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Abstract 

Lipids are a complex and critical heterogeneous molecular entity, playing an intricate and key role in 
understanding biological activities and disease processes. Lipidomics aims to quantitatively define the lipid 
classes, including their molecular species. The analysis of the biological tissues and fluids are challenging 
due to the extreme sample complexity and occurrence of the molecular species as isomers or isobars. This 
review documents the overview of lipidomics workflow, beginning from the approaches of sample 
preparation, various analytical techniques and emphasizing the state-of-the-art mass spectrometry either 
by shotgun or coupled with liquid chromatography. We have considered the latest ion mobility 
spectroscopy technologies to deal with the vast number of structural isomers, different imaging 
techniques. All these techniques have their pitfalls and we have discussed how to circumvent them after 
reviewing the power of each technique with examples.. 

©2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

Lipids are a complex and critical heterogeneous molecular entity, playing an intricate and key role in 

many biological functions such as acting as structural scaffold for the cell membrane, serving as energy 

storage and participating in signaling pathways. Lipid classification system is spearheaded by LIPID MAPS 

Lipidomics Gateway (https://www.lipidmaps.org/). Lipids can be divided into eight main categories: fatty 

acyls (FA), glycerolipids (GL), glycerophospholipids (GP), sphingolipids (SP), sterol lipids (ST), prenol lipids 

(PR), saccharolipids (SL) and polyketides (PK) [1] (Table 1). Each category can be further classified into 

different lipid classes and subclasses, based on the number of carbon atoms and double bonds, the 

branching of the hydrocarbon chain, the position and orientation of double bonds, the addition of polar 

groups such as choline, inositol and ethanolamine; and glycosylation [2]. The LIPID MAPS structure 

database currently records 45245 lipid structures (as of 12 March 2020) (https://www.lipidmaps.org/). The 

complete lipid profile within a cell, tissue or organism is known as a lipidome and is a branch of the 

“metabolome”. Lipidomics is a discipline that studies the characteristics of lipid and to unravel the complex 

interactions of lipid metabolites in a biological system.  
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Table 1. Examples of eight categories of lipids 

Categories Structures Examples Typical Classes: Subclasses 

Fatty acyls,  
FA 

 
 

Hexadecanoic acid 

Fatty acids: 
Straight chain Fatty acids 

Eicosanoids 
Fatty alcohols 
Fatty esters 

Fatty amides 

Prenol lipids, 
PR 

 

 
2E,6E-Farnesol 

Isoprenoids 
Quinones and hydroquinones 

Polyprenols 

Glycerolipids, 
GL 

 
1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero 

Monoradylglycerols: monoacyl 
glycerols 

Diradylglycerols: diacyl glycerols 
Triradylglycerols: triacyl glycerols 

Glycerophos- 
pholipids,  

GP 
1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-

phosphocholine 

Glycerophosphocholines 
Glycerophosphoenolamines 

Glycerophosphoserines 
Glycerophospholycerols 
Glycerophosphoglycero-

phosphates 
Glycerophosphoinositols 

Glycerophosphoglycerophospho-
glycerols 

Sphingolipids, 
SP 

 

 
N-(Tetradecanoyl)-sphing-4-enine 

Sphingoid bases 
Ceramides 

Phosphosphingolipids 
Neutral glycosphingolipids 
Acidic glycosphingolipids 

Saccharolipids, 
SL 

 
UDP-3-O-(3R-Hydroxyl-tetradecanoyl)-αD -N-acetylglucosamine 

Acylaminosugars 
Acylaminosugar glycans 

Acyltrehaloses 
Acyltrehalose glycans 

Sterol lipids, 
ST 

 
Cholest-5-en-3β-ol 

Sterols 
Cholesterol and derivatives 

Steroids 
Bile acids and derivatives 

Polyketides, 
PK 

 
Aflatoxin B1 

Macrolide polyketides 
Aromatic polyketides 

Nonribosomal peptide/ 
polyketides hybrids 

A specific alteration in the lipidome, provides potential insights into perturbed pathways, physiological 

processes and ultimately stages of diseases. Clinical lipidomics was defined “as a new integrative 
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biomedicine to discover the correlation and regulation between a large scale of lipid elements measured 

and analyzed in liquid biopsies from patients with those patient phenomes and clinical phenotypes” [3]. To 

cite few examples, lysophosphatidic acid stimulates cell proliferation, migration and survival by acting on 

its cognate G-protein-coupled receptors in cancer cells [4]. Alzheimer’s and Parkinson’s diseases have been 

linked with aberrant cholesterol and abnormal glycolipid metabolism, respectively [5]. Lipoprotein 

abnormalities are associated with Type II diabetes with increased triglycerides (TG) and very low density 

lipoprotein (VLDL) levels, whereas decreased apolipoprotein E/VLDL-TG ratio in ischemic heart disease [6]. 

Depending on associated underlying pathways, these lipids serve as a potential biomarkers and a 

diagnostic tool. For instance, GL, SP, linoleic acid, cholesterol serve as a biomarker for Alzheimer’s; 

lycophosphatidylinositol and prostaglandins (PG) for Parkinson’s; ceramides, sphingomyelin for Type II 

diabetes mellitus and glycosphingolipid for obesity [7]. 

 
Figure 1. Typical work-flow of lipidomics analysis in biological samples 

Owing to the diversification of the lipid classes with various combinations of polar head groups, fatty 

acyl chains, backbone structures, identification and characterization of lipids is very complicated. 

Aggravating to this is its extensive expansion of the applications. The prime objective of lipidomics is to 

attain full coverage of precise structural analysis, accurate quantification and understanding its dynamics. 

The available analytical techniques are broadly categorized into three groups, namely global lipidomic 

analysis, targeted lipidomic analysis and novel lipid discovery. The global lipidomics deals with 

identification, quantification hundreds to thousands of cellular lipids via a high throughput basis. Shotgun 

lipidomics-based platforms are extensively used in this category to analyze diverse pathways and networks 

associated with lipid metabolism, trafficking, and homeostasis. As an extension, mapping techniques have 

also been used to study the spatial and temporal relationships of lipids. Targeted lipidomic analysis also 

deals with the identification but with one or a few lipid classes of interest using LC-MS (liquid 

chromatography coupled to mass spectrometry) and LC-MS/MS (liquid chromatography coupled to tandem 

mass spectrometry) based methods. While the novel lipid discovery deal with novel lipid classes and 

molecular species using LC coupled with MS with different enrichment technologies. In this review, we are 

providing an overview of the current understanding of lipid analysis taking into account the workflow, 

http://dx.doi.org/10.5599/admet.913
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methodologies, technical characteristics and bottlenecks. We have also listed important papers and 

reviews that cover most of the aspects of lipidomics. We hope that this review will act as a bridge for 

biomedical and pharmacological research to generate novel approaches to disease diagnostics. A typical 

work flow of lipidomic analysis in biological samples is as shown Figure 1. 

Sample preparation 

Sample processing and storage 

The most important and vital step in any bioanalytical work is sample processing. The biological samples 

can be solid in nature (e.g., tissues or cells) or comprise of highly complex biofluids (e.g., plasma, serum, 

urine or cyst fluid). It is laborious to handle solid samples as it involves additional disruption step. It is 

highly advisable to process the samples immediately, especially with the whole blood samples [8] or at 

least flash frozen as lipid samples exhibit substantial circadian variations. It is a well-known fact that the 

plasma concentration of lysophosphatidylcholine (LPC) or lysophosphatidic acid (LPA) increases when left 

at room temperature for a long period [9]. On the other hand, cardiolipin (CL) during the freezing process 

hydrolyses into monolysocardiolipin [10] and methanolic samples of lysophospholipid regioisomers 

isomerize at temperatures above 20 °C and at pH > 6.0 [11]. Freeze-thaw is another problem with specific 

lipid classes, aliquoting the samples before freezing will minimize its effect, example sphingosine, 

polyunsaturated fatty acids and eicosanoids [12,13]. Yet another problem is lipid oxidation and is a major 

concern with polyunsaturated fatty acid moieties, oxidized lipids and eicosanoids, special care should be 

exercised in handling, as these end products also contribute to both physiological and pathophysiological 

processes [13]. Storage of plasma/serum samples and their extracts under an inert gas (e.g., argon) may 

also limit oxidation. Antioxidants like butylhydroxytoluene (BHT) have been in use, the used concentrations 

and the time-point of its addition vary in the literature [14]. The efficacy and protocols for the use of 

antioxidants should be verified. However, oxidation is not a problem in quantifying abundant lipid classes 

(e.g., phospholipids, sphingolipids and TGs) [13]. It is advisable to exercise caution while handling samples 

with each class of lipids.  

Biofluids, such as urine, serum, plasma and whole blood are frequently used as these do not require any 

homogenization but while working with the lipids from a piece of tissue or ruptured cells (e.g., organelles), 

sample disruption nonetheless has a significant impact on the end results of a process to make it accessible 

to extraction solvents. Widely used mechanical methods are liquid based homogenization (Potter-Elvehjem 

homogenizer, ULTRA-TURRAX), bead bearing (Bead Ruptor 24, Elite Bead Mill Homogenizer) and crushing 

of liquid-nitrogen-frozen tissue by pestle and mortar [15]. Latter approach is very slow as it is performed 

manually. Ulmer et al. (2017) have demonstrated the use of zirconium oxide or ceramic bead for softer 

tissues and stainless steel bead for muscle and harder tissues [16]. 

Lipid extraction protocols  

There are numerous published lipid extraction methods that can also be automated for high-throughput 

analysis [17-19]. This process reduces the complexity of the sample by enriching the analytes of interest 

and getting rid of any unwanted contaminants to mass spectrometer. The extraction principles are 

one/two-phase liquid-liquid extraction (LLE), solid-phase extraction (SPE) with varying parameters of 

extraction like temperatures, sample/solvent ratio, re-extractions, use of sonication, vortexing, extraction 

under inert gasses to enhance the lipid recovery. However, this process is accountable for the artifacts in 

lipid identification and inconsistencies in quantification. 
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The sample preparation technique most widely used in lipidomics is LLE. The Folch protocol and the 

Bligh and Dyer protocol both rely on a ternary mixture of chloroform, methanol and water [17,18]. One-

phase extraction (OPE) method was proposed by Pellegrino et al. (2014) which is a mixture of 

methanol/chloroform/methyl tert-butyl ether (MMC) in the ratio 1.33/1/1 (v/v/v) [20]. Matyash et al. 

(2008) and Baker et al. (2001) proposed methyl-tert-butyl ether high-throughput lipidomics and acidified 

butanol extraction procedure for lysophosphatidic acid from biological samples [19,21]. It is well known 

fact that solubility can be enhanced by addition of some acid to the organic layer containing anionic lipids 

e.g. phosphatidic acids (PA), phosphatidylinositols (PI) or sphingosine-1-phosphate (S1P) to increase the 

extraction efficiency. We recommend to check the website http://cyberlipid.gerli.com/techniques-of-

analysis/ extraction-handling-of-extracts/ for guidance on extraction protocols. 

Derivatization 

Chemical derivatization has substantially improved the shortcomings of mass spectrometric based 

shotgun lipidomics, liquid chromatography and more so in gas chromatography based applications. Though 

it is an additional step, it offers several advantages, it enhances the ionization efficiency, selectively 

introduce a fragment which can be used in precursor ion or neutral loss scans, masks the functional groups 

that contaminate the mass spectrometer (MS), often encountered with the lipids containing phosphates 

and most importantly, it helps in differential quantitation by selectively introducing an isotopic label. All 

these strategies were used by different scientists. The plasma samples for 7-oxocholesterol and 5,6-

epoxycholesterol were chemically derivatized with Girard’s reagent P to increase the ionization efficiency 

of the intermediate metabolites in the patients suffering from lysosomal storage disorders [22]. Wang et 

al. (2017) quantitatively analyzed phosphatidylglycerols and bis(monoacylglycero) phosphates by 

diazomethane-based methylation of phosphate group to introduces class-specific fragments into the 

MS/MS spectra [23]. To prevent the contamination of the MS, Clark et al. (2011) methylated the 

phosphate groups to quantify phosphatidyl inositol phosphates [24]. Last strategy was adopted by Lee et 

al. (2017) who introduced a stable isotope-labeled methylation into one sample to enhanced detection and 

quantification of targeted phospholipids [25]. Chemical derivatization with N-[4-(amino methyl) phenyl] 

pyridinium prevented the molecular masses overlapping signals between ceramides and branched fatty 

acid esters of hydroxy fatty acids (FAHFAs) to a new region thereby reducing the false results of FAHFAs 

[26]. New chemical derivatization approaches were employed on targeted lipids by Zhao et al. (2020) [27]. 

However, there are lot of shortcomings in derivatization procedures and such procedures are expected to 

be rapid, high yielding, specific, in-situ, or biocompatible in order to meet the needs of studies.  

Internal standards 

Internal standards are required to quantify bonafide concentrations of an analyte of interest in MS 

analysis. Both the internal standard and analyte are analyzed simultaneously to compensate for inherent 

variations in sample processing during the entire process of sample preparation and analysis (e.g., 

variations in lipid extraction efficacy, processing losses, matrix effects i.e., ionization suppression or 

enhancement). In an ideal scenario, both the internal standard and the analyte should be structurally 

similar and have a comparable MS/MS fragmentation pattern. So, a clear understanding of the types, 

concentration and characteristics of internal standards to be used for accurate quantification of lipid 

species, subclasses, and classes is of utmost importance. Ideally a stable isotope of the analyte of interest, 

if commercially available, should be used as an internal standard for quantitative analysis, provided 

quantification is limited to one or a limited number of species [28,29]. 

http://dx.doi.org/10.5599/admet.913
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Internal standard mixes in lipidomic analysis approach is very common to biomarker discovery. Few 

researchers are of the opinion that one internal standard per lipid class is enough for quantitation [29], 

because ionization of lipids is largely dependent on the class specific head group and not so much on the 

fatty acyl chains [30]. Whereas, few others have contradictory report about the influence of fatty acyl chain 

length and unsaturation on ionization efficiency [30], it is highly advisable to extensively evaluate on case 

to case basis on this issue. The commercially available internal standard mixes containing isotope-labeled 

species include a wide range of acyl chain length and degree of saturation [31]. At least two internal 

standards are required to correct the effects of differential fragmentation kinetics and thermodynamics 

[32]. However, very few reliable internal standards with adequate chemical purity and exactly known lipid 

content are commercially available for a limited number of lipid subclasses and fatty acid compositions.  

An internal standard cocktail has been developed for the LIPID MAPS Consortium which is commercially 

available as SPLASH
®
 LIPIDOMIX

®
 from Avanti Polar Lipids for quantitative mass spectrometry analysis 

(https://avantilipids.com/product/330707, 2018). This is specifically designed to complement human 

plasma lipid analysis using LC-MS/MS platforms. This contains uncommon chain-length sphingoid bases 

(C17) for sphingosine (So), sphinganine (Sa) and their 1-phosphates (S1P and Sa1P) and C12:0 fatty acid 

analogs of Ceramide (Cer) ceramide 1-phosphate (Cer1P), sphingomyelins (SM), simple mono- and 

dihexosylceramides (HexCer and diHexCer). It also includes sulfatides, 1-deoxy- and 1-(deoxymethyl)-

sphingoids, glycerol-phospholipids, phosphatidylinositol-bisphosphate, sterols and neutral lipids 

(https://avantilipids.com/product/330707, 2018).  

To get consistent and robust results in a high throughput clinical analysis, the use of commercially 

available ready-made internal standard mixes with exactly known concentrations has an added advantage. 

The lipidomics community should encourage the development of novel comprehensive and easily available 

isotope labeled internal standard mixes.  

Analytical techniques for the study of lipids 

Shotgun Lipidomics 

Identification and quantification of a cellular lipidomics directly from organic extracts of biological 

samples based on chemical and physical properties of lipid classes, subclasses, and individual molecular 

species are the prime aim of shotgun lipidomics [33]. This concept was based on a simple technique of a 

conventional loop injection, using a syringe coupled with tandem quadrupole mass spectrometry analysis 

of precursor masses and fragment mass, refraining from chromatographic separation [33,34]. This evolved 

into static nano-ESI source [29] without syringe pump; resulting in higher ionization efficiencies. Han et al. 

had used intra-source separation, favoring the ionization (i.e., positive- and negative-ion ionization) of 

selected lipid classes through solvent additives and subsequently using precursor ion and neutral loss scans 

of polar head group, resulting in fatty acid moieties [34,35]. Sufficient quantitation was achieved by 

addition of one internal standard per lipid class [36] as ionization largely dependents on specific head 

group and not so much on the fatty acyl chains [37]. Though some scientists contradict that fatty acyl chain 

length and unsaturation influence ionization efficiency [38]. Another direct infusion methodology adopted 

by Guan et al. (2006) was coupling triple quadrupole analyzer in multiple reactions monitoring (MRM) 

mode with syringe pump [39]. This was used to quantify the major lipid components in the lipid extract but 

critically lies in the knowledge of anticipated precursor and product ions. Although this technique is simple, 

ease of management and less expensive, due to the continuous infusion cross-contamination, isobaric 

overlaps of the M + 2 isotope with the monoisotopic peak of the compound are major limitations. 

https://avantilipids.com/product/330707
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To overcome the contamination problem from the carryover of previous samples, multi-dimensional 

mass spectrometry based shotgun lipidomics (MDMS-SL) was used to study the composition of lipid 

structures [37]. Using this technique differential intra-source separation properties with various additives 

like Li
+ 

or NH4
+
 or Na

+
, resulted in unique fragments for each lipid class. Nanoelectrospray ionization was 

integrated with chip-based nano-ESI platform (Advion NanoMat) for better sensitivity and high 

reproducibility of sample infusion. Quantitative applications of various classes of glycerophospholipids, 

sphingolipids and glycerolipids were studied using this technique. However, this devise is not cost effective 

and has limited stability of the electrospray due to clogging. Moreover, samples were subjected to analysis 

sequentially, by charge separation (e.g., deprotonation) or adduct formation (e.g., protonation, alkaline 

metal adduct ion, halogen adduct ion) making the data handling difficult where specialized software 

packages are required, which will be discussed later in this article. Other disadvantage being separation of 

isobaric lipids is not possible. In an unique application, differential mobility spectrometry (DMS) separation 

was combined with ionization by electrospray ionization (ESI) to separate many isobaric and isomeric lipids, 

which is also not fully evolved [40]. Nonetheless, this was a quick and reliable technique. Detection of 

unexpected lipid species and vulnerability for overlapping isobaric compounds is the major limitation of 

this method.  

Automation was brought about by replacing syringe pump with HPLC (high-performance liquid 

chromatography) and coupling with triple quadrupole analyzer. The HPLC pump runs at micro-flow rates 

and the auto-sampler injects samples into the flow directly delivering into the ESI (electro-spray ionization) 

source sans the column [41]. Robustness and high automation made data acquisition simpler, as multiple 

precursor ions and constant neutral loss scans could be achieved by concentrated sample pulse and 

multiple injections. Multiple standard curves were achieved in quantitation of lipids (different fatty acyl 

chain lengths and degrees of unsaturation) by standard addition method and one internal standard [42]. 

This method was further applied on various subclasses of glycerophospholipids, sphingolipids and sterols 

[42]. However, low resolution direct infusion technologies suffer from general dogmas of limitations, such 

as ion suppression, ambiguous identification of isobaric/isomeric lipid species, and ion source-generated 

artifacts, hindering the applications to low‐abundance lipid species, particularly in less ionizable or isomers 

bearing identical fragmentation patterns. One such example, diacyl and acyl-alkyl glycerophospholipids, 

isobaric phosphatidylcholines with odd-carbon-numbered fatty acids from plasmalogens [43].  

To deal with this, shotgun lipidomics has evolved into a myriad of multi-dimensional strategies for 

molecular lipid characterization by coupling with high resolution mass spectrometers (HRMS) like 

quadrupole time of flight (Q-ToF) or Orbitrap or Fourier transform ion cyclotron resonance (FT-ICR) [44-46]. 

HRMS measures exact mass, time-of-flight MS (ToF-MS), Orbitrap MS and FT-ICR-MS deliver mass 

resolutions of 60,000, 240,000 and more than 1,000,000, respectively. HRMS is especially useful because of 

their rapid acquisition of MS/MS spectra, higher mass resolution and optional MS
n
 fragmentation, enabling 

fingerprint studies without prior separation and eliminating the possibilities of false-positive identification. 

Choi et al. (2014) used untargeted lipid analysis to achieve detection of nine lipids in plasma after 

rosuvastatin treatment to explicate the side effects of the drug by using QToF-MS [46]. Further, this 

facilitates data-independent acquisition (DIA) MS/MSALL, which has a wide mass range of spectral coverage 

to perform qualitative analysis. Gao et al. were pragmatic in quantification of cardiolipin in mitochondrial 

preparations [47]. Major shortcoming of MS/MSALL is that it leads to eventual loss of information on 

precursor-fragment relationships, complicating the identification of lipids. Almeida et al. (2014) utilized full 

fragmentation power of an Orbitrap Fusion Tribrid and sequentially acquired higher-energy collisional 

induced dissociation (HCD) and collisional induced dissociation (CID) and ion trap mass spectrometry 

http://dx.doi.org/10.5599/admet.913
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(ITMS3) to structurally characterize molecular glycerophospholipid species [44]. Using this novel high 

confidence filtering strategy, 311 lipid species circumventing 20 lipid classes and identification of 202 

distinct molecular glycerophospholipid species in mouse cerebellum and hippocampus was achieved. 

Flaherty et al. (2019) evaluated the levels of multiple lipid species in bone marrow-derived macrophages 

using triple quadrupole/ion trap mass spectrometer [48]. 

Liquid-chromatography-mass spectrometry 

Shotgun approach is extensively used because of its simple, rapid and ease of handling the crude lipid 

extracts. But the major pitfall of shotgun is highly convoluted spectra due to matrix interference (ion 

suppression and ion enhancement effects), functional group modification, and occurrence of the molecular 

species as isomers or isobars throws greatest challenges to separation scientists. This requires good 

analytical separation platforms i.e., LC-MS to reduce the above drawbacks. Further, coelution of lipids had 

replaced conventional HPLC systems with faster run times, highly efficient separation owing to the higher 

backpressure allowance, ultra-high-pressure liquid chromatography (UHPLC). Integrating UHPLC with ToF-

MS (UHPLC/Q-ToF-MS) is powerful tool, which enables high resolution chromatographic separation 

coupled with structure elucidation and identification of fragmentation patterns of the comprehensive 

nontargeted lipid analysis [49]. 

The most important separation techniques used in lipidomics are RPLC (reverse phased liquid 

chromatography), NPLC (normal phase liquid chromatography) and HILIC (hydrophilic interaction liquid 

chromatography). Other separation techniques are also occasionally used include non-aqueous RPLC 

(NARP) [50], silver-ion RPLC [51], chiral LC [52] and supercritical fluid chromatography (SFC) [53]. Each 

technique was used by different group of scientists to resolve the complexity of the lipidome. Firstly, non-

aqueous RPLC was use by Lin et al. (1997) the separation of molecular species of 45 synthetic 

triacylglycerols and diacylglycerols, due to the advent of new column technologies this use is limited [50]. 

Secondly, non-aqueous reversed-phase (NARP) and silver-ion high-performance liquid chromatography 

with APCI-MS and GC/FID detection were used for the characterization of fatty acids and triglycerides 

composition in complex samples of animal fats [51]. Thirdly, complex mixtures of regioisomeric and 

enantiomeric eicosanoids (hydroxy and hydroperoxy fatty acids) have been resolved using chiral lipidomics 

approach using electron capture atmospheric pressure chemical ionization/mass spectrometry [52]. Finally, 

SFC coupled with Orbitrap mass spectrometry based lipidomics platform was used to identify diverse lipid 

molecular species [53]. 

Reversed-phase LC 

RPLC is most widely used and separations are based on lipophilicity of interacting components, e.g. 

shorter carbon chains and polyunsaturated analogs being more polar elute earlier as compared to longer 

carbon chains and saturated acyl structures, respectively. Before 2004, long narrow (100-250 mm), normal 

bore (2-4.6 mm I.D.) columns with higher particle size (3.5-5 μm) were used. With the advent of UHPLC 

columns with 2 μm particle size were in use with higher flow rates and are resulting in better resolution. 

Further, to decrease the diffusional mass transfer path, operating at higher speeds and lower back 

pressures, “fused core” technology was used with 2.6-2.8 μm particles with a 0.35-0.5 μm porous shell 

fused to a solid core [54]. C18, a core-shell column, showed superior performance in case of 

chromatographic peak characteristics (plate number, number of detected lipid features) [55]. Few 

applications focused on miniaturization of lipidomics analyses, employing capillary (50-650 × 0.15-0.32 mm 

I.D.; 1.7-5 μm) and nanobore (50-170 × 0.075 mm I.D.; 3-5 μm) columns; as these offer higher sensitivity 
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and smaller sample requirements at lower flow-rates of 0.3-10 μL/min [56]. 

In lipidomics, C18 or C8-modified sorbents based RPLC columns of short length (50-150 mm; typically, 

100 mm) microbore (1.0-2.1 mm I.D) with particle size of sub-2 μm or 2.6-2.8 μm (fused-core) are majorly 

used. Examples are the Acquity UPLC BEH C18, Zorbax Eclipse XDB-C18, Acquity UPLC HSS T3, Acquity UPLC 

BEH C8, Kinetex C18 and Ascentis Express C8 columns. These columns can be used at a flowrate of 0.1-0.5 

mL/min and 40-55°C temperatures. Apart from these, C30 stationary phase are also used, though their use 

is limited in untargeted profiling of lipidome, but its potential has been demonstrated in separation of 

phospholipids [57]. The geometric and positional isomers of structurally related lipids having conjugated 

double bonds can be separated by polymeric C30 stationary phase; this is attributed to phase thickness 

[58]. A comprehensive untargeted lipidomic analysis using core–shell C30 particle column has been 

demonstrated by Narváez-Rivas and Zhang [59]. These columns showed an excellent resolution of 

triglyceride regioisomers, which only differed in fatty acid positions (sn-1, 2 or 3) on the glycerol [60]. Few 

examples of C30 columns are Acclaim™ C30, Accucore™ C30, HALO C30. Along these column chemistries, 

achieved good LC separation and detection of lipids by RPLC; a mixture of water with or without different 

combinations of mobile phase additives of ammonium formate or acetate (5-10 mM), formic or acetic acid 

(0.05-0.1%) and organic solvent(s) like acetonitrile, methanol, isopropanol (IPA) or tetrahydrofuran (THF) 

have to be used. RPLC has few limitations in separating phospholipids. 

Normal-phase LC 

Separation of phospholipids with RPLC is not very efficient, so NPLC is used even though analysis time is 

more because of long length (100-250 mm; typically, 150 mm) though having microbore (2 mm I.D) with 3-

5 μm particle size and separates lipids based on their polar functional group [56]. Few examples are Luna 3 

μm silica, LiChrospher Si 60, Betasil silica-100, and Nucleosil 100-5 OH. These columns are operated at a 

flow-rate of 0.1-0.5 mL/min but with higher flow-rate (1.0 mL/min) split mode should be used and 

maintained at temperatures of 20-35 °C. Mobile phase employed over here are highly non-polar solvents 

with low ionization capacity like heptane, propan-1-ol, methyl ter-butyl ether, chloroform, ethanol and 

methanol. Different proportions of these solvents can be used to get weak to strong mobile phases. At 

times, additives like 0.5% NH4OH; 5-15 mM ammonium acetate, ammonium formate, diethylamine, formic 

acid, or small amounts of water (0.5-3%) are added to get adequate separation of lipidome.  

Hydrophilic interaction chromatography (HILIC) 

HILIC technique offers the benefits of both normal-phase and reverse-phase in lipid separations. HILIC 

columns exhibited extraordinary separation of lipid classes based on head group composition because of 

its hydrophilic properties; while using the same RPLC mobile phases to improve ionization efficiency and 

reproducibility of fatty acid chain length, degree of saturation and double bond position [61]. 

Lipid separations under HILIC conditions are usually conducted on shorter length (100-150 mm) micro-

bore (2 mm I.D.) columns with 1.7-5 μm particle size, such as Atlantis HILIC silica, Acquity UPLC BEH HILIC, 

Nucleosil 100-5 OH and Spherisorb Si. These columns are operated at a flow-rate of 0.1-1 mL/min and 

maintained at temperatures of 25-40 °C. The analysis time is typically in the range of 15-60 min. Weak and 

strong mobile phases are used with high proportion of acetonitrile and water respectively, with methanol 

and IPA. Additives used are 0.1-0.2 % formic acid, 5-10 mM ammonium acetate, 20 mM ammonium 

formate, or 10 mM NH4OH. It has been demonstrated that HILIC can be used as an alternate system in a 

mix-mode with reverse phase liquid chromatography in the analysis of complex lipids [56,57].  

Extreme diversity and challenges are faced in the analysis of complex lipids (isobars, regioisomers, 
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ether-linkage or head group modification). To overcome this, many scientists have combined two liquid 

chromatography platforms to reduce the sample complexity, analysis times and elevated linear dynamic 

range [61]. HILIC and C30 reversed-phase chromatography (C30RP) coupled to high resolution mass 

spectrometry was used to analyse modified class of acylphosphatidylglycerol (acyl PG) in corn roots by 

HILIC, and further resolution of the isomers was enhanced using C30 RP chromatography [62]. Rampler et 

al. (2018) had used orthogonal HILIC and RP separations in parallel and the effluents of both columns were 

combined prior to high-resolution MS detection, to achieve full separation in one analytical run [63]. 

Long micropillar array columns (µPAC) 

This unique technology was developed by a lithographic etching process to create a perfectly ordered 

separation bed on a silicon chip. Freestanding nature of the pillar offers several advantages compared to 

conventional columns by elimination of heterogeneous flow paths in the separation bed, thereby low 

backpressure, high resolution and high sensitivity. Sandra et al. (2017) has demonstrated inter and intra 

class separation and resolving isomeric lipids [64]. The blood plasma lipid differentiation of lyso‑

glycerophospholids (Lyso‑  GPs) and monoglycerides (MGs) from the glycerophospholipids (GPs), 

sphingolipids (SPs) and diglycerides (DGs) was studied [64]. This is commercially available with 

PharmaFluidics (https://www.pharmafluidics.com). 

MALDI and MALDI-ToF mass spectrometry 

MALDI-ToF is an ideal complementary tool for shotgun lipidomic experiments since late 1990, because 

of its excellent sensitivity, high tolerance against salts, sample impurities, instrument robustness and 

freedom from crossover sample contamination [65]. Imaging lipids, mapping the distribution of various 

lipids in different tissues have been successfully carried out by many researchers using this technique 

which will be discussed later in this review. However, right choice of matrix plays a pivotal role in MALDI-

ToF, for example free fatty acids analysis is difficult with standard matrixes, 2,5-dihydroxy benzoic acid and 

alfa-cyano-4-hydroxy cinnamic acid, due to the signal and matrix overlap. Instead basic matrixes like 9-

amino-acridine and 2-mercaptobenzothiazole have been in use. Schiller et al. (1999) had comprehended an 

article on various conditions and matrices used in this technique [66]. So, MALDI-ToF provides a fast, easy, 

and useful tool for profiling complex lipid mixture, microbial lipids such as lipid A [67] and 

phosphatidylinositol mannosides [68]. MALDI-MS can be very easily coupled with thin-layer 

chromatography (TLC) allowing the spatially resolved screening of the entire TLC plate and the detection of 

lipids with a higher sensitivity and nondestructively in comparison with IR lasers and UV lasers [69]. Major 

setback of this method is in the quantitative analysis, due to lack of reproducibility, lack of universal matrix 

and interference of chemical background noise especially in low mass regions. A combination of high-

energy collision-induced dissociation (CID) and prompt ion detection characteristic for MALDI ToF/ToF 

MS/MS has a unique feature of remote fragmentation of lipids at the level of fatty acyl sn position and 

double bond location, making the structural analysis easy [70]. Pittenauer et al. (2011) have illustrated 

many applications using this [71].  

Ion Mobility Spectrometry 

Separation of isomeric and isobaric species in complex biological samples is a major challenge in HRMS; 

either shotgun MS or coupled with liquid chromatography MS. Ion mobility separates ions based on their 

differential mobility (size, shape, charge) through an inert gas (typically helium, argon or nitrogen) under 

the influence of an electric field [72,73]. The IM-MS is a strong synergy between these two techniques 

because of their ability to ascertain complementary information about gas-phase ions. Three-dimensional 
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separations are achieved by a range of front-end techniques, IMS and MS providing fast measurements, 

providing new insights into lipid biology [74]. The front-end analytical separations include gas 

chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, 

capillary electrophoresis, field asymmetric ion mobility spectrometry and microfluidic devices [74]. 

Whereas MS includes time-of-flight mass spectrometers (ToF-MS), quadrupole mass spectrometers (qMS), 

ion trap mass spectrometers (IT-MS), Fourier transform mass spectrometers (FTMS) and magnetic sector 

mass spectrometer. The major ionization sources are electrospray, MALDI and Laser spray ionization. 

Paglia et al. (2014, 2015) have done extensive work in this field and provide incredibly detailed protocols 

on various IMS-coupled mass spectrometry methods [75,76].  

Ion Mobility Spectroscopy technologies  

There are four commercially available IMS-MS technologies that have been utilized for lipidomics 

analysis: (i) Drift Time Ion Mobility Spectrometry (DTIMS) - here packets of ions are injected into a drift 

tube filled with an inert buffer gas. Under the influence of a weak electric field, ions are separated by 

charge, size, and shape, developed by Agilent Technologies [77] (ii) Field Asymmetric Ion Mobility 

Spectrometry/Differential Mobility Spectrometry (FAIMS/DMS) - an asymmetric waveform is applied to 

two cylindrical plates such that ions experience alternating high and low electric fields. Ions traverse the 

region between the plates moving in a perpendicular direction to the buffer gas and with the influence of a 

DC potential, termed the compensation voltage (CV). Only selected ions at a given CV will make it through 

the drift region, this approach is provided by Sciex [78] (iii) Travelling Wave Ion Mobility Spectrometry 

(TWIMS) - an alternating phase radio-frequency (RF) potential is applied to a series of stacked ring ion 

guides (SRIGs). Ions are pushed through the drift region with a traveling potential wave and become 

mobility separated as higher mobility ions are able to ‘roll-over’ the traveling waves generated and exit the 

SRIG region, developed by Waters [79] and (iv) Trapped Ion Mobility Spectrometry (TIMS), this uses an 

electric field to hold ions stationary against a moving gas, so that the drift force is compensated by the 

electric field and ion packages are separated based on their respective ion mobilities and process called 

parallel accumulation serial fragmentation or PASEF, developed by Bruker [80]. A detailed description of 

the theoretical concepts we refer the readers to reviews in this field [73,81].  

Improved lipid identification by IM-MS 

Identification of lipids has been done by accurate mass match with online databases such as LIPID MAPS 

or LipidBlast, but it provides only molecular formula. This is inconclusive as number of species belonging to 

different lipid classes has same molecular formula. The physicochemical characteristics of the compounds 

are required to allow a more accurate identification. This allows the calculation of the collision cross 

section (CCS), a four-dimensional orthogonal (retention time, m/z, ion mobility, intensity) physicochemical 

measure that can be used, together with accurate mass, fragmentation information and retention time (Rt) 

to increase the confidence of lipid identification in milliseconds. It is a known fact that, saturated lipids 

bearing acyl chains are extended in the electric field and have larger CCS values as compared to the 

unsaturated bonds with bent structure in the acyl chain. The CCS values are more influenced by the 

structural characteristics of compounds than the degree of saturation [75,82-84]. This was further 

correlated with the CCS values of FAs and PCs with both the lipid chain length and the degree of 

unsaturation. Many scientists have determined the CCS values to cover the lipidome of complex biological 

matrices [83,84]. Catherine et al. compiled 1856 lipid CCS values from plasma, liver and cancer cells with 

high quality of TIMSCCS values [85]. Zhou et al. (2017) developed a support vector regression model using 

bioinformatic approaches and set of molecular descriptors, earnestly describing the subtle structural 
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differences for lipids on SMILES structures [86]. These in silico LipidCCS values are independent data and 

are externally validated from the experimentally (TWIMS and DTIMS) determined values. Lipid CCS 

Predictor offers (i) prediction of lipid CCS values; (ii) LipidCCS database search and (iii) lipid match and 

identification [84]. The Lipid CCS database approximately contains over 15,000 lipids with over 60,000 

corresponding CCS values determined experimentally or predicted in silico. CCS evaluation an additional 

identifying factor to improve data interpretation and enhance lipid identification in untargeted workflows 

[75]. However, validation of CCS values is restricted to the limited number of commercially available lipid 

standards and can only be used as an in silico CCS prediction to improve identification efficiency in 

lipidomics.  

Applications/Isomer separation  

Ion mobility system is exceptionally well-suited for untargeted lipidomics due to high-resolution, high-

throughput and structural elucidation capabilities. Notable separation occurs in ion mobility (IM) before 

fragmentation (MS), as such product ions are mobility-aligned to corresponding precursor ions thereby 

improving interpretation of product ion spectra. Also, identical product ions derived from different 

precursor ions are proportionately assigned to their precursors, enhancing the low-abundance species 

detection [87]. One of the major confrontation in lipid analysis is isomer separation [88], with regio- [such 

as sn1 (16:0) or sn2 (18:1 (9Z)) for GPs] [89], positional (position of double bond), or geometric (cis/trans 

conformation of the double bond i.e. Z/E) isomers [90]. Typical example of glycerophospholipids is shown 

in Figure 2. Zandkarimi et al. (2019) separated, co-eluted plasmalogen phosphatidylethanolamine (PE p-) 

PE (p-36:1) and PE (p-38:2) lipids in mice brain tissue using LC-IM-MS. As both the PE had same retention 

time but were separated clearly in the ion mobility region with different drift time bin number [91]. Thus, 

structural elucidation was feasible due to IMS drift time, high collisional energy in transfer region and clear 

fragmentation pattern [76].  

Technical developments in both hardware and software, empowers researchers to implement IM-MS 

into their analytical workflows. The four major augmentations in lipidomics are firstly, IM-MS crucially 

resolves isobaric species, thereby improves separation of lipids. Secondly, IM fragmentation improves the 

spectral clarity of product ion spectra. This is crucial in both lipid identification and structural elucidation, 

which are grueling task due to the isomeric nature of many lipid species. On the other hand, analysis of 

product ion spectra derived from untargeted fragmentation acquisitions remains challenging due to the 

required powerful processing tools. Thirdly, IM improves separation of isomeric lipids. Lastly, CCS values 

obtained from IM-MS analysis effectively increase confidence in lipid identification. Finally, IM-MS can be 

used to comprehend the conformational dynamics of a lipid system and offering a unique means of 

characterizing flexibility and folding mechanisms.  

MS Lipidomics Imaging and in situ  

Lipidomics provide spatial information about the lipid composition in tissues - sort of molecular 

microscope [92]. There are several desorption ionizations tools and imaging MS techniques but ‘Lipidomics 

standard initiative’ (https://lipidomics-standards-initiative.org/) have recommended only secondary ion 

mass spectrometry (SIMS), desorption electrospray ionization (DESI) and matrix-assisted laser 

desorption/ionization (MALDI). Out of which, MALDI-imaging mass spectrometry (MALDI-IMS) is commonly 

used for lipid imaging in tissue sections.  
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Figure 2. Isomeric structures of glycerophospholipids [Polar head group indicated as ‘x’ can be glycerol, 
choline, ethanolamine, inositol, or serine and two fatty acyl groups at sn1 (16:0) and sn2 (18:1 (9Z)) position 
forming the GP tail. Three types of isomers are represented - regioisomer presenting the fatty acyl chains in 
inverted positions; a positional isomer, containing the double bond in a different position (C6 instead of C9), 

and a geometric isomer, whose double bond is in trans (E) conformation] 

 MALDI-imaging mass spectrometry (MALDI-IMS)  

MALDI-imaging mass spectrometry (MALDI-IMS) is a two-dimensional MALDI-MS technique which gives 

comprehensive profiles of molecular distributions of lipids [93] with high spatial resolution without 

extraction, purification, separation, or labeling of biological samples. This reveals the localization and 

abundance of hundreds of molecular species, especially lipids on the tissue slice in a single measurement 

thus helping in understanding the cellular profile of the biological system. Shimma et al. (2007) used this 

study the abnormal distribution of phospholipids in colon cancer liver metastasis [93].  

This technique is widely used in brain and skin lipidomics as well [94]. Goto-Inoue et al. (2011) have 

used TLC-Blot-MALDI-IMS to study detailed structural analysis of lipids from human brain samples [95]. This 

was done by a three-step process, by running TLC once, transferring to a polyvinylidene difluoride 

membrane and finally detection by MALDI-IMS. Thus it was possible to separate, visualize and identify 

phosphatidylserine (PS) (diacyl-18:0/20:4), phosphatidylcholine (PC) (diacyl-16:0/18:1), and sphingomyelin 

(SM) (d18:1/C18:0) at m/z 812.5, 753.5 and 782.5 in gray matter. It was proposed that, this system would 

be useful in fully analyzing lipid compositions including minor components. Kendall et al. applied this 

Acyl chain Head group 
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technique in skin lipidomics [95] by analyzing ex vivo human skin cutaneous lipids for assessing alterations 

in lipid profiles linked to specific skin conditions. Both MALDI and DESI skin imaging are used for analysis of 

the whole skin sections, though the analysis time was same, disadvantages being, the former had matrix 

selection and later had less spatial resolution. SIMS imaging is known for high spatial resolution but a low 

mass range, which can decipher the spatial distribution of multiple lipids at subcellular levels. A completely 

new technique was studied using Infrared matrix assisted laser desorption electrospray ionization mass 

spectrometry (IR-MALDESI), combines many benefits of MALDI and ESI. IR-MALDESI works by combining 

laser desorption of neutrals with subsequent ionization by ESI to increase lipid abundance with great 

coverage relative to commonly used parameters in negative polarity [96]. This technique can be used for 

quantitative analysis and ideally for drug distribution studies [96].  

The use of other ambient ionization tools, including rapid evaporative ionization mass spectrometry 

(REIMS) and direct analysis in real time (DART) allow rapid, real-time screenings of lipids for predictive, 

preventive, and personalized medicine. REIMS based methods require no preparative steps or time-

consuming cell extractions which are discussed later in this review. IR-MALDESI sensitivity and selectivity 

was augmented using silver cationization of olefinic lipids in human serum using calcifediol as the reference 

[97].  

Rapid Evaporative ionization mass spectrometry (REIMS)  

REIMS is truly ambient analysis technique, for fast, easy molecular profiling with zero sample 

preparation. This is highly versatile technique as it can be used for both biological solid and liquid samples, 

as this provides quick determination of differences within and between samples. This is achieved by simple 

evaporation of the sample by Joule heating or laser irradiation, the aerosol generated is introduced 

orthogonally to the inlet of the mass spectrometer such as high performance ToF-MS. This technique has 

been used in intra-surgical tissue classification [98], bacterial identification [96], rapid profiling of cell lines 

[100] the analysis of plant material, food applications [101] and bioliquid samples. This technique has a 

potential to combine with other sampling techniques in providing a holistic profiling approach.  

 Few scientists have used matrix assisted version of the technique (MA-REIMS) to enhance the signal 

intensity in identifying strong phospholipid signal in the tumor which is absent in normal breast tissue [98]. 

In another group, in situ and real-time recognition model was employed in identifying 12 fatty acids and 37 

phospholipids using “iKnife” and REIMS in discrimination of salmon and rainbow trout without sample 

preparation and adulteration of minced meats [102]. Despite so many advantages, the major setback of 

this technique is, it provides only moderate amounts of chemical information and repeatability, for further 

information we should still bank on LC-MS.  

Direct analysis in real time-mass spectrometry (DART-MS)  

DART-MS is an ambient pressure ionization technique enabling instantaneous and sensitive analyses of 

gases, liquids and solids [103]. It is based on the interactions of long lived electronic or vibronic excited-

state molecule with sample and atmospheric gases at atmospheric pressure. This technique does not 

require laborious sample preparation, as ionization takes place directly on the sample surface, deposited or 

adsorbed on to surfaces or that are being desorbed into the atmosphere. The combination of this source 

with a high-resolution mass spectrometer (commercially available with JOEL as DART-Accu TOF) offers a 

rapid qualitative and quantitative measurements. It has numerous applications in the field of food science, 

forensics, and clinical analysis (https://www.jeol.co.jp/en/applications/pdf/ms/ms_note_en002.pdf). “No-

prep” analysis of lipids in cooking oils and detection of adulterated olive oil is an application using DART-
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Accu TOF. Despite numerous advantages, DART ionization does have several inherent limitations. Firstly, 

fragmentation occurs at higher plasma temperatures, hindering spectra interpretation and accurate 

determination of the mass of intact molecules, well the decomposition fragments can also contribute to 

the structural information [104]. Secondly, this technique subjects the analyte to oxidation artifacts, owing 

to the design of the instrument i.e., distance from the capillary outlet [104]. Lastly, saturated hydrocarbons 

can undergo hydride abstraction hindering the quantitative analysis. For example, signals from aliphatic 

hydrocarbons and monounsaturated hydrocarbons are indistinguishable due to the same carbon length 

[105].  

Conclusions 

In this review, we have outlined different analytical strategies for a comprehensive identification, 

complete structural characterization and accurate quantitation of biogenic lipid molecules with a fewer 

bottle necks. It must be noted, that each technique has its own strengths and weaknesses for example high 

mass resolution results in accurate mass but with natural limitations. Therefore, a mixture of analytical 

devices (chromatography, spectrometry, mass spectrometry and hyphenated methods) helps to cope up 

with the complexity of the lipids structure. However, lipidomics provide enormous data especially non-

targeted lipids and it is critical to evaluate it using bioinformatics solutions [106]. The lipid information is 

available as web resources namely, cyberlipid center (http://www.cyberlipid.org/) and AOCS lipid library 

(http://lipidlibrary.aocs. org/). Tools that have been developed for analysis of MS-based lipidomic data 

include MS and MS/MS data by lipid consortium such as LIPID MAPS Lipidomics Gateway 

(www.lipidmaps.org/resources/tutorials/databases.html) and National Institute of Standards and 

Technology (NIST) (http://chemdata.nist.gov/); and commercialized software such as Lipidview™ 

(https://sciex.com/products/software/lipidview-software), LipidSearch™ (https://www.thermofisher.com/

hr/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-

software.html), and SimLipid (www.premierbiosoft.com) also become available. This will undoubtedly be a 

valuable tool for investigation of many diseases, physiological processes or in disease biomarker discovery. 
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