility), with observed values treated as 

dependent variables (y-axis) and calculated values treated as independent variables (x-axis) [3]. Three types 

of r2 and RMSE statistics are considered here: ❶ model validation (r2
val, RMSEval), ❷ validation with ‘bias’ 

compensation (r2
bias, RMSEbias), and ❸ validation with ‘bias-tilt’ compensation, i.e., Pearson’s approach [4] 

(r2
Peason, RMSEPearson). Whether r2 or RMSE is a better statistic to use is beyond the scope of this 

commentary. 
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The precise definitions of r2 and RMSE are especially pertinent to prediction competitions, for ranking 

performances consistently. The second ‘Solubility Challenge’ (SC-2) has been described recently [5], 

modeled after the first competition (SC-1) which took place in 2008 [6]. In SC-2, two test sets of highly-

curated aqueous intrinsic solubility data were presented to the computational community to challenge 

participants to predict the solubility values of the druglike molecules. Concomitant to the SC-2 competition, 

we also published predictions [7] of the two test sets in SC-2, as well as the test set in SC-1.  

 

Figure 1. Correlation plots (pS0 = -log S0) – three distinct definitions of coefficients of determination (val = 
model validation, bias = bias compensation, and Pearson), illustrated by simulated data (squares) containing 
random and systematic errors. The statistics arising from case ❸ place the prediction in the most favorable 
light (with RMSE referring to the experimental random error scatter about the green dash-dot curves). Those 
of case ❶ refer to model validation (with RMSE referring to the data scatter about the solid black ‘identity’ 

diagonal lines). The dashed red lines correspond to the intermediate case ❷.  

Here, we calculated the three types of statistics in order to clarify and put into context the statistics we 

have employed in our recent studies [7,8], so as to allow consistent comparison of the strengths of our 

prediction models to those of others [5,6]. 

Method 

Figure 1 illustrates the three definitions of the coefficient of determination and the corresponding 

RMSE, with the aid of simulated data. The ‘observed’ data contain random errors of ±(0.24-0.57). The 

‘calculated’ data either have no errors (frame a) or have systematic errors (frames b-d). Frame (a) depicts a 

scatter plot based on a strong prediction model, where the statistics are mainly indications of the random 

‘experimental’ errors. The data in frame (b) have a superimposed negative bias, but there is no distortion to 

the slope in the scatter plot (i.e., no ‘tilt’ to the data trend). Frame (c) has no added bias, but there is a 

substantial tilt to the data trend (or negative bias without tilt). Frame (d) contains both a positive bias and a 
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tilt added to the random errors (or positive bias without tilt). 

  The simulated prediction model is assumed to have been ‘trained’ using a large diverse data set. The 

strength of the prediction can be determined by a randomly-selected smaller set of ‘test’ compounds not 

used in the training. Three types of statistics may be of interest in the analyzed scatter plot for the test 

compounds:  

❶ r2
val and RMSEval may be used to assess how effectively the training-set derived model predicts the 

test set (i.e., model validation), as indicated by the dispersion of data about the ‘identity’ line (y = 

x).  

❷ r2
bias and RMSEbias may be used when the prediction model generates a constant bias (a) in the 

scatter plot, as indicated by the dispersion of data about the unit-slope regression line, displaced 

from the identity line by the extent of bias (y = a + x).  

❸ r2
Pearson and RMSEPearson Pearson’s statistics [4] are based on regression analysis (y = a + bx) of a 

scatter plot showing both bias (intercept, a) and ‘tilt’ (slope, b). The statistics depend on the 

dispersions about the (non-unit slope and non-zero intercept) regression line. 

The above considerations suggest three constraints for linear regression, y = a + bx: ❶ constrained a = 

0 (no bias) and b = 1 (no tilt), ❷ constrained b = 1 (no tilt) and determined a (bias), ❸ both a and b 

determined (without constraints). The statistics which are calculated in these three cases can be quite 

different, depending on the type and extent of systematic errors. 

For case ❶, the explicit equations for the two statistics are: 

𝑟val
2  =  1 − 

∑  𝑖 (𝑦i
Obs−𝑦i

Calc)
2

∑  𝑖 (𝑦i
Obs− <𝑦Obs>)

2   (1) 

RMSEval  =  √ 
∑  i (𝑦𝑖

Obs−𝑦i
Calc)

2

𝑛
  (2) 

where y = log S0 and <yObs> is the mean of log S0 values. The r2
val in Eq. (1) is often called the ‘coefficient of 

determination,’ or simply, ‘r-squared.’ According to Eq. (1), if all the calculated log S0 values match the 

observed values (‘perfect fit’), then r2
val = 1. Inappropriate/poor models can lead to r2

val < 0. 

 For case ❷ statistics, the bias (a) is incorporated into the expressions:  

𝑟bias
2  =  1 −  

∑  i (𝑦i
Obs− 𝑎 − 𝑦i

Calc)
2

∑  i (𝑦i
Obs− <𝑦Obs>)

2    (3) 

RMSEbias  =  √ 
∑  i (𝑦i

Obs− 𝑎− 𝑦i
Calc)

2

𝑛 −1
   (4) 

 For case ❸ statistics, both the bias (a) and the slope factor (b) are incorporated into the expressions: 

𝑟Pearson
2  =  1 − 

∑  i (𝑦i
Obs− 𝑎 − 𝑏𝑦i

Calc)
2

∑  𝑖 (𝑦i
Obs− <𝑦Obs>)

2    (5) 

RMSEPearson  =  √ 
∑  i (𝑦i

Obs− 𝑎− 𝑏𝑦i
Calc)

2

𝑛 −2
   (6) 

Pearson’s r is more explicitly calculated as [4] 
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𝑟Pearson  =   
∑  i (𝑦i

Obs− <𝑦Obs>)
2

· (𝑦i
Calc− <𝑦Calc>)

2

√∑  j (yj
Obs− <yObs>)

2
· ∑  k  (yk

Calc− <yCalc>)
2
  (7) 

In the absence of systematic errors (Fig. 1a), it does not matter which of the three definitions is used. The 

statistics take on the same values. However, if there is bias (without tilt) in the fit (Fig. 1b), then cases ❷ 

and ❸ produce comparable statistics, which are ‘better’ than then those of case ❶. When there is a tilt in 

the trend or when there is a combined tilt and bias, then the three sets of statistic produce different values, 

as illustrated in Figures 1c,d. For such cases, r2
Pearson > r2

bias > r2
val, while RMSEPearson < RMSEbias < RMSEval. The 

greater the systematic distortion, the greater the difference between the three sets of metrics. If the 

source of random errors is solely from the data, then RMSEPearson may be a good indicator of effective 

measurement errors; RMSEval is the better indicator of overall solubility prediction.  

Both Eq. (1) and Eq. (7) are popularly used. But in many publications it is not clear which was actually 

applied. Also, it may not be readily apparent which r2 is calculated in some open-source/commercial 

programs from the provided documentation. This can lead to some confusion when comparing statistics 

between independent predictions of solubility coming from different laboratories, using different methods 

and programs. 

Results and discussion 

In our previous publications [7,8] we listed r2
bias and RMSEbias in our scatter plots without the subscript 

designations, thus inadvertently ascribing them to Eqs. (1) and (2) definitions. In most cases, the differences 

between the two types of statistics are negligible, but not in all cases. For example, the General Solubility 

Equation (GSE) and the Abraham Solvation Equation (ABSOLV) models used to predict the solubility of 

drugs from ‘beyond the Rule of 5’ chemical space showed (e.g., Figs. 4b, 5b in Ref. [8]) distinctive bias-tilt 

type scatter, with different degrees of systematic aberrations introduced by the limitations in the models 

when applied to such large molecules (similar to what is shown in Fig. 1d here). In contrast, the Random 

Forest regression (RFR) model (e.g., Fig. 13c in Ref. [7] and Fig. 6c in Ref. [8]) was relatively free of such 

systematic distortions (similar to what is shown in Fig. 1a here), and consequently the three sets of 

statistics are nearly the same in the RFR examples (cf., tables below). 

Sample calculations and possible confusion 

In Ref. [7], the GSE was used to predict the 28 intrinsic solubility values taken from the SC-1 competition 

[6]. Since the GSE requires no ‘training,’ we expected to see some bias and tilt in the resulting scatter plots. 

Fig. 11b in Ref. [7] shows a log S0
Obs vs. log S0

Calc scatter plot (cf., Table 1 below). The statistics listed in that 

figure are r2
bias = 0.26 and RMSEbias = 1.23.  

We used SigmaPlot to construct publication-quality figures. In the accompanying statistics calculation, 

the bias was determined by fitting the function: log S0
Obs = a + blog S0

cal, where the b regression coefficient 

was constrained to be 1.0, so the determined bias = a. In the above Fig. 11b example, the calculated bias = -

0.61 log unit. SigmaPlot calculated the values ‘Rsqr’ = 0.26 and ‘Standard Error of Estimate’ = 1.23, which 

we listed in the plot. This is consistent with the calculations of Eqs. (3) and (4).  

However, Eqs. (1) and (2) produce r2
val = 0.07 and RMSEval = 1.34.  

Furthermore, for the same example, the open-source default cor(x,y) function [9] calculated ‘r-squared’ 

= 0.45 and the sample script function defined by Walters [2] calculated ‘rmsError’ = 1.07. This is consistent 

with the calculations of Eqs. (5) and (6) – Pearson’s equations.  

So, the three ‘r-squared’ statistics were calculated as 0.07, 0.26, and 0.45 and the corresponding ‘RMSE’ 
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values were 1.34, 1.23, and 1.07, respectively. This can be confusing when comparing prediction models. 

It’s not that any of these values is wrong – it’s just that different equations/assumption are used/implied. 

Generally, the appropriate definition of the coefficient of determination is according to Eq. (1) and the 

RMSE is according to Eq. (2), since these focus on the actual strength of the model in linking prediction to 

measurement.  

Table 1. Recalculated statistics for the scatter plots in Ref. [7]       

Type 
a
 

Fig. in 
Ref. [7] 

r
2

Pearson
 

Eq. (5) 
r

2
bias

 
 

Eq. (3) 
b
 

r
2

val
  

Eq. (1) 
RMSEPearson 

Eq. (6) 
RMSEbias 
Eq. (4) 

b
 

RMSEval 
Eq. (2) 

bias 
Eq. (3) 

GSE, acids 6a 0.62 0.61 0.58 1.21 1.24 1.27 -0.29 

GSE, bases 6b 0.60 0.57 0.56 1.16 1.21 1.21 -0.14 

GSE, neutrals 6c 0.61 0.54 0.54 1.05 1.15 1.18 -0.30 

GSE, zwitterions 6d 0.24 0.07 0.02 1.38 1.54 1.57 0.34 

ABSOLV, acids 7a 0.66 0.66 0.65 1.14 1.15 1.16 -0.15 

ABSOLV, bases 7b 0.64 0.64 0.62 1.10 1.10 1.13 -0.28 

ABSOLV, neutrals 7c 0.61 0.61 0.61 1.05 1.05 1.05 -0.11 

ABSOLV, zwitterions 7d 0.68 0.68 0.67 0.90 0.90 0.92 -0.20 

RFR 8a 0.98 0.98 0.98 0.28 0.28 0.28 0.00 

RFR 8b 0.90 0.89 0.90 0.60 0.60 0.60 -0.02 

RFR, zwitterions 8b -inset 0.91 0.91 0.91 0.45 0.45 0.45 0.01 

GSE, Test Set 1 11a 0.78 0.78 0.73 0.97 0.97 1.01 -0.41 

GSE, Test Set 2 11b 0.45 0.26 0.07 1.07 1.23 1.34 -0.61 

GSE, Test Set 3 11c 0.46 0.26 0.20 0.94 1.10 1.13 -0.31 

GSE, Test Set 4 11d 0.69 0.69 0.68 1.23 1.24 1.25 -0.08 

ABSOLV, Test Set 1 12a 0.77 0.69 0.58 0.98 1.15 1.27 -0.65 

ABSOLV, Test Set 2 12b 0.55 0.55 0.35 0.98 0.98 1.13 -0.62 

ABSOLV, Test Set 3 12c 0.47 0.36 0.26 0.94 1.02 1.10 -0.41 

ABSOLV, Test Set 4 12d 0.72 0.72 0.70 1.18 1.18 1.18 -0.29 

RFR, Test Set 1 13a 0.90 0.83 0.82 0.66 0.84 0.83 -0.23 

RFR, Test Set 2 13b 0.66 0.66 0.57 0.85 0.85 0.92 -0.41 

RFR, Test Set 3 13c 0.66 0.66 0.64 0.74 0.75 0.76 -0.18 

RFR, Test Set 4 13d 0.82 0.77 0.71 0.95 1.05 1.15 -0.54 

GSE, Test Set 1 14 0.91 0.90 0.89 0.62 0.66 0.66 0.02 

        
a
 GSE = General Solubility Equation; ABSOLV = Abraham Solvation Equation; RFR = Random Forest regression.  

b
 Statistics reported in Ref. [7].  

Table 2. Recalculated statistics for the scatter plots in Ref. [8]   

Type 
Fig. in 

Ref. [8] 
r

2
Pearson

 

Eq. (5) 
r

2
bias

 
 

Eq. (3) 
a
 

r
2

val
  

Eq. (1) 
RMSEPearson 

Eq. (6) 
RMSEbias 
Eq. (4) 

a
 

RMSEval 
Eq. (2) 

bias 
 Eq. (3) 

GSE, small molecules 4a 0.62 0.59 0.57 1.17 1.21 1.23 -0.22 

GSE, large molecules 4b 0.48 -3.8 -3.82 1.00 3.05 2.95 0.16 

GSE, modified 4c 0.48 0.34 0.33 1.00 1.13 1.1 0.04 

ABSOLV, small molecules 5a 0.67 0.67 0.66 1.08 1.08 1.1 -0.2 

ABSOLV, large molecules 5b 0.13 -1.39 -5.24 1.30 2.15 3.36 -2.64 

ABSOLV, modified 5c 0.48 -0.91 2.07 1.01 1.92 2.07 0.92 

RFR, training set 6a 0.98 0.98 0.98 0.26 0.27 0.27 0.00 

RFR, internal validation 6b 0.89 0.89 0.89 0.64 0.64 0.64 0.02 

RFR, large molecules 6c 0.45 0.42 0.37 1.03 1.06 1.07 0.30 

a
 Statistics reported in Ref. [8].  
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Recalculation of the statistics for our previous studies  

Tables 1 and 2 list three types of ‘r-squared’ and root-mean-square errors for the scatter plots in 

Refs. [7] and [8]. In these two studies, we used the bias-compensated statistics originating from the 

SigmaPlot calculation, but inadvertently ascribed them to Eqs. (1) and (2).  As can be seen in cases where 

the bias is negligible, the three sets of statistics are nearly the same (e.g., Fig. 8 [7] or Fig. 6 [8] RFR results 

in Tables 1, 2). In many of the scatter plots, the differences between the different sets of statistics are very 

small. 

Conclusion 

Statistics from ready-made programs may be easily verified (e.g., spreadsheet calculation using 

Eqs. (1)-(6)), so that the intended values are reported. The expanded calculations of statistics (Tables 1 and 

2) applied for our recent prediction studies [7,8] should now allow for valid comparisons between the 

strength of our predictions of solubility to those reported by others: e.g., in ‘Solubility Challenges’ SC-2 [5] 

and SC-1 [6].  
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