
1946 Technical Gazette 27, 6(2020), 1946-1955

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20200826040830
Original scientific paper

Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical
Applications

Jungseok CHO, Jonghee M. YOUN, Doosan CHO*

Abstract: High performance, low power multiprocessor/multibank memory system requires a compiler that provides efficient data partitioning and mapping procedures. This
paper introduced two compiler techniques for the data mapping to multibank memory, since data mapping is still an open problem and needs a better solution. The multibank
memory can be consisted of volatile and non-volatile memory components to support ultra-low powered wearable devices. This hybrid memory system including volatile and
non-volatile memory components yields higher complexity to map data onto it. To efficiently solve this mapping problem, we formulate it to a simple decision problem. Based
on the problem definition, we proposed two efficient algorithms to determine the placement of data to the multibank memory. The proposed techniques consider the
characteristic of the non-volatile memory that its write operation consumes more energy than the same operation of a volatile memory even though it provides ultra-low
operation power and nearly zero leakage current. The proposed technique solves this negative effect of non-volatile memory by using efficient data placement technique
and hybrid memory architecture. In experimental section, the result shows that the proposed techniques improve energy saving up to 59.5% for the hybrid multibank memory
architecture.

Keywords: low power; memory system; optimizing compiler; system software; wearable IoT devices

1 INTRODUCTION

As various portable electronic devices are being
smaller in size with high performance, the importance of
low power design is becoming more important in battery
critical wearable devices. Design of wearable devices must
consider cost, energy, performance, and size to meet
market needs. The energy is the major component to
determine cost, performance and device size, since it
determines battery capacity. Thus, low power concern
becomes an important factor in its design. Fig. 1 shows
increasing of leakage power with a system chip fabrication
process in nanoscale. In the deepening fabrication
technology, the leakage power is being higher and higher
than before with current transistors.

Most related works focus on memory components
which consume about 40% of operation power in a system
chip. Some of those works chose a non-volatile memory
component, since it provides nearly zero leakage power.
Such works presented techniques to avoid the leakage
power problem. However, such nonvolatile memory has a
critical disadvantage. It is that nonvolatile memory
consumes more power to perform write operation than its
read operation. This study proposes two techniques to
mitigate the disadvantage of the nonvolatile memory
component. In this work, low power design of a wearable
system focuses on system software that controls function
of hardware components. Similarly, many researches are
being conducted on the control of the memory system that
consumes about 40% of system on a chip. In the memory
system researches, low power optimizations can be divided
into two groups. The first group is focused on code
restructuring like loop transformations [1-3]. The second
group is data optimization for memory hierarchy [4, 5].
The code optimizations like loop transformations (such as
loop tiling, fusion and unrolling) improve performance and
power consumption for on/off memories. The data
optimization techniques (such as data block prefetching)
optimize data fitting to the shape of memory hierarchy. The
proposed techniques in this study belong to the second
group.

In this paper, the proposed techniques optimize
software for a multibank memory system [6], which is
adopted in many wearable systems that provide low
cost/high performance. Since multibank memory uses
several small memory cells connected to each other, the
operation power is relatively smaller than that of the same
size large cell memory. The multibank memory provides
high performance by providing simultaneous accesses to
data with multiple read/write ports. This is the efficient
memory design approach that is usually adopted when low
cost/high performance is required. In order to provide
lesser operating power, multibank memories should be
designed in a hybrid form. The hybrid memory can consist
of a non-volatile memory and a traditional volatile
memory. The disadvantage of the hybrid multibank
memory is the needs to analyse data access patterns to
efficiently determine data placement on the multibank.
This data placement problem is determined by several
data/control flow analyses of an optimizing compiler. The
compiler can analyse a given program source code to
determine the access patterns of data to efficiently
determine their placement on the multiple memory banks.

Commercialized compilers for TI's TMS320x, ATL's
ARC processor, and ADRES architecture [7-9], which
adopt multibank memory architecture, are commercially
available and confidential. Such existing technologies
cannot be used for startup manufacturers. In the case of
startup's product, the development cost increases
exponentially because of technology license fee for the
new wearable devices. This study helps the startups to
choose the traditional hardware architecture and at the
same time provide convenience to develop new wearable
devices and their system software at low cost. This paper
is organized as follows. The next chapter shows the
background, and Chapter 3 explains the technical details
proposed in this work. In Chapter 4, the experimental
results are examined. In this study, we introduced a static
data placement technique and a dynamic technique, and
evaluated the two techniques proposed in the experiments.
Chapter 5 illustrates related works and finally conclusion
is described in Chapter 6.

Jungseok CHO et al.: Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical Applications

Tehnički vjesnik 27, 6(2020),1946-1955 1947

Figure 1 Leakage power with fabrication technologies in nanoscale

2 BACKGROUND OF A HYBRID MULTIBANK MEMORY

AND ITS COMPILER

As mobile systems, cloud computing and wearable
devices have becoming more prevalent; research and
development on low-power embedded systems have
rapidly increased along with battery technology. Memory
system requires more than 40% power dissipation in an
embedded system [10]. Thus, many studies have been
conducted to reduce power consumption in memory
systems [10-12]. The technique introduced in [11] is for
placing blocks of code and provides several measurements
of energy consumption. With various sizes of SRAM,
experiment results of the work show reduction of energy
by an average of 31.3% in benchmarks. The technique
introduced in [12] is the only technique that considers heap
data and applies SPM management at runtime. Its
experimental results show that the technique can reduce the
average power consumption by 39.9% for a fixed SPM of
the same size with 5% of the total data size in the
comparison between all heap variables placed in DRAM
and global/stack data placed in SPM.

In the previous studies, researchers focused on energy
saving by using data placement. Frequently used data can
be placed onto low powered memory components.
However, the use of data usage optimization is not
sufficient to save energy consumption in a system chip. In
addition to that, battery technology does not meet the
market requirement to increase its capacity and size. Thus,
it is essential to support new memory architecture to
consume lower energy. This study presents compiler
optimization techniques that support a hybrid multiple
bank memory architecture, which consists of non-volatile
and traditional volatile memories.

Nonvolatile memory bank has the advantage of high
density and nearly zero leakage power, while it has a
disadvantage for the write operation [13]. The
disadvantage of nonvolatile memory is that it consumes
more energy in execution of the write operation, and it also
takes longer latency. Thus, data placement optimization is
mandatory for the hybrid memory to make lower the
negative effect of the write operation [14]. To overcome
this negative effect, many studies proposed techniques to
add hardware controller, operating system support and/or
compiler support [15-17]. Additional hardware consumes
more energy, thus it is not a viable option in mobile
devices. To efficiently utilize a hybrid memory
architecture, an operating system or a compiler must be
able to determine data placement on volatile or nonvolatile

memory banks. It is a well known problem called data
partitioning and mapping [18]. Normally, a compiler
determines data partition and its placement [19]. In this
work, we proposed two compiler techniques that provide
data partition and placement onto traditional volatile
memory and nonvolatile memory banks.

In the hybrid memory, it is important to reduce
disadvantage of non-volatile's write operation by allocation
of the write-intensive data to traditional volatile memory
and the read-intensive data to non-volatile memory. The
proposed data placement techniques use profiling data for
the whole variables in the given target program.

The first proposed technique is a static approach to
determine data placement in the hybrid memory banks.
Static approach means that the placement of data is
determined at compile time. Therefore, there is no data
movement during program execution. The second
technique is a dynamic approach to determine data
placement. The dynamic technique allows data transfers
during program execution. It maximizes the advantage of
the hybrid memory space. As a result, dynamic technique
leads to a better result than the static one. In the
experimental section, the comparison results with the
applied proposed techniques are illustrated.

Fig. 2 shows a simple functional sequence of a
traditional compiler backend. The compiler backend works
in the following order: instruction selection, instruction
scheduling, register allocation, instruction scheduling, and
code emission. In multiprocessor systems, a global
scheduler is added to the workflow behind of instruction
scheduler. If the functions are implemented in a modular
way, they can be used as a library. Thus, the design of a
compiler framework maximizes its reusability. The
proposed technique is designed for a traditional compiler.
It can be used in the same way as a traditional compiler
optimization, and the optimization order can be adjusted to
its needs as shown in Fig. 2.

Figure 2 The proposed technique in the compiler's backend

Jungseok CHO et al.: Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical Applications

1948 Technical Gazette 27, 6(2020), 1946-1955

There are some similar studies on a hybrid memory.
Awasthi et al. introduced a technique that utilized DRAM
and NVM as a main memory [20]. It saves energy by
substituting flash memory for a main memory in specific
applications. Park et al. introduced a technique to manage
the operation power of a hybrid memory using DRAM and
PRAM [21]. Hassan et al. introduced a technique to reduce
total energy consumption using Scratch Pad Memory with
DRAM [14]. One of the finest technologies for traditional
multibank memory is presented in the work of Cho [22] on
the asymmetric memory banks of TI architecture. The
work is limited to a memory platform consisting of SRAM
cells in an asymmetric memory bank, so it is difficult to
apply to a hybrid form's multibank memory. Although the
existing studies solved different problems in their own
works, none of the papers addressed the problem of data
placement in the hybrid multibank memory. To the best of
our knowledge, this is the first work to solve the data
placement problem in the hybrid multibank memory
architecture.

Figure 3 Multiprocessor and multibank memory architecture

3 THE PROPOSED TECHNIQUES

Fig. 3 shows the target memory architecture. It is the
same as the traditional memory architecture, except that the
memory space is divided into volatile memory banks (VM)
and nonvolatile memory banks (NVM). As shown in the
figure, read intensive variables should be placed to NVM
to take all advantage of NVM. It maximizes the energy
efficiency from the hybrid multibank memory system. The
data partitioning problem to place data for the hybrid
multibank memory can be determined by the equation
shown in Fig. 4.

The function in Fig. 4 represents making decision to
place data for selection VM and NVM in the hybrid
memory. The metrics for selection VM and NVM in hybrid
memory are defined to select the one that consumes lower
energy based on the number of read and write operations
profiled for each data block (variable). To take advantage
of the hybrid memory, the amount of energy consumed
when allocating to NVM and VM for each variable should
be calculated. The amount of read energy of data_block (i)
is calculated by Energy_READ function and the amount of
write energy calculated by Energy_WRITE function. They
calculate the total amount of NVM_Energy, and compare
it with VM_Energy, and then make the final choice for
variable's placement with the lower energy consumption.

The hybrid memory placement decision is determined
by the hybrid decision function in Fig. 4. Specifically, the
placement of the data variables must be determined taking
into account the amount of total energy consumption,
overhead and capacity of VM/NVM. The function
NVM_Energy returns the amount of energy consumption
if data_block (i) is placed onto a NVM bank. The function

VM_Energy returns the amount of energy consumption if
data_block (i) is placed onto a VM bank. The function
OVERHEAD represents the amount of energy
consumption of transfer data_block (i) from/to NVM/VM.
The CHOOSE_MINIMUM function returns a placement
result of data_block(i) that is calculated from the
calculation of NVM_Energy and VM_Energy.

Figure 4 The hybrid placement decision

After determining the hybrid choice of NVM and VM,

the whole variables are partitioned to NVM placement or
VM placement. And then, the proposed techniques
optimize data locality within the NVM/VM placement
decision. The data placement result of our technique should
provide higher data locality to improve system
performance. To that end, we define a
WORKING_WINDOW that provides a time slot to
improve data locality. The WORKING_WINDOW
supports data locality in temporal perspective. Otherwise,
our technique obtains spatial locality to place such data
used in WORKING_WINDOW to the same memory bank.
The WORKING_WINDOW size can be determined by a
cache page size, since it is designed with consideration of
temporal and spatial data locality. On the other hand, our
target system's programming model is based on a multitask
model. It represents there is no shared variables, thus there
is no concern about variable's consistency in this study.

To obtain variables information used in
WORKING_WINDOW, it is needed to analyse a live
range of variables at a certain point in program execution.
Live range represents the time between definition of a
variable and the end of its use. The variables should place
the same memory bank when they have intersection of their
live range. It provides better data locality in spatial and
temporal. Algorithm 1 shows the live range analysis. The
function Set_Live_Range returns live range of data_block
(i). Begin_Live_Range represents the live range's
beginning point of data_block (i). End_Live_Range
represents the live range's end point of data_block (i).

Figure 5 The live variable analysis

This code is an example of the live range analysis. Live

range of variable B is from line 2 to line 3. The definition
of variable B is at line 2, and the last use is at line 3. The
live range of variable A is from line 1 to line 4. Variable A
and B should be placed on the same memory bank to make

Jungseok CHO et al.: Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical Applications

Tehnički vjesnik 27, 6(2020),1946-1955 1949

higher data locality. Therefore, the size of
WORKING_WINDOW is two in this example.

Figure 6 The multibank decision function

In Fig. 6, function GET_DATA_BLOCK brings data

blocks having spatial and temporal locality to the same
memory bank. The other data should be placed to different
memory bank when there is no data locality.

The decision functions of hybrid memory selection
and multibank selection are key components to the
proposed static data placement algorithm in this work. The
algorithm shows how to determine data placement in a
static way to consider energy saving and memory bank
space. It can be seen that the algorithm first determines the
hybrid decision and then performs the multibank decision
in the hybrid multibank memory consisting of VM/NVM.

Algorithm 2 shows the static data placement algorithm
for a hybrid memory with VM and NVM multibank
memory. It takes input data as the whole variables of a
given target program, which is provided by profiler. The
output is the result of data placement for the hybrid
multibank memory.

NVM's read instruction has less energy consumption
per access than the same size of VM. To improve energy
consumption of a system, read intensive data should be
placed to NVM as long as possible. Algorithm 2
determines the placement for maximizing energy saving
using NVM memory bank. On the other hand, write
intensive data should be placed on VM, since NVM's write
instruction consumes more energy than the same size of
VM. In the algorithm, each variable is defined as a data
block.

Figure 7 The static data placement algorithm

In Fig. 7, algorithm 2 makes the decisions that
determine the final placement for data block i. In order to
maximize energy saving using the advantage of NVM, read
intensive data have higher priority placing on it. To that
end, the placement procedure checks availability of NVM
space. Write intensive data and other remaining data
should be placed onto VM memory bank. Algorithm 2 is a
static data placement technique, thus, the result of data
placement is not changed during program execution. As
shown in Fig. 7, the execution order of the overall
workflow is as follows:
1. In HYBRID_DECISION (DATA_BLOCK) function,
the read intensive data should be placed to NVM memory
bank to maximize energy saving.
2. MULTIBANK_DECISION (DATA_BLOCK)
function improves spatial and temporal data locality to
exploit live range information. It determines whether the
data blocks are placed to different memory bank or to the
same bank. When a certain memory bank is full, then they
should be placed to the other available bank in the same
hybrid memory decision.
3. STATIC_DATA_PLACEMENT (DATA_BLOCK)
function determines the physical memory address of the
data block placed to a certain memory bank.

Figure 8 The overall procedure of the static data placement technique for the

bubble sort code

Fig. 8 shows an example of the static data placement
technique. The static technique does not change the
determined data placement from the program's beginning
of its execution to its completion, because the data
placement is determined at compile time. In the dynamic
technique, since placements of data blocks change
dynamically during program execution, movement
overhead is added due to the addition of move instructions
according to the data movement. Because of the limited
memory space, dynamic techniques usually provide a
better result for the hybrid memory system despite the
additional transfer overhead. The experiment describes this
in Section 4.

The example in Fig. 8 shows overall procedures of the
static placement technique applied to a bubble sort code. In
the case of sort size 8, the number of read/write for data
blocks (variables) was obtained by profiling and the
profiled information is shown in the upper right of Fig. 8.
A hybrid decision is first made according to the procedure
of the static technique shown in Fig. 7. NVM energy and
VM energy are calculated with the profiled information
and energy consumption per a memory access. In this
example, VM's read/write energy consumptions are
2396.16 pJ/798.72 pJ, NVM's read/write energy

Jungseok CHO et al.: Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical Applications

1950 Technical Gazette 27, 6(2020), 1946-1955

consumptions are 798 pJ/952 pJ. Therefore, in the case of
array variable, it executes 112 reads and 56 writes. By the
hybrid decision function, NVM_Energy and VM_Energy
are calculated to 142,688 pJ and 313,098 pJ respectively.
NVM provides lower energy consumption for array, thus,
it is placed into NVM. With the same procedures, i is
placed on NVM, and temp is placed on VM because it has
the same number of reads/writes. step and size are placed
to VM because there is no available space in NVM with
size 9, even though the number of reads is larger than
writes.

Second, in the multibank decision, the live range of
each data block should be analysed. As shown in the code
at the top left of Fig. 8, it can be easily confirmed that the
definition and use of all data blocks overlap.

Therefore, all data blocks should be placed to the same
memory bank in their assigned memory. With a data block
holding the largest energy saving, i is placed to the first
bank of NVM. Next, array tries to be placed to the same
memory bank of NVM. Since NVM consists of two
memory banks of size 5 and 4, three elements of array are
placed to the same bank of i, and the rest of array is placed
to the other available memory bank. Temp, step and size
are all placed to the same memory bank of VM.

In Fig. 9, algorithm 3 shows the proposed dynamic
data placement algorithm. It has the same decision
functions of HYBRID_DECISION,
MULTIBANK_DECISION of Algorithm 2, and it has a
unique function of DYNAMIC_DATA_PLACEMENT.
Algorithm 3 uses timely ordered data blocks generated by
profiling. HYBRID_DECISION function generates a
result of data block placement for NVM or VM with all
variables. For the data block placed to NVM/VM,
MULTIBANK_DECISION function determines whether
they should be allocated to the same memory bank or to a
different bank. The final step is to execute
DYNAMIC_DATA_PLACEMENT function. It
determines physical memory addresses for all data blocks.
Graph colouring algorithm leads to this physical memory
placement.

Figure 9 The dynamic data placement algorithm

The overall execution procedure of Algorithm 3 is as
follows:
1. In HYBRID_DECISION (DATA_BLOCK) function,
the read intensive data are placed to the limited NVM
memory space with maximizing the energy saving.
2. MULTIBANK_DECISION (DATA_BLOCK)
function improves temporal and spatial data locality. With
live range analysis, data blocks should be placed onto the
same memory bank or different memory bank. When a
particular bank is full, data blocks are placed to the
available memory bank in VM or NVM.
3. DYNAMIC_DTA_PLACEMENT (DATA_BLOCK)
function determines the physical placement of the variables
placed to each memory bank. At this time, each memory
bank is divided into fixed size of virtual registers, and the
physical placements of the variables are determined by a
graph colouring algorithm. By using the graph colouring
algorithm, a set of placements of data blocks can be
changed during the program execution. As a result, the
hybrid multibank memory can be used more efficiently.

As shown in Fig. 9, the proposed dynamic technique is
designed based on a graph colouring technique. The goal
of graph colouring technique is to efficiently use limited
memory space. Traditionally it is used for register
allocation algorithm [23]. It is designed to allocate a small
number of registers to as many variables as possible. In the
dynamic data placement function, the number of colours is
the number of registers of the register allocation technique,
and the number of variables is the target for the coloring
problem of the register allocation technique.

For this colour allocation procedure, the live range of
the variables should be calculated. Live variables are
calculated with their used range in the program execution
so that variables should not be assigned to the same colour.
The live range of a variable can be represented by a node
of a graph, which is called interference graph. The node
can be colorized based on the interference graph that
indicates live range overlap information between nodes
[23]. Specifically, nodes in the graph represent variables,
and variables with live range overlapping have edges
between such nodes. The graph colouring procedure
cannot allocate the same colour to the nodes having edges.
At the end of this colouring procedure, all nodes having
edges have a different colour if there are available colours.
It means all variables have their own memory space
(colour) on the hybrid multibank memory.

In order to use the graph colouring technique in the
hybrid multibank memory, a certain partitioned space
(colour) of the memory space to be allocated must be
defined. This is defined by profiling the given program. For
example, if the profiling result shows that the given
program uses 80% of 32 bytes data blocks and 20% of 16
bytes data blocks, the memory space should be divided into
80% of 32 bytes partitions and 20% of 16 bytes data block
partitions for the colouring procedure.

If there is a 1024 bytes of memory space, the 80% of
space (820 bytes) is divided into twenty five (colours) 32-
byte spaces to allocate (colouring) the variables. The
remaining 204 bytes are divided into thirteen (colours) 16
bytes to allocate (colouring), and apply the graph colouring
by constructing the interference graph for the variables
used in the given program. As a result, the limited memory

Jungseok CHO et al.: Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical Applications

Tehnički vjesnik 27, 6(2020),1946-1955 1951

space can be used more efficiently with the graph
colouring.

By using the control flow analysis and data flow
analysis of a compiler analyzer, the live range of all data
variables can be obtained with the technique [24]. Since the
analysis technique of the compiler is not the purpose of this
study, it is described how to use the interference graph and
graph colouring [25] in the proposed dynamic technique,
except the data/control flow analysis [26].

The basic idea of live range analysis is to summarize
when the variable was defined and when it was finally
used. The operation of live range analysis is quite straight
forward. To achieve optimal data placement or global
optimization, it is necessary to do a live range analysis on
the whole procedures, not a single basic block. To that end,
data flow information is needed that collects by a compiler
process called data flow analysis. The live range
information for the whole data variables can be obtained
by the technique [24]. Algorithm 3 calculates live variables

at each basic block in the given program. Based on this live
range information, an interference graph can be
constructed to colorize memory space which partitioned
profiled memory sizes.

Fig. 10 shows the live ranges of the four variables A,
B, C, D and their interference graph. Variables A and D
have no edge in the interference graph because their live
ranges do not overlap. The live range of variable A
overlaps with B and C, thus, they have edges in the
interference graph. The live range of variable B overlaps
with variables A, C, D. The live range of variable C
overlaps with variables A, B, D. Thus, they have edges to
all other nodes. The live range of variable D overlaps with
variables B and C. Variables A and D have no overlap and
no edge. They can have the same colour by the graph
colouring approach. Thus, it needs three colours for the
four variables. This represents that variables A and D can
be placed to the same memory space in a different time. It
provides efficient use of the hybrid memory space.

Figure 11 The overall procedure of the dynamic data placement technique for the bubble sort code example

Figure 10 An interference graph generated by the live range information

The graph colouring algorithm allows all nodes in the
interference graph to be assigned a minimum number of
colours. NVM address space is partitioned into small
partitioned sizes which are determined by profiling. The
number of partitioned space is the total number of colours

in the proposed algorithm 3. By doing so, read intensive
data blocks are placed to NVM space.

The example of Fig. 11 shows an overall procedure of
the dynamic data placement technique applied to the
bubble sort code. In the case of sort size 8, the number of
read/write for data blocks (variables) was obtained by
profiling and the profiled information is shown in the upper
right of Fig. 11. First, the hybrid decision should be
determined by the technique in Algorithm 3. NVM energy
and VM energy are calculated with the profiled
information and energy consumption per a memory access.
In this example, VM's read/write energy consumptions are
2396.16 pJ/798.72 pJ, NVM's read/write energy
consumptions are 798 pJ/952 pJ. Therefore, in the case of
array variable, it executes 112 reads and 56 writes. By the
hybrid decision function, NVM_Energy and VM_Energy
are calculated to 142,688 pJ and 313,098 pJ respectively.
NVM provides lower energy consumption for array, thus,
it is placed into NVM. With the same procedure, i is
assigned to NVM, and temp is assigned to VM because it
has the same number of reads/writes. step and size are

Jungseok CHO et al.: Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical Applications

1952 Technical Gazette 27, 6(2020), 1946-1955

assigned to VM because there is no available space in
NVM with size 9, even though the number of reads is larger
than writes.

Second, in the multibank decision, the live range of
each data block should be analysed. As shown in the code
at the top left of Fig. 11, it can be easily confirmed that the
definition and use of all data blocks overlap.

Therefore, all data blocks should be placed to the same
memory bank in their assigned memory. With a data block
holding the largest energy saving, i is placed to the first
bank of NVM. Next, array tries to be placed to the same
memory bank of NVM. Since NVM consists of two
memory banks of size 5 and 4, thus, three elements of array
are placed to the same bank of i, and the rest of array are
placed to other available memory bank. Temp, step and size
are all placed to the same memory bank of VM. In this
example, if there are two data blocks that do not overlap

their live ranges, then one memory space can be shared
with them. To confirm this, we construct an interference
graph. Fig. 11 shows the interference graph at the bottom
left. Each data block becomes a node of the graph, and the
edges represent overlapping of the live range between data
blocks. Since all variables overlap in the example, we can
see that all variables require independent memory space.
Colouring is performed to confirm this. It can be seen that
every node needs a different colour. The algorithm ends by
allocating each colorized node to its own memory space. In
this example, the result shows the same as the static
technique, because there is no non-overlapped node in the
interference graph. If there is no edge between array and i,
they can share the same space on NVM. In this case, step
and size can be assigned to NVM, it can lead to additional
energy saving.

Table 1 Benchmarks from DSPstone

Benchmarks
Complex
multiply

Complex
update

convolution
Dot

product
fir lms Matrix1 Matrix2

target variables 6 variables 4 variables 4 variables 4 variables 4 variables 8 variables 6 variables 6 variables

profiles
8 reads
2 writes

10 reads
11 writes

98 reads
98 writes

8 reads
8 writes

105 reads
105 writes

164 reads
146 writes

4410 reads
4910 writes

5010 reads
5510 writes

4 EXPERIMENTAL RESULT

This section illustrates evaluation results of the
proposed two techniques in the hybrid multibank memory.
In this evaluation, eight multimedia benchmarks are used
from DSPstone [27]. Tab. 1 presents the benchmark codes
and their profiled information. Cacti 7.0 [28] and NVSim
[29] are used for the energy parameter of the hybrid
multibank memory. Cacti and NVSim use a variety of
memory configurations as an input. It uses the number of
banks, the number of ports, the block size, fabrication
technology depth, and the memory capacity. They provide
its area, delay, and energy consumption for the given
memory configuration.

Cacti provides the information for VM only in the
hybrid multibank memory, thus, NVSim is used to
generate the same information for NVM. To obtain product
level's evaluation, STT-MRAM (Spin-Transfer Torque
Magnetic Random Access Memory) and SRAM (Static
Random Access Memory) are chosen for NVM and VM,
since they are the representative architecture design in
commercialized products. Tab. 2 shows characteristics of
STT-MRAM and SRAM that are used for these
evaluations. With a capacity of 32 kB, STT-MRAM
operates read/write operations at 8.506 pJ/35.285 pJ, and
SRAM operates read/write operations at 31.351 pJ/30.304
pJ. STT-MRAM provides the read operation less than 30%
energy consumption of SRAM, but it provides 20% higher
write operation than SRAM.

As summarized in Tab. 2, the experiments were
conducted on a 32 kB STTRAM/SRAM hybrid multibank

memory manufactured by a 22 nm fabrication process. The
ratio of the STTRAM/SRAM hybrid bank is 3:1, which is
the same as that of commercial products. Fig. 12 and Fig.
13 show the energy consumption results from applied static
technique for 8 benchmarks in DSPStone. The eight
benchmarks were classified into three groups, large,
middle, and small according to the frequency of memory
accesses. For each benchmark group, the memory size was
changed to 128 kB, 64 kB, 32 kB, and 16 kB.

The baseline for evaluation of the proposed techniques
is a multibank memory composed of DRAM. This is
because commercial memory architectures consist of a
small hybrid memory and a large amount of DRAM.

In the case of small groups benchmarks with 16 kB
memory size, the experimental results show that
complex_multiply improved by 69.9%, complex_update
improved by 75.1%, and dot_product improved by 72%
compared to the baseline. It can be seen that the static
technique works well even in small memory size. In
addition, when the memory size is increased to 32 kB, the
energy consumption can be improved up to 85.7%, 75.1%,
and 74.6% compared to the baseline respectively.
Complex_update does not be improved due to the
increment of memory size, because all data are stored to
the 16 kB memory. Complex_multiply and dot_product
can take additional improvement up to 52.6% and 9.2%
respectively when the memory size is increased from 16
kB to 32 kB. As shown in the figure, increment the memory
size from 64 kB to 128 kB did not get any additional energy
saving. This is because all the data used in the benchmarks
can be stored in 32 kB of memory.

Table 2 Characteristics for VM and NVM

 Capacity Read/Write energy consumption Fabrication technology depth Leakage power
STT-MRAM 32 kB 8.506/35.285 pJ 22 nm 1.284 mW
SRAM 32 kB 31.351/30.304 pJ 22 nm 41.712 mW

With the middle group, the results of energy
consumption show 32.6% improvement in convolution,
20.2% improvement in fir, and 39.8% improvement in lms

compared to the baseline in 16 KB memory size. It can be
seen that increasing the memory size from 16 KB to 32 KB
greatly increases the improvement of energy consumption

Jungseok CHO et al.: Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical Applications

Tehnički vjesnik 27, 6(2020),1946-1955 1953

results up to 72.3%, 58.1%, and 73.2% in convolution, fir,
and lms respectively. Since the applications in the middle
group use more data than the small group, it was confirmed
that the amount of gain due to the increase in memory
capacity was relatively large compared to the small group.
Increasing the memory size from 32 KB to 64 KB increases
the energy consumption improvement by 21.3%, 39.4%,
and 21.5% in convolution, fir, and lms respectively. There
is no gain when the memory capacity increases from 64 kB
to 128 kB. As confirmed in the small group, all data of the
benchmarks in middle group can be stored in 64 kB, thus,
there is no additional energy saving with 128 kB memory
space. It is noticed that large memory space does not lead
to gain any saving. That is why system architecture should
be optimized for a certain application. This is always true
for small, middle and large size benchmarks.

Figure 12 Energy consumption results with the static technique from small and

middle benchmarks

In Fig. 13, the large group includes applications that
deal with a large amount of matrix operations, and they
handle ten times more data than the middle group. In the
case of 16 kB memory, energy consumptions are improved
by 53.1% in matrix1 and 39.7% in matrix2 compared to the
baseline. With 32 kB memory, the energy consumption can
be improved by 68.7% and 55% respectively. In the case
of matrix2, when the memory capacity was increased to 64
KB, an additional improvement of 38.2% was obtained
compared to 32 kB memory, and when the memory
capacity was increased to 128 kB, an additional energy
saving can be obtained by 11.2%. As a result, it was
confirmed that the proposed static technique can obtain the

best results in the benchmarks using a large amount of data
and an optimal size of memory capacity. Specifically, 64
kB memory space is good enough to save energy for the
benchmarks.

Figure 13 Energy consumption results with the static technique from large

benchmarks

Figure 14 Energy consumption results with the dynamic technique

Fig. 14 shows the energy consumption result for the

applied proposed dynamic technique compared to the static
technique. By use of the graph colouring technique, the
dynamic technique can take additional energy saving
compared to the static technique from the benchmarks lms,
convolution, and complex_multiply. With 16 kB memory
space, complex_multiply improved the energy
consumption by 69.9% with the static technique and 85.7%
with the dynamic technique. As shown in the figure, the
dynamic technique can take about 16% more energy saving
than the static technique. In the same configuration,
convolution was able to improve about 40% more energy
saving compared to the static technique, and lms was able
to improve about 34% more energy saving than the static
technique. The dynamic technique can improve energy
consumption averagely 30% more than the static
technique.

This result presents the difference of algorithm 2 (the
static technique) and algorithm 3 (the dynamic technique).
The reason is that the dynamic technique can place
multiple pieces of data in the same place over different
time. Thus, it is possible to place more reads to NVM and
more writes to DRAM. As a result, this leads to the more
energy saving results.

Jungseok CHO et al.: Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical Applications

1954 Technical Gazette 27, 6(2020), 1946-1955

In DSPStone benchmark, there are few variables that
have full edges in the interfere graph for the variables used
in each application. In an interference graph, if two nodes
do not have any edges (their live ranges do not overlap),
they can be placed with the same colour (memory place).
With an interference graph having low edge degree, the
dynamic technique can improve energy consumption more
than 30% compared to the static technique. With an
interference graph having high edge degree, the static
technique is sufficient, since the dynamic technique does
not take any chance to place variables to the same memory
place at different time.

These results show that the proposed techniques can be
used for battery critical applications. In particular, QOS
prediction for mobile edge service [30, 31], human pose
estimation [32, 33], smartphone application [34], machine
learning [35], realtime performance evaluation [36], OS
virtualization [37], public safety/security technique [38,
39]. The proposed techniques are essential components
because low power is critical in those application areas.

5 CONCLUSION

Many studies have proposed techniques to achieve
high performance and energy saving results at low cost. As
prior mentioned, there is always a trade-off in these
problems that cannot meet all requirements. Low cost
conflicts with high performance and high performance
conflicts with low power, ending with either choice. In this
paper, we assume an environment that is operating at
maximum performance with low-cost hardware. This work
proposes two compiler optimization techniques that
allocate data to efficiently use the hybrid multibank
memory composed of non volatile memory and volatile
memory.

The proposed techniques consist of static and dynamic
techniques. In the hybrid multibank memory, the

proposed techniques can achieve energy savings of 50.3%
(with static technique) and 59.5% (with dynamic
technique) compared to monolithic DRAM only memory
bank. In wearable IoT devices, there are tons of data
processing, thus, the proposed techniques can efficiently
support to improve energy consumption and leakage
current. As a future work, it can be evaluated in
performance perspective.

Acknowledgements

This research was supported by the 2018 Yeungnam
University Research Grant (218A061016, 218A380138)
and the National Research Foundation of Korea(NRF)
grant funded by the Korea government (MSIT)
(No.2018R1D1A1B07050647).

6 REFERENCES

[1] Wolf, M. E. & Lam, M. (1991). A data locality optimizing
algorithm. In Proceedings of the SIGPLAN Conference on
Program Language Design and Implementation, 26(6), 30-
44. https://doi.org/10.1145/113445.113449

[2] Li, W. & Pingali, K. (1992). Access normalization: Loop
restructuring for NUMA compilers. In Proceedings of the
Fifth International Conference on Architectural Support for

ProgrammingLanguages and Operating Systems, 11(4),
353-375. https://doi.org/10.1145/143365.143541

[3] Kennedy, K. & McKinley, K. S. (1993). Maximizing loop
parallelism and improving data locality via loop fusion and
distribution. InLanguages and Compilers for Parallel
Computing, 301-320. https://doi.org/10.1007/3-540-57659-2_18

[4] Ferrante, J., Sarkar, V., & Thrash, W. (1991). On estimating
and enhancing cache effectiveness. In Languages and
Compilers for Parallel Computing, Fourth International
Workshop, 328-343. https://doi.org/10.1007/BFb0038674

[5] Gannon, D., Jalby, W., & Gallivan, K. (1988). Strategies for
cache and local memory management by global program
transformation. Journal of Parallel and Distributed
Computing, 5(5), 587-616.
https://doi.org/10.1016/0743-7315(88)90014-7

[6] Yin, S., Xie, Z., Meng, C., Liu, L. & Wei, S. (2016).
Multibank memory optimization for parallel data access in
multiple data arrays.IEEE/ACM International Conference on
Computer-Aided Design, 1-8.
https://doi.org/10.1145/2966986.2967056

[7] See https://speech.di.uoa.gr/dsp/manuals/E1.pdf TMS320
DSP product overview, Texas Instruments

[8] See https://www.synopsys.com/designware-ip/processor-
solutions.html

[9] MeiSerge, B., Diederik, V., Hugo, V., & Lauwereins, M.
(2003). ADRES: An Architecture with Tightly Coupled
VLIW Processor and Coarse-Grained Reconfigurable
Matrix. Field Programmable Logic and Application, 61-70.
https://doi.org/10.1007/978-3-540-45234-8_7

[10] Banakar, R., Steinke, S., Lee, B., Balakrishnan, M., &
Marwedel, P. (2002). Scratchpad memory: a design
alternative for cache on-chip memory in embedded systems.
Proceedings of the Tenth International Symposium on
Hardware/Software Codesign, 73-78.
https://doi.org/10.1145/774789.774805

[11] Udayakumaran, S., Dominguez, A., & Barua, R. (2006).
Dynamic allocation for scratchpad memory using compile-
time decisions. Embedded Computing System, 5(2), 472-511.
https://doi.org/10.1145/1151074.1151085

[12] Dominguez, A., Udayakumaran, S., & Barua, R. (2005).
Heap data allocation to scratch-pad memory in embedded
systems. ACM Transactions on Design Automation of
Electronic Systems, 5(2), 115-192.
https://doi.org/10.1145/1151074.1151085

[13] Xue, C. J., Zhang, Y., Chen, Y., Sun, G., J. Yang, J., & Li,
H. (2011). Emerging non-volatile memories: opportunities
and challenges. In Proceedings of the seventh
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, 325-334.
https://doi.org/10.1145/2039370.2039420

[14] Hassan, A., Vandierendonck, H., & Nikolopoulos, D. S.
(2015). Software-managed energy-efficient hybrid
DRAM/NVM main memory. In Proceedings of the 12th
ACM International Conference on Computing Frontiers, 23-
31. https://doi.org/10.1145/2742854.2742886

[15] Park, C., Lim, J., Kwon, K., Lee, J., & Min, S. L. (2004).
Compiler-assisted Demand Paging for Embedded Systems
with Flash Memory. In Proceedings of the 4th ACM
international conference on embedded software, 114-124.
https://doi.org/10.1145/1017753.1017775

[16] Hu, J., Xue, C., Tseng, W., Zhuge, Q., & Sha, E. H. (2010).
Minimizing Write Activities to Non-volatile Memory via
Scheduling and Recomputation. Procedings. 8th IEEE
Symposium on Application Specific Processors, 7-12.

[17] Hu, J., Xue, C., Tseng, W., He, Y., Qiu, M., & Sha, E. M.
(2010). Reducing Write Activities on Non-volatile
Memories in Embedded CMPs via Data Migration and
Recomputation. Proceedings 47th IEEE/ACM Design
Automation Conference, 350-355.
https://doi.org/10.1145/1837274.1837363

Jungseok CHO et al.: Improvement Energy Efficiency for a Hybrid Multibank Memory in Energy Critical Applications

Tehnički vjesnik 27, 6(2020),1946-1955 1955

[18] Mi, W., Feng, X., Xue, J., & Jia, Y. (2010). Software-
hardware cooperative DRAM bank partitioning for chip
multiprocessors. In Proceedings of IFIP international
conference on Network and parallel computing, 329-343.
https://doi.org/10.1007/978-3-642-15672-4_28

[19] Chen, G., Wu, B., Li, D., & Shen, X. (2014). PORPLE: An
Extensible Optimizer for Portable Data Placement on GPU.
47th Annual IEEE/ACM International Symposium on
Microarchitecture, 88-100.
https://doi.org/10.1109/MICRO.2014.20

[20] Ved, S. & Awasthi, M. (2018). Exploring non-volatile main
memory architectures for handheld devices. Design,
Automation & Test in Europe Conference & Exhibition,
1528-1531. https://doi.org/10.23919/DATE.2018.8342258

[21] Park, H., Yoo, S., & Lee, S. (2011). Power management of
hybrid DRAM/PRAM-based main memory. Design
Automation Conference, 59-64.
https://doi.org/10.1145/2024724.2024738

[22] Cho, J. & Paek, Y. (2004). Fast Memory Bank Assignment
for Fixed-Point Digital Signal Processors. ACM Transaction
Design Automation Electrical Systems, 9(1), 52-74.
https://doi.org/10.1145/966137.966140

[23] Chaitin, G. J. (1982). Register Allocation & Spilling via
Graph Coloring, SIGPLAN Notices, 17(6), 98-101.
https://doi.org/10.1145/872726.806984

[24] Braun, M. & Hack, S. (2009). Register Spilling and Live-
Range Splitting for SSA-Form Programs. In the proceedings
of Compiler Construction, 174-189.
https://doi.org/10.1007/978-3-642-00722-4_13

[25] Briggs, P., Cooper, K. D., & Torczon, L. (1994).
Improvements to Graph Coloring Register Allocation. ACM
Transactions on Programming Languages and Systems,
16(3), 428-455. https://doi.org/10.1145/177492.177575

[26] Schaumont, P. R. (2010). Analysis of Control Flow and Data
Flow. A Practical Introduction to Hardware/Software
Codesign. Springer.
https://doi.org/10.1007/978-1-4419-6000-9_3

[27] Zivojnovic, V., Mart'nez, J., Schlager, C., & Meyr, H. (1994).
Dspstone: a dsp-oriented benchmarking methodology.
Proceedings of Signal Processing Applications &
Technology.

[28] Balasubramonian, R., Kahng, A., Muralimanohar, N.,
Shafiee, A., & Srinivas, V. (2017). CACTI 7: New Tools for
Interconnect Exploration in Innovative Off-Chip Memories.
ACM Transactions on Architecture and Code Optimization.
14(2), 14-39. https://doi.org/10.1145/3085572

[29] Dong, X., C., Xu, X. Y., & Jouppi, N. P. (2012). NVSim: A
Circuit-Level Performance, Energy, and Area Model for
Emerging Nonvolatile Memory. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
31(7), 994-1007. https://doi.org/10.1109/TCAD.2012.2185930

[30] Yin, Y., Zhang, W., Xu, Y., Zhang, H., Mai, Z., & Yu, L.
(2019). QoS Prediction for Mobile Edge Service
Recommendation with Auto-encoder. IEEE Access, 7(1),
62312-62324. https://doi.org/10.1109/ACCESS.2019.2914737

[31] Yin, Y., Chen, L., Xu, Y., Wan, J., Zhang, H., & Mai, Z.
(2019). QoS Prediction for Service Recommendation with
Deep Feature Learning in Edge Computing Environment.
Mobile Networks and Applications, 25, 391-401.
https://doi.org/10.1007/s11036-019-01241-7

[32] Yu, J., Guo, Y., Tao, D., & Wan, J. (2015). Human pose
recovery by supervised spectral embedding.
NEUROCOMPUTING., 166, 301-308.
https://doi.org/10.1016/j.neucom.2015.04.005

[33] Yu, J. & Hong, C. (2017). Exemplar based 3D human pose
estimation with sparse spectral embedding.
NEUROCOMPUTING, 269, 82-89.
https://doi.org/10.1016/j.neucom.2016.09.137

[34] Kang, S., Ando, K., & Yuasa, T. (2015). The Planning and
Implementation of Smartphone Application Designed to
Efficient Donation for Direct Support to the 2011 Tohoku
Earthquake-Affected Area. International Journal of Disaster
Recovery and Business Continuity, NADIA, 1-8.
https://doi.org/10.14257/ijdrbc.2015.6.01

[35] Rao, N. T. (2018). A Review on Industrial Applications of
Machine Learning. International Journal of Disaster
Recovery and Business Continuity, NADIA, 8(1), 1-10.

[36] Kambourakis, G., Geneiatakis, D., Gritzalis, S.,
Lambrinoudakis, C., Dagiuklas, T., Ehlert, S., & Fiedler, J.
(2010). High Availability for SIP: Solutions and Real-Time
Measurement Performance Evaluation. International
Journal of Disaster Recovery and Business Continuity,
NADIA, 1(1), 11-30.

[37] Yu, H., Xiang, X., & Shu, J. (2010). A New Global
Consistent Checkpoint Based on OS Virtualization.
International Journal of Disaster Recovery and Business
Continuity, NADIA, 31-40.

[38] Baldini, G., Sallent, O., Subik, S., & Wietfeld, C. (2011).
The Evolution of ICT in the Public Safety Domain:
Challenges and Opportunities. International Journal of
Disaster Recovery and Business Continuity, NADIA, 9-22.

[39] Coskun, A. & Bostanci, U. (2018). Vulnerability analysis of
smart phone and tablet operating systems. Technical gazette,
25(6), 1860-1866. https://doi.org/10.17559/TV-20170627175835

Contact information:

Jungseok CHO, PhD
Electrical & Electronic Engineering, Sunchon National University,
Suncheon, Jeollanam-do, South Korea
E-mail: icaroosion@naver.com

Jonghee M. YOUN, PhD, Professor
(Corresponding author)
Computer Engineering, Yeungnam University,
Gyeongsan, Gyeongbuk, South Korea
E-mail: youn@yu.ac.kr

Doosan CHO, PhD, Professor
(Corresponding author)
Electrical & Electronic Engineering, Sunchon National University,
Suncheon, Jeollanam-do, South Korea
E-mail: dscho@scnu.ac.kr

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

