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Reconstruction Improvement of Single-Pixel 
Camera Based on Operator Matrix-Induced 
Compressive Sensing

Tao CHENG – Liuzhou1

Abstract. A better reconstruction algorithm, a better measurement matrix, 
and a better denoising algorithm can all improve the signal reconstruction qual-
ity of compressive sensing. The operator matrix of a single-pixel camera has little 
effect on the noise in the measurement data and can improve the performance of 
the measurement matrix. The operator matrix can improve both the signal recon-
struction quality and the reconstruction calculation speed for single-pixel camera 
images. Although a better reconstruction algorithm can improve the quality or 
speed of signal reconstruction, the operator matrix can improve the performance 
of the reconstruction algorithm fundamentally. The operator matrix can make 
reconstruction algorithms get better reconstruction ability. Moreover, the operator 
matrix is a universal method for improving compressive sensing.

Keywords: compressive sensing, single-pixel camera, measurement matrix, opera-
tor matrix, reconstruction algorithm.

1. Introduction

For a signal that is sparse or compressible, compressive sensing (CS) can com-
press the signal while it is being acquired, and can reconstruct it with high qu-
ality, at a much lower sampling frequency than the Nyquist sampling theorem 
requires. The mathematical model of CS is described by Eq. (1) (Cheng et al. 
2016, Donoho 2006, Duarte et al. 2008, Wang et al. 2020, Zhu et al. 2012):
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                                             ,                                          (1)

where  is the measurement data, .  denotes the measurement matrix, 
, for which .  represents the sparse signal, , K is the 

sparsity of , and K<<N.  is the objective function,  represents 
the constraint function,  denotes the  norm,  denotes the  norm, and  
denotes the  norm. Then,

                                 ,		         (2)

where .
Eq. (2) describes the restricted isometry property (RIP) of the CS. If the measu-
rement matrix satisfies the RIP and the objective function in Eq. (1) is replaced 
with , Eq. (1) can be transformed into a convex optimization problem. 
Thus, the optimal solution of the sparse signal can be obtained (Candes et al. 
2008, Chartrand 2007, Matcuk et al. 2020, Zhang et al. 2013).
Although different reconstruction algorithms have a great influence on the si-
gnal reconstruction effect, the performance of the measurement matrix is the 
decisive factor. In addition, although the RIP is perfect in theory, it is difficult 
to judge whether the measurement matrix satisfies the RIP; hence, its usabili-
ty is poor (Duarte-Carvajalino and Sapiro 2009, Elad 2007, Tsaig and Donoho 
2006).
The current main criterion for judging the performance of the measurement 
matrix is the maximum absolute value of the correlation coefficients between 
the columns ( ) of the measurement matrix (Cheng et al. 2016, Donoho 2006, 
Tsaig and Donoho 2006). When evaluating measurement matrices, the smaller 
the , the better the performance of the measurement matrix, implying that 
a better reconstruction effect can be obtained. A better measurement matrix 
can improve the reconstruction effectiveness of various reconstruction algorit-
hms (Cheng et al. 2016, Duarte-Carvajalino and Sapiro 2009, Elad 2007, Zhu 
et al. 2012).
The remainder of this paper is organized as follows. Section 2 proposes the al-
gorithm of the operator matrix and the method of using operator matrix in CS. 
Section 3 presents influence of the operator matrix on the noise of measurement 
data. Section 4 presents influence of the operator matrix on the performance of 
measurement matrix. Section 5 verifies reconstruction effectiveness of sparse 
signals after the operator matrix processing. SNR is higher. Section 6 verifies 
reconstruction time of sparse signals after the operator matrix processing. Re-
construction time is shorter. Section 7 verifies reconstruction of images after 
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the operator matrix processing based on the total variation minimization. Fi-
nally, Section 8 concludes the paper with a brief discussion of related issues.

2. Operator matrix

The core component of a single-pixel camera is a digital micro-mirror device 
(DMD). The micro-mirror on the DMD can be manipulated to indicate 0 or 1, 
with single-pixel cameras acquiring and compressing data through the DMD 
(Duarte et al. 2008, Romberg 2008, Wang et al. 2020). Although the 0-1 random 
matrix provides better randomness, the 0-1 circulant matrix is more conducive 
to programming design and operation realization. The measurement matrix 
of a single-pixel camera can be represented by a 0-1 random matrix or a 0-1 
circulant matrix.
After completing the data acquisition process of CS,  can be obtained by 
performing orthogonal normalization operations on the measurement matrix 

 of a single-pixel camera. Then, the operator matrix  is obtained by solving 
. Here, , , and . After the operator ma-

trix processes  via  (hereafter referred to as the operator matrix proce-
ssing), the column irrelevance of  for the single-pixel camera becomes better 
than , and the amplification of noise in  is very small. A new CS model can 
be obtained by replacing the constraint function in Eq. (1) with , and 
better reconstruction effect can be obtained.
Although the reconstruction capabilities of various reconstruction algorithms 
used for CS are different, for the same reconstruction algorithm, the recon-
struction effect depends on the balance between the performance of the measu-
rement matrix and the strength of the noise associated with the measurement 
data. If the operator matrix improves the performance of the measurement ma-
trix, the reconstruction effect of the reconstruction algorithm will be improved. 
Conversely, if the operator matrix increases the noise of , the reconstruction 
effect of the reconstruction algorithm is diminished, sometimes to the extent 
that the reconstruction process fails.
To study the effect of the operator matrix on noise and the measurement ma-
trix in depth, we take the 0-1 random and circulant matrices as the research 
objects. The sizes of the 0-1 random and circulant matrices are 128 × 256 and 
169 × 4096, respectively (Cheng et al. 2016, Needell and Tropp 2009, Wei and 
Milenkovic 2009). 128 × 256 0-1 random and circulant matrices are represen-
ted by rnd0-1 and rnd0-1T, and sft0-1 and sft0-1T before and after the opera-
tor matrix processing, respectively. Furthermore, 169 × 4096 0-1 random and 
circulant matrices are represented by Prnd0-1 and Prnd0-1T, and Psft0-1 and 
Psft0-1T before and after the operator matrix processing, respectively.
The initial row vector of the 0-1 circulant matrix is a sparse row vector. One 
eighth of the elements of the sparse row vector are randomly distributed ones. 
The elements of the upward row vector are shifted to the right by 2 places in 
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turn, which is the downward row vector. One eighth of the elements of the 0-1 
random matrix are randomly distributed ones.
The orthogonal matching pursuit (OMP) (Abdi et al. 2019, Sreeja and Saman-
ta 2019, Xu Ma et al. 2018) based on the  norm and basis pursuit denoising 
(BPDN) (Chai et al. 2018, Kougioumtzoglou et al. 2020, Mahata and Hyder 
2019) based on the  norm are two reconstruction algorithms commonly used 
for CS. The OMP and BPDN are used to reconstruct the sparse signal to verify 
the reconstruction effect before and after the operator matrix processing.

3. Influence of the operator matrix on the noise of measurement data

The noise-to-signal ratio (NSR) of the measured data before and after the ope-
rator matrix processing are described by Eqs. (3) and (4), respectively. Fig. 1 
presents the mean and standard deviation (s.d.) curves of the NSR after 500 
simulations for signals at different sparsity values. Gaussian noise with a va-
riance of 0.01 is added to the measurement data:

                                                  
,			             (3)

                                               
,				  

(4)

where  is noisy measurement data and  is noise-free measurement data.

Fig. 1. NSR vs. the sparsity of the measured data based on the 128 × 256 and 169 × 
4096 0-1 random and circulant matrices before and after the operator matrix 
processing.
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Although the NSR curves of rnd0-1T and sft0-1T are all greater than rnd0-1 
and sft0-1, the increase is small, as shown in Fig. 1. The maximum increase is 
only 0.0017 (i.e. 0.17%), which is almost negligible. Although the NSR curves of 
Prnd0-1T and Psft0-1T are all greater than Prnd0-1 and Psft0-1, the maximum 
increase is only 0.00074 (see Fig. 1).

4. Influence of the operator matrix on the performance of measurement 	
	 matrix

The  of the measurement matrix is the key criterion for judging the per-
formance of the measurement matrix (Akcakaya et al. 2011, Elad 2007). Ge-
nerally, for equivalent measurement matrix types, the smaller the , the 
better the performance of the measurement matrix and the better the recon-
struction effect.  represents the  after the operator matrix processing, 
and . Table 1 shows the detailed  before and after the opera-
tor matrix processing, revealing that the  of the measurement matrix after 
the operator matrix processing decreases. They decrease by 0.181, 0.16, 0.063, 
and 0.053 respectively, demonstrating that the performance of all matrices has 
been improved after the operator matrix processing.

Table 1. Maximum absolute value of column correlation coefficients of the 128 × 256 and 
169 × 4096 0-1 random and circulant matrices before and after the operator 
matrix processing.

Measurement matrix  /
rnd01 0.515/0.334 0.181
sft01 0.353/0.193 0.16

Prnd01 0.537/0.474 0.063
Psft01 0.487/0.434 0.053

5. 	Reconstruction effectiveness before and after the operator matrix 		
	 processing

Fig. 2 shows the reconstruction results of rnd0-1 and sft0-1 based on the OMP 
and BPDN algorithms before and after the operator matrix processing. The 
sparsity values of the signal are 8, 16, 24, 32, 40, 48, 56, 64, 72, and 80. The 
sparse signal follows the normal distribution. Gaussian noise with a variance 
of 0.01 was added to the measurement data and the simulation was repeated 
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500 times at each sparsity. After calculating the signal-to-noise (SNR) of the 
reconstructed results, the mean and s.d. were calculated, as shown in Fig. 2. 
The curves after the operator matrix processing (red curves) demonstrate a 
higher SNR as the sparsity increases. For very small amounts of noise growth 
(see Fig. 1), the improvement of measurement matrix performance (see Table 
1) can improve the reconstruction ability of the reconstruction algorithm (see 
Fig. 2).

Fig. 2. SNR vs. the sparsity of reconstruction results based on the 128 × 256 0-1 random 
and circulant matrices before and after the operator matrix processing by OMP 
and BPDN.

Fig. 3 shows the reconstruction results of Prnd0-1, and Psft0-1 based on the 
OMP and BPDN algorithms before and after the operator matrix processing. 
The sparsity values of the signal are 3, 12, 21, 30, 39, 48, and 57. The sparse 
signal follows the normal distribution. Gaussian noise with a variance of 0.01 
was added to the measurement data and the simulation was repeated 500 ti-
mes at each signal sparsity. After calculating the SNR of the reconstructed 
results, the mean and s.d. were calculated (see Fig. 3). The curves of Prnd0-1T 
and Psft0-1T (red data) are all on the top. For very small amounts of noise 
growth (see Fig. 1), the improvement of measurement matrix performance (see 
Table 1) can improve the reconstruction ability of the reconstruction algorithm 
(see Fig. 3).
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Fig. 3. SNR vs. the sparsity of reconstruction results based on the 169 × 4096 0-1 random 
and circulant matrices before and after the operator matrix processing by OMP 
and BPDN.

6. Reconstruction time before and after the operator matrix processing

Fig. 4 corresponds to Fig. 2. Fig. 4 represents the reconstruction time of rnd0-1 
and sft0-1 based on the OMP and BPDN algorithms before and after the ope-
rator matrix processing. As the timing unit of the CPU is 1 s, in order to avoid 
excessive timing errors, only the total time elapsed over the course of 500 repe-
ated simulations at the same sparsity value is counted. For the most part, the 
reconstruction time curves after the operator matrix processing (red curves) 
demonstrate shorter processing times. The true relative position of the curves 
of rnd0-1T and sft0-1T should be at a lower position relative to rnd0-1 and sft0-
1. Because rnd0-1 and sft0-1 are sparse matrices, operations involving 0 are 
skipped in the Matlab processing, and no real operation time occurs. After the 
operator matrix processing, the sparse matrix becomes a dense matrix, and the 
calculation time increases greatly.
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Fig. 4. 	Reconstruction time vs. the sparsity of reconstruction results based on the 128 
× 256 0-1 random and circulant matrices before and after the operator matrix 
processing by OMP and BPDN.

Fig. 5 corresponds to Fig. 3. Fig. 5 represents the reconstruction time of Prnd0-
1 and Psft0-1 based on the OMP and BPDN algorithms before and after the 
operator matrix processing. The true relative position of the curves of Prnd0-
1T and Psft0-1T should be at a lower position relative to Prnd0-1 and Psft0-1 
because Prnd0-1 and Psft0-1 are sparse matrices.
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Fig. 5.	Reconstruction time vs. the sparsity of reconstruction results based on the 169 
× 4096 0-1 random and circulant matrices before and after the operator matrix 
processing by OMP and BPDN.

7. Reconstruction before and after the operator matrix processing based 	
	 on the total variation minimization

Figs. 6 and 7 are the reconstruction results of the 0-1 random and circulant 
matrices, respectively, produced by the total variation minimization by the au-
gmented Lagrangian and alternating direction algorithms (TVAL3) (Barzilai 
and Borwein 1988, Han and Lin 2018, Soltanlou and Latifi 2019, Wang et al. 
2020, Zhang and Hager 2004) before and after the operator matrix processing. 
Gaussian noise with a variance of 0.01 was added to the measurement data. 
From left to right, the images in the first row of Figs. 6 and 7 are real images 
of Barbara, Boat, Cameraman, House, Mandril, Mondrian and Peppers. The 
image size is 64 × 64 pixels. The second row of Figs. 6 and 7 show the recon-
struction results before the operator matrix processing; the third row shows 
the reconstruction results after the operator matrix processing, with the num-
ber pairs above the images indicating the SNR (dB) and reconstruction time (s) 
of the reconstructed image.
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Fig. 6. Real images vs. the reconstruction results before and after the operator matrix 
processing based on the 0-1 random matrix. The images in the first row are real 
images without noise. The second row show the reconstruction results of noisy 
measurement data before the operator matrix processing; the third row shows 
the reconstruction results of noisy measurement data after the operator matrix 
processing, with the number pairs above the images indicating the SNR (dB) and 
reconstruction time (s) of the reconstructed image.

After the operator matrix processing for the 0-1 random matrix, the SNR incre-
ase of the 7 reconstructed images is 9.6 dB at the maximum, 3.1 dB at the mi-
nimum, and 5.87 dB on average; the reconstruction time of the 7 reconstructed 
images shows a maximum reduction of 0.99 s, a minimum reduction of 0.23 s, 
and an average reduction of 0.45 s, as shown in Fig. 6.

Fig. 7. Real images vs. the reconstruction results before and after the operator matrix 
processing based on the 0-1 circulant matrix.
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After the operator matrix processing for the 0-1 circulant matrix, the SNR of 
the 7 reconstructed images is increased by 7.57 dB at the maximum, 3.55 dB at 
the minimum, and 5.37 dB on average; the reconstruction time of the 7 recon-
structed images shows a maximum reduction of 1.11 s, a minimum reduction 
of –0.2 s, and an average reduction of 0.15 s, as shown in Fig. 7.
Fig. 6 reveals that all the reconstruction times after the operator matrix proce-
ssing are reduced. Almost all the reconstruction times after the operator ma-
trix processing are reduced in Fig. 7, with the exception of the images of the 
Cameraman, House, and Mondrian. The true reconstruction time is less after 
the operator matrix processing than before the operator matrix processing. Be-
cause the 0-1 random and circulant matrices are sparse matrices, operations 
involving 0 are skipped in the Matlab processing, and no real operation time 
occurs. After the operator matrix processing, the sparse matrix becomes a den-
se matrix, thereby increasing the calculation time significantly.

8. Conclusion

The operator matrix of a single-pixel camera has little effect on the noise in 
the measurement data and can improve the performance of the measurement 
matrix. The operator matrix can improve the signal reconstruction quality for 
images captured by the single-pixel camera and speed up the reconstruction 
calculation speed.
After the operator matrix processing for the 0-1 random matrix, the SNR of the 
7 reconstructed images (Barbara, Boat, Cameraman, House, Mandril, Mondri-
an and Peppers) is increased by 5.87 dB on average, and the reconstruction 
time of the 7 reconstructed images has an average reduction of 0.45 s. By com-
parison, after the operator matrix processing for the 0-1 circulant matrix, the 
SNR of the 7 reconstructed images is increased by 5.37 dB on average, with an 
average reconstruction time reduction for the 7 reconstructed images of 0.15 s.
A better reconstruction algorithm can improve the quality or speed of signal 
reconstruction. The operator matrix can improve the performance of the re-
construction algorithm fundamentally, thereby improving the reconstruction 
ability. The operator matrices is suitable for OMP based on the  norm, BPDN 
based on the  norm and TV minimum algorithm (TVAL3) in the single-pixel 
camera, respectively. These results demonstrate that the operator matrix is a 
universal CS improvement method.
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Poboljšanje rekonstrukcije kamere s jednim 
pikselom na temelju kompresivnog istraživanja 
induciranog matricom operatora

SAŽETAK. Bolji algoritam rekonstrukcije, bolja matrica mjerenja te bolji algori-
tam za smanjenje šuma mogu poboljšati kvalitetu rekonstrukcije signala. Matri-
ca operatora kamere s jednim pikselom ima mali učinak na šum u mjernim poda-
cima te može poboljšati performanse matrice mjerenja. Matrica operatora može 
poboljšati i kvalitetu rekonstrukcije signala kao i brzinu izračuna rekonstrukcije 
signala za snimke kamerom s jednim pikselom. Iako bolji algoritam rekonstruk-
cije može poboljšati kvalitetu ili brzinu rekonstrukcije signala, matrica operatora 
može u osnovi poboljšati performanse algoritma rekonstrukcije. Matrica opera-
tora može utjecati na to da algoritmi rekonstrukcije dobiju bolju sposobnost re-
konstrukcije. Osim toga, matrica operatora je univerzalna metoda za poboljšanje 
kompresivnog istraživanja.

Ključne riječi: kompresivno istraživanje, kamera s jednim pikselom, matrica mje-
renja, matrica operatora, algoritam rekonstrukcije.
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