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ABSTRACT

The locus of points that determine a constant product
of their distances to the sides of a triangle is a cubic
curve in the projectively closed Euclidean triangle plane.
In this paper, algebraic and geometric properties of these
distance product cubics shall be studied. These cubics
span a pencil of cubics that contains only one rational and
non-degenerate cubic curve which is known as the Bataille
acnodal cubic determined by the product of the actual
trilinear coordinates of the centroid of the base triangle.
Each triangle center defines a distance product cubic. It
turns out that only a small number of triangle centers
share their distance product cubic with other centers. All
distance product cubics share the real points of inflection
which lie on the line at infinity. The cubics’ dual curves,
their Hessians, and especially those distance product cu-
bics that are defined by particular triangle centers shall be
studied.

Key words: triangle cubic, elliptic cubic, rational cubic,
trilinear distance, constant product, Steiner inellipse, tri-
angle centers
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Kubike konstantnog umnoška udaljenosti

SAŽETAK

U projektivno zatvorenoj Euklidskoj ravnini trokuta ge-
ometrijsko mjesto točaka trokuta kojima je umnožak u-
daljenosti od stranica trokuta konstantan je jedna kubika.
Proučavat će se algebarska i geometrijska svojstva tih
kubika konstantnog umnoška udaljenosti. Takve kubike
čine pramen kubika koje sadrže samo jednu racionalnu
nedegeneriranu kubiku poznatu kao Batailleova kubika
s izoliranom točkom, a koja je odred-ena umnoškom
pravih trilinearnih koordinata težǐsta temeljnog trokuta.
Svaka točka trokuta odred-uje jednu kubiku konstantnog
umnoška udaljenosti. Ispostavlja se da mali broj točaka
trokuta med-usobno dijele kubiku konstantnog umnoška
udaljenosti. Sve kubike konstantnog umnoška udalje-
nosti dijele realne točke infleksije koje leže na pravcu u
beskonačnosti. Proučavat će se dualne krivulje kubike,
njihove Hessianove matrice i posebno one kubike kon-
stantnog umnoška udaljenosti koje su odred-ene poznatim
točkama trokuta.

Ključne riječi: kubika trokuta, eliptična kubika,
racionalna kubika, trilinearna udaljenost, konstantni
umnožak, Steinerova upisana elipsa, točke trokuta

1 Introduction

Cubics occur frequently in triangle geometry. Sometimes,
cubics are defined as locus of points satisfying certain ge-
ometric or algebraic conditions. There are many well-
known cubics such as the Neuberg cubic, the Thomson cu-
bic, the Darboux cubic to name just the most prominent
examples. These triangle cubics are known to carry some
triangle centers together with points related to the triangle,
and besides their (in principle) Euclidean generation, some
of them allow for a projective generation, cf. [8]. In many
cases, these cubics pass through the vertices of the base tri-
angle: For example, the Thomson cubic K002 (sometimes
called seventeen-point cubic, illustrated in Figure 1) passes

through the vertices of the base triangle and carries the tri-
angle centers Xi with Kimberling indices

i∈{1,2,3,4,6,9,57,223,282,1073
1249,3341,3342,3343,3344,3349,3350,
3351,3352,3356,14481,39161,39162},

the midpoints of ∆’s sides, the midpoints of ∆’s altitudes,
the vertices of the Thomson triangle, and the excenters
(which are actually 38 points), see [4]. The numbering
of triangle centers follows the exhaustive Encyclopedia of
Triangle Centers by CLARK KIMBERLING, see [6, 7]. For
example, the triangle centers X39161 and X39162 are the real
foci of the inscribed Steiner ellipse e. On the other hand,
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the names and numbers of triangle cubics are taken from
BERNARD GIBERT’s pages [2].
Further, K002 is a self-isogonal cubic with the centroid X2
of ∆ as its pivot point. 26 geometric definitions of the
Thomson cubic can be found on GIBERT’s page [4], dedi-
cated exclusively to the Thomson cubic.

Figure 1: The Thomson cubic K002 with 23 triangle centers
on it.

The cubics which shall be studied here, do not pass through
the vertices of the triangle. Moreover, the number of trian-
gle centers located on these cubics is rather small except
in one case. In many cases, it is impossible to find more
than one triangle center on such a cubic. Nevertheless, it
is surprising that no one has payed attention to the set of
points forming a constant product of distances to the trian-
gle sides.
What is the reason for the interest especially in these
curves? It is well-known that elliptic cubics carry a group
structure. The operation on the set of points on an elliptic
cubic can be seen as an addition. Furthermore, it is well
known that these groups contain finitely generated sub-
groups, cf. [10]. Generators of these groups of finite or-
der are highly sought after. Once, rational (or polynomial)
points on elliptic curves are known, many more of them
can be generated by simply doubling the initial points. Un-
til now, only a few examples of finitely generated groups
on elliptic curves are known. Within the huge amount of
triangle cubics carrying rational points, it may be possible
to find some more examples.
The paper is organized as follows: In the remaining part
of this section, the equation of the distance product cu-
bics are determined. Further, some geometric properties
of these particular cubics are deduced. Then, the equations
of the dual curves and the curves in the Hessian pencil are
given. For the sake of completeness, the Weierstraß nor-
mal form of the distance product cubics is derived. Section
2 deals with the very special distance product cubics de-
fined by triangle centers. A complete list (as to November
2020) of groups of triangle centers sharing their distance

product cubics is given. It is described how these centers
on such cubics can be found in an efficient way and atten-
tion is paid to special configurations of triangle centers on
their respective distance product cubics. Then, in Section
3, some (until now) unknown triangle centers on some dis-
tance product cubics that contain only one known triangle
center are given. Only triangle centers with a relatively
short trilinear center function (homogeneous polynomial
in the three side lengths a, b, c) shall be listed. Finally,
Section 4 will outline future work and discusses compu-
tational problems and challenges. The present paper is an
extension and completion of [9].

1.1 Prerequisites

In triangle geometry, trilinear coordinates proved useful.
For that purpose, the vertices A, B, and C of the base tri-
angle ∆ (with side lengths a = BC, b = CA, c = AB) are
described by the homogeneous coordinates

A = (1,0,0), B = (0,1,0), C = (0,0,1),

i.e., the vectors of the canonical basis in R3. The projective
frame shall be completed by choosing

X1 = (1,1,1)

as the unit point. At this point, it shall be said that the cen-
troid X2 of ∆ (like any other center) can also serve as the
unit point. With X2 as the unit point, barycentric coordi-
nates of points in the plane of the triangle are well-defined,
cf. [6]. In the following, trilinear coordinates are preferred,
since distances of points to the sides of the base triangle are
involved.
Each point X in the plane of ∆ can be uniquely determined
by its homogeneous trilinear coordinates

X = (ξ,η,ζ) 6= (0,0,0),

which are the ratios of the oriented distances of X to ∆’s
oriented side lines. The side lines are oriented as AB (from
A to B), BC, and CA. From homogeneous trilinear coor-
dinates, the (inhomogeneous) actual trilinear coordinates
(ξa,ηa,ζa) consisting of the three oriented distances of X
to ∆’s side lines can be computed by

(ξa,ηa,ζa) =
2F

aξ+bη+ cζ
(ξ,η,ζ), (1)

where F equals the area of the triangle. This normalization
fails if

ω : aξ+bη+ cζ = 0.

This is the equation of the ideal line ω (line at infinity)
and all points (ξ,η,ζ) on it are ideal points (points at in-
finity). These points shall be excluded from the following
considerations (although there are more than one thousand
triangle centers on the ideal line), cf. [7].
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1.2 Basic properties

If one multiplies the actual trilinear coordinates of a point
in the plane of the triangle and sets this product equal to a
constant δ ∈ R, it is possible to state:

Theorem 1 The locus of points X in the (Euclidean) plane
of the triangle ∆ that form a constant product δ ∈ R\{0}
of distances to the side lines of ∆ is a planar cubic curve
with the equation

kδ : 8F3
ξηζ−δ(aξ+bη+ cζ)3 = 0 (2)

in terms trilinear coordinates.

Proof. The equation (2) is obtained by multiplying ξa, ηa,
ζa from (1)

ξ
a
η

a
ζ

a =
8F3

(aξ+bη+ cζ)3

and, subsequently, setting this product equal to δ∈R\{0}.
The equation (2) is homogeneous and of degree three, and
thus, it describes a planar cubic curve in the projective
plane. A simple computation shows that if (2) is fulfilled
by the actual trilinear coordinates of a point, then it is also
fulfilled by an arbitrary multiple of these coordinates of the
same point, and vice versa. �

The equations (2) of the distance product cubics depend
linearly on one parameter δ ∈ R \ {0}. Thus, the distance
product cubics form a pencil of cubics. Replacing the in-
homogeneous parameter δ in (2) by a homogeneous pa-
rameter δ = δ1δ

−1
0 (with δ0 : δ1 6= 0 : 0), shows that there

are two degenerate cubics in the pencil:
(i) If δ0 : δ1 = 1 : 0, the equations of the cubics simplify to

ξηζ = 0,

which is the equation of the union of ∆’s side lines.
(ii) In the case δ0 : δ1 = 0 : 1, remainder of (2) equals

(aξ+bη+ cζ)3 = 0,

which is the equation of the ideal line ω with multiplicity 3.
Figure 2 shows a projective view of a few cubics from the
pencil together the three common (collinear) real points of
inflection I1, I2, I3.
From the fact that the equations of the distance product cu-
bics are linear combinations of ξηζ = 0 and (aξ+ bη+
cζ)3 = 0, it is clear that the ideal points of ∆’s side lines
are the ideal points of the distance product cubics. Fur-
thermore, the intersection of either side line with the each
cubic in the pencil is of multiplicity three: For example,
ξ = 0 yields (bη+ cζ)3 = 0, and therefore, I1 = (0,−c,b)
as the intersection point with multiplicity three.

Figure 2: A projective view onto the pencil of distance
product cubics shows the three real points of in-
flection I1, I2, I3 on ω.

Theorem 2 The distance product cubics (2) share the
three real inflection points, which are at the same time the
three ideal points of the cubis. The homogeneous trilinear
coordinates of the points of inflection are

I1=(0,−c,b), I2=(c,0,−a), I3=(−b,a,0).

The harmonic polar of a regular point P ∈ k with respect
to a non-degenerate cubic curve k is defined in the follow-
ing way: Let P be a point on the cubic k and let l be a
line through P different from the tangent of k at P. Then,
in general, l meets the cubic in two further points, say Q
and R. Provided, that Q 6= R (l is not tangent to k at some
point off P) and Q,R 6= P (l is not an inflection tangent),
then there exists exactly one point S which is the harmonic
conjugate of P with respect to Q and R. The locus of S for
all l in the pencil about P is called the harmonic polar of
P with respect to k. The harmonic polars of the inflection
points on cubics are straight lines, cf. [1]. In the case of
the distance product cubics, the three harmonic polars cor-
responding to the three real inflection points have a special
geometric meaning:

Theorem 3 The harmonic polars of the three inflection
points of the distance product cubics are the medians of
the base triangle independent of the choice of δ.

Proof. The lines l pencil about I1 =(0,−c,b) can be
parametrized by

l(λ,µ) = λ(0,−c,b)+µ(u,v,w)

with λ : µ 6= 0 : 0, where it means no restriction to assume
that Q = (u,v,w) is a further point on k with equation (2).
Now, the intersection R of any l with the cubics equals

R = (bcu,c2w,b2v).
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Hence, the harmonic conjugate of I1 with respect to k is the
point

S = (2bcu,c(bv+ cw),b(bv+ cw)).

The point S lies on the line bη− cζ = 0, which is the me-
dian through A. In the same way it can be shown that the
harmonic polars of I2 and I3 are the medians through B and
C, respectively. Obviously, the harmonic polar of I1 is in-
dependent of δ, and so are the harmonic polars of I2 and I3.

�

Since the three harmonic polars corresponding to the real
inflection points common to all cubics are the medians, the
centroid X2 must have a special meaning for the distance
product cubics. Now, the following can be shown:

Theorem 4 The distance product cubic k2 through the
centroid of ∆ is the only rational cubic (among the regu-
lar ones) in the pencil and the centroid is an isolated node
on k2.

Remark 1 Rational cubics are often referred to as singu-
lar cubics, because a rational cubic needs to have a singu-
larity. We would like to put emphasis on the fact that ra-
tional cubics are regular except in one point and the term
singular often indicates degeneracy which is definitely not
the case here.

Proof. The equation of the cubic k2 is determined by in-
serting the (homogeneous) trilinear coordinates of

X2 = (bc,ca,ab)

(see [6, 7]) into (2). This yields the corresponding param-
eter (in the pencil of cubics)

δ2 =
8F3

27abc
(3)

and the equation of the cubic by inserting (3) into (2):

k2 : 27abcξηζ− (aξ+bη+ cζ)3 = 0. (4)

Now it is easily verified that X2 is the only singular point
on k2. (Compute the gradient of k2 with respect to (ξ,η,ζ)
at X2 and recall that a non-degenerate cubic cannot have
more than one singularity.) The tangents to k2 at X2 are
given by the equation

∑
cyclic

a2
ξ

2−bcηζ = 0. (5)

In order to show that k2 is the only singular (non-
degenerate) cubic in the pencil (2), the singular points of
all cubics in the pencil are computed. For that purpose,
first the gradient gradk is computed. Second, the equa-
tion (2) is used to eliminate all variables but one, say ξ.

In an intermediate step, the factor aξ+ bη is cut out from
two resultants. This is admissible, since together with the
third resultant aξ+ bη = 0 implies ξ = 0, and then η = 0
which does not yield a proper point on any of the cubics.
In the last elimination step, the final resultant is obtained
and reads

27a3bcδ(27abcδ−8F3)2(27abcδ+64F3)ξ4

which can only be zero if either

27abcδ−8F3 = 0

or
27abcδ+64F3 = 0,

since a,b,c 6= 0 (and hence F 6= 0, otherwise there is no
triangle) and ξ = 0 only yields the inflection point I2 ∈ ω.
The first equation leads precisely to δ2 and k2, while the
second equation yields

δ =− 64F3

27abc

which determines a regular elliptic cubic. The choice of
the variable to be eliminated does not matter. �

Among the cubics (2), the cubic k2 is the only cubic that
can be found on BERNARD GIBERT’s page [3], where it is
labeled as K656 and has the name Bataille acnodal cubic.
Figure 3 shows an example of the Bataille acnodal cubic.

Figure 3: The Bataille acnodal cubic K656 with the 16
known centers on it.

It is easily verified that the Bataille acnodal cubic K656 car-
ries 16 known and labeled triangle centers. These are the
centers Xi with the Kimberling numbers

2,3081,6545,8027, . . . ,8032,

23610, . . . ,23616,

see also [3]). This is by far the highest number of known
triangle centers on a distance product cubic.
The cubic k2 = K656 admits the surprisingly simple
parametrization

(bcm3,−ca(m+n)3,abn3) with m :n 6= 0:0.
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In terms of homogeneous barycentric coordinates, the
equation of k2 becomes very simple and reads

27ξηζ− (ξ+η+ζ)3 = 0.

1.3 Dual curves, Hessian pencils, and Weierstraß
form

It is well-known that elliptic cubics are of class 6, while ra-
tional cubics are of class 4 or 3, depending on whether the
singularity is a node (isolated or not) or a cusp. The latter
case cannot occur: According to Theorem 4, the curve k2
is only singular distance product cubic. The equations of
the tangents d1 and d2 at the double point X2 are the two
(complex conjugate) linear factors of the singular quadratic
form (5) and read

d1 : 2aξ−b(
√

3i+1)η+ c(i
√

3−1)ζ = 0,

d2 : 2aξ+b(
√

3i−1)η− c(i
√

3+1)ζ = 0.

Only in the case d1 = d2, X2 becomes a cusp. Since d2 = d1
would imply d1 = d1, and thus, both tangents would have
to be real, which is the case only if b = c = 0. Hence, we
have:

Theorem 5 The distance product cubics (2) are of class 6
if δ 6= δ2. If δ = δ2, the corresponding distance product
cubic is rational and of class 4.

Especially in the case of k2 = K656 there are remarkable
connections between the dual k?2 of the distance product
cubic k2 and some conics deduced from the base triangle
∆:

Theorem 6 The dual curve k?2 of k2 is the isogonal image
of the Steiner inellipse e and the isotomic image of the tri-
angle’s inellipse i with the third Brocard point X76 for its
Brianchon point (after the canonical identification of ho-
mogeneous line and point coordinates).

Proof. The dual curve of k2 (or K656) has the equation

k?2 : ∑
cyclic

(a2u1u2−2bcu2
0)u1u2 = 0 (6)

which can be found by eliminating ξ, η, ζ, and ρ from the
following system of equations:

gradk2 = ρ · (u0,u1,u2).

(Note that ξ, η, and ζ are subject to (2) which has to be
taken into account during the elimination process.) In or-
der to verify that (6) is the isogonal image of the Steiner
inellipse e, homogeneous line coordinates u0 : u1 : u2 6=
0 : 0 : 0 are identified with homogeneous point coordinates
ξ : η : ζ 6= 0 : 0 : 0. Then, the substitution of u0 = x1x2

(cyclic, cf. [5]) into (6) indeed yields the equation of the
Steiner inellipse

ι(k?2) = e : ∑
cyclic

a2x2
0−2bcx1x2 = 0

after canceling the (cyclic symmetric) factor x2
0x2

1x2
2 that

describes the sides of ∆’s sides (each with multiplicity 2).
Finally, it remains to show that the curve k?2 is also the iso-
tomic image of the inellipse with Brianchon point X76 (the
3rd Brocard point) and center X141 (the complement of the
Symmedian point X6). Applying the isotomic transforma-
tion to k?2 means to substitute u0 = b2c2x1x2 (cyclic, cf. [5])
into (6). In doing so, one finds

τ(k?2) = i : ∑
cyclic

a6x2
0−2b3c3x1x2 = 0.

Like in the previous cases, the factor x2
0x2

1x2
2 is cut out. It is

a rather elementary task, to determine the Brianchon point
and the center of i, see [5].
The curve k?2 has three ordinary cusps at the vertices of ∆

which correspond to the three inflection tangents. Again,
homogeneous line coordinates are interpreted as homo-
geneous point coordinates in the plane of the base tri-
angle and in the underlying projective coordinate system
(A,B,C;X1). �

Figure 4: The cubic k2, its dual k?2 (interpreted as a point
curve), the Steiner inellipse e as the isogonal
conjugate e = ι(k?2), and the inellipse i as the
isotomic conjugate i = τ(k?2).

Figure 4 shows the curves e, i, k2, and k?2 mentioned in
Theorem 6.
The computation of the dual curves of the non-rational dis-
tance product cubics is much more complicated. In con-
trast to the case of the rational curve k2, one cannot rely
on a parametrization of the curve. Thus, the homogeneous
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point coordinates ξ, η, and ζ have to be eliminated from
the following system of equations

∂ξkδ = u0ρ, ∂ηkδ = u1ρ, ∂ζkδ = u2ρ,

8F3ξηζ−δ(aξ+bη+ cζ)3 = 0.

in order to obtain the implicit equation of the dual curves of
(2) (in terms of homogeneous line coordinates u0 : u1 : u2).
This yields the sextic curves

k?
δ

: 27δ2
∏

cyclic
(bu2−cu1)

2−

−16δF3
∏

cyclic
(au1u2+bu0u2−2cu0u1)=

= 64F6u2
0u2

1u2
2

(7)

whose equations depend quadratically on the parameter
δ ∈ R \ {0}. The sextic curves (7) have three real and six
complex cusps corresponding to the three real and six com-
plex points of inflection on the cubics (2). The nine cusps
of (7) form a Hesse configuration (94,123) if u0 : u1 : u2 are
viewed as homogeneous point coordinates.

1.4 Hessian pencil

The equation of the Hessian curve Hc of an algebraic curve
c with the implicit homogeneous equation F(x0,x1,x2) = 0
is given by

Hc : det(∂i jF) = 0. (8)

It intersects c at ordinary inflection points with multiplicity
one (while it intersects c at its singularities with multiplic-
ities larger than 6). Clearly, the Hessian curves of cubics
are again cubics.
In the particular case of distance product cubics, one can
show:

Theorem 7 The Hessian curves of the distance product
cubics (2) form a pencil of cubics which is spanned by the
degenerate cubics e∪ω (union of the Steiner inellipse e
and the line at infinity ω) and the three side lines of ∆.

Proof. The equations of the Hessian curves of the cubics
(2) are computed via (8). This results in

Hkδ : δ

(
∑
cyclic

aξ

)
︸ ︷︷ ︸

ω

·

(
∑
cyclic

aξ(2bη−aξ)

)
︸ ︷︷ ︸

Steiner inellipse

=
8
3

F3
ξηζ.

(9)

Since the equations (9) of the Hessian curves are linear in
δ, they form a pencil of cubics like the distance product
cubics do. The choice of δ = 0 yields ξηζ = 0 which is the
equation of the three side lines of ∆. Replacing the affine
parameter δ by the homogeneous parameter δ0 : δ1 6= 0 : 0
and setting δ1 = 0 (while δ0 6= 0) yields the right-hand side

of (9) which factors into the equation of the ideal line ω and
the equation of the Steiner inellipse e. �

The fact that one factor of the right-hand side of (9) is the
equation of ω clearly shows that for each δ ∈ R \ {0} the
corresponding distance product cubic kδ and its Hessian
curve Hkδ intersect in the ideal points of ∆’s side lines (to
mention only the real points). This again shows that the
three real points of inflection of the distance product cu-
bics (2) are the ideal points of ∆’s side lines (cf. Theorem
2).

1.5 Weierstraß form

The treatment of elliptic cubic curves is usually done in
an affine setting. The choice of an affine coordinate frame
properly attached to the cubic curve transforms the cubic’s
equation into the Weierstraß normal form, cf. [10]. Based
on this normal form, many computations – especially those
related to the group structure on the curve – can be per-
formed in a very simple way.
We set ζ = 1 and substitute

ξ = 2F3−3abcδ

6a2bδ
− 1

64F6a2bδ
(4F3X+Y ),

η = 2F3−3abcδ

6ab2δ
− 1

64F6ab2δ
(4F3X−Y ).

into (2). This yields the Weierstraß normal form of dis-
tance product cubics:

kW : Y 2=X3+ 28

3 (3abcδ−F3)F9X+
+210

33 (33(abcδ)2−62abcδF3+23F6)F12.
(10)

The j-invariant j(e) of an elliptic curve

e : y2 = x3 +3px+2q

is computed via

j(e) =
26 ·33 · p3

p3 +q2 .

The j-invariant of all distance product cubics kδ equals

j(kδ) =
212F3(F3−3abcδ)3

(abcδ)3(23F3−33abcδ)

and becomes undetermined if, and only if, δ = δ2 from (3).

2 Triangle centers with equal distance
product

The triangle centers listed in KIMBERLING’s Encyclope-
dia of Triangle Centers [6, 7] determine cubic curves as
loci of points with the equal product of trilinear distances.
Finding triangle centers located on the same cubic curve is
equivalent to finding triangle centers with the same product
of trilinear distances. This would be another classification
of triangle centers.
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Surprisingly, among the many known, listed, and in prin-
ciple arbitrarily numbered triangle centers, there is only a
small number of triangle centers that gather on the same
cubic.
Until now (as to November 2020), only the following
groups of triangle centers located on the same cubic are
known:

Theorem 8 The groups of triangle centers with equal dis-
tance product to the sides of a triangle are given in Table
1.

(1,764), (4,5489), (6,22260), (8,21132),

(2,3081,6545,8027 – 8032, 23610 – 23616),

(25,394), (42,321,8034), (55,40166), (57,200),

(75,21143),(76,23099),(86,21131),(99,14444),

(145,23764),(324,418),(455,40144),(459,3079),

(649,693), (669,850,32320), (671,14443),

(903,14442), (875,4375,4444), (756,8042),

(1022,3251), (1026,3675), (1422,40212),

(1641,14423), (1647,17780), (1648,5468),

(1649,5466), (1650,4240), (2501,3265),

(3051,8024), (3227,14441), (3233,12079),

(3234,15634), (3239,3676), (3572,27855),

(3733,4036), (4024,7192), (4358,8661),

(4500,4507), (6358,40213), (6384,8026),

(6544,6548), (6557,15519), (8013,8025),

(8023,8039), (14163,14164), (14214,14215),

(14401,34767), (15630,15631), (15632,15635),

(16748,21820), (20696,20700), (21140,23354),

(21438,23655), (27919,40217), (36414,40146),

(40149,40152)

Table 1: Groups of triangle centers with equal distance
product.

Proof. In order to verify the results given in the above the-
orem, it is sufficient to insert the trilinear representations
of the respective centers into to the equations of the cubic
curves. �

Just inserting trilinear representations of triangle centers
into the equations of a particular distance product cubic is
not a very efficient search for triangle centers on a cubic.
It requires the presence of trilinear representations of trian-
gle centers which is not the case for some triangle centers,

cf. [7]. Complicated algebraic expressions involving cube
roots or nested square roots can hardly be handled properly
with computer algebra systems.
We can improve the search by recalling the following facts:
A cubic curve is a triangle cubic if its equations in terms
of homogeneous (trilinear or barycentric) coordinates is in-
variant under the cyclic substitution

a→ b→ c→ a and ξ→ η→ ζ→ ξ.

According to this, the cubics (2) and (9) are triangle cubics.
Once a center C on a triangle cubic k is known, one can im-
mediately find a new triangle center R as the intersection of
k’s tangent TCk (at C) with k. The point R shall henceforth
be called the tangential remainder or simply remainder of
C. This yields – besides the contact point C with multiplic-
ity 2 – exactly one further point R, provided that C is not a
point of inflection.

Figure 5: A sequence of (rational) points on an elliptic cu-
bic k. Each successor i+ 1 is the intersection
(6= i) of the tangent Ti k at i with k. Only for
points of finite order, such chains are closed.

Once a rational point 1 on the elliptic cubic k is known, a
sequence of further rational points can be generated (see
Figure 5; note that the chain depicted there is not closed).
Only in some rare cases, periodic sequences of remainders
(or closed chains) are known and correspond to the groups
of finite order on the elliptic curve, see [10].
On the distance product cubics mentioned in Theorem 8,
one can observe the following relations between centers
and their remainders:
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Type 1: For example, on k1, the center R1 = X764 is the
intersection of k1 with the tangent T1 at X1, see Figure 6.

Figure 6: The distance product cubic k1 defined by the in-
center X1. The center X764 ∈ k1 is the intersec-
tion of k1’s tangent at X1.

Note that
δ1 = r3,

i.e., the trilinear distance product of the points on the cu-
bic k1 equals the cube of ∆’s inradius r. Hence, the triangle
center X764 is another triangle center with trilinear distance
product δ764 = r3.

Type 2: The cubic k875 is an example of a distance prod-
uct cubic with three collinear centers on it. These are the
centers

X875, X4375, X4444,

which are shown together with k875 in Figure 7. In this
case the search for further (already known) triangle cen-
ters on the cubic fails. None of the tangential remainders
is a known triangle center.

Figure 7: A triple of three collinear centers on k875: X875,
X4375, and X4444.

The two centers X649 and X693 also form the same distance

product, and thus, they both lie on the curve k649. Clearly,
the line

L649,693 := [X649,X693]

meets k649 in a further center R with trilinear center func-
tion

αR = b2c2(b− c)(a2−bc)3.

Unfortunately, this point cannot be found in KIMBER-
LING’s encyclopedia (cf. [7]) although it has a relatively
simple algebraic representation compared to other centers.

Type 3: The cubic k42, also hosts three (known) triangle
centers. However, the points

X42, X321, X8034

on k42 are not collinear. The centers X42 and X321 have the
same remainder

R42 = R321 = X8034,

see Figure 8. Therefore, we could expect to find more
triangle centers sending their tangents to X8034. Unfortu-
nately, the corresponding polynomial equation of degree
6 has only two rational solutions leading to the already
known centers X42 and X321.

Figure 8: The tangents to k42 at X42 and X321 meet in
X8034 ∈ k42.

Remark 2 At this point it shall be said that the assign-
ment of numbers (Kimberling numbers) to triangle centers
is done rather arbitrarily. Therefore, the configuration of
known centers on their particular distance product cubic
has no deeper geometric meaning.

Table 2 collects triangle centers and their tangential re-
mainders on their respective distance product cubics. Ta-
ble 3 gives the trilinear center function of the tangen-
tial remainders common to two different (known) triangle
centers on their respective distance product cubic. These
points do not occur in KIMBERLING’s encyclopedia [7].
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Xi Ri Xi Ri

1 764 1641 14423
4 5489 3051, 8024 R3051
6 22260 3227 14441
8 21132 3733, 4036 R3733

25, 394 R25 4240 1650
42, 321 8034 4358 8661

55, 40166 R55 5466 1649
57, 200 R57 5468 1648

75 21143 6358, 40213 R6358
76 23099 6384, 8026 R6384
86 21131 6548 6544
99 14444 6557, 15519 R6557

145 23764 8013, 8025 R8013
324, 418 R324 8023, 8039 R8023

455, 40144 R455 17780 1647
459, 3079 R459 20696, 20700 R20696

671 14443 16748, 21820 R16748
756, 8042 R756 23354 21140

903 14442 27919, 40217 R27919
1022 3251 34767 14401
1026 3675 36414, 40146 R36414

1422, 40212 R1422 40149, 40152 R40149

Table 2: The tangent of the triangle center Xi meets the cubic ki at a further triangle center given in the column Ri. If this
remainder is a known triangle center, then its number is given.

remainder of trilinear center function

25, 394 a(b2−c2)3(a2−b2−c2)2

55, 40166 a(b−c)3(a−b− c)(ab+ca−b2−c2)3

57, 200 (b− c)3(a−b− c)2

324, 418 a3(b2−c2)3(a2−b2−c2)5(a2b2+a2c2+2b2c2−b4−c4)
459, 3079 bc(b2−c2)3(a2−b2−c2)2(3a4−2a2(b2+c2)− (b2−c2))2

756, 8042 (b−c)(b2−c2)2(a2−bc)3

3051, 8024 a3(b2+c2)(b2−c2)3

3733, 4036 a(b−c)(b+c)2(a3(b+c)+a2(b2+c2)−a(b3+c3)−b4−c4)3

6358, 40213 a(b+c)2(b−c)3(a−b−c)2(a2−b2+bc−c2)3

6384, 8026 a(b− c)3(ab+ac−bc)2

6557, 15519 bc(b− c)3(a−b− c)(3a−b− c)2

8013, 8025 bc(b−c)(b2−c2)2(2a+b+c)

8023, 8039 a7(b4+c4)(b2−c2)(b2+c2)3

16748, 21820 a4(b−c)(b2−c2)2(ab+ac+2bc)
36414, 40166 a3(b2−c2)3(b2+c2)3(a4−b4−c4)2

40149, 40152 a(b+c)(b−c)3(a−b−c)2(a2−b2−c2)2

27919, 40217 bc(b−c)3(ab+ca−b2−c2)(a2−bc)2

Table 3: Tangential remainders common to two centers on distance product cubics. Only those center functions (first
trilinear coordinates) of reasonable length are given.
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3 Tangential remainders for triangle centers

Table 2 contains a subset of Table 1 and gives a list of tri-
angle centers with their tangential remainders on their dis-
tance product cubics. Known centers are given by their
Kimberling numbers, while unknown tangential remain-
ders of centers Xi are labeled with Ri.

Table 3 gives the first trilinear center functions of some
of the unknown remainders Ri mentioned in Table 2, pro-
vided that these remainders are common to at least two
centers and that the respective center function is of reason-
able length.

For the remainders of some of those centers (not appear-
ing in Theorem 8), Table 4 presents the first trilinear center
functions together with the respective numeric search value
for the triangle

(a,b,c) = (6,9,13)

(in order to simplify the identification and search on [7]).

4 Outlook, future work, computational
problems

The search of rational points on elliptic triangle cubics, not
necessarily distance product cubics, sometimes involves
quadratic or cubic field extensions. In the beginning, i.e.,
for triangle centers with small Kimberling number, most
of the triangle centers have trilinear coordinates that are
polynomials in a, b, c with integer coefficients. The trilin-
ear representations of the centers X13, . . . , X18 involve

√
3

which does not cause problems in symbolic computations.

Square roots show up in the trilinear representations that
involve half-angle functions. In order to handle expres-
sions that involve the area function

F = 1
4

√
(a+b+c)(b+c−a)(c+a−b)(a+b−c)

of the base triangle, we add F as a further element of the
coefficient ring. We have to add the square roots of 3 and
5 to the ring of coefficients if multiples of angles of π

3 and
π

5 are ingredients of the construction of some center: F
as well as

√
3 appear in the trilinear representations of the

centers
X13, . . . ,X18

(1st and 2nd isogonic center, 1st and 2nd isodynamic point,
1st and 2nd Napoleon point). The trilinear representations
of X1139 and X1140 (Outer and Inner Pentagon point) in-
volve

√
5.

The triangle centers

X173,X174,X258,X351, . . . ,X364

(related with isoscelizers points), involve square roots of
a, b, c and sine and cosine of half angles. The trilinear

representations of the Square Root point and its isogonal
conjugate

X365 and X366

involve even
√

a,
√

b, and
√

c.

Triangle centers whose trilinear coordinate functions in-
volve cube roots are also not tested whether or not they
share their trilinear distance prodcut with others: These are
centers like

X356,X357,X358

(Morley point, 1st and 2nd Morley-Taylor-Marr center), and
the Burgess point

X1133, α1133 = sin
π−A

3
cosec

π+A
3

.

Here and in the following, the letter A denotes the measure
of the interior angle at the vertex A. Thirds of angles are
equivalent to roots of cubic polynomials, and thus, to field
extensions of degree 3.

There are triangle centers that could be termed transcen-
dental, for example:

X359 and X360,

i.e., Hofstaedter One point and the Hofsteadter Zero point
with the trilinear center functions

α359=
a
A

and α360=
A
a
.

Their trilinear distance product are not compared with that
of other centers, since they will hardly produce the same
product as a polynomial center will do. This is also true
for the Pure Angles center, the isogonal conjugate of the
Point Algenib, the point Algenib, and the Exterior Angle
Curvature Centroid, i.e., for the centers

X1049, X1085, X1028, and, X1115

with the respective trilinear triangle center functions

α1049 = A, α1085 = A2,

α1028 = A−2, α1115 =
π−A

a .

The trilinear coordinates of triangle centers X40297, . . . ,
X40305 which are related to the power curve involve even
logarithms, and thus, their trilinear distance products will
not be equal to that of algebraic centers. Besides, X40297,
X40298, X40299 are points at infinity.

Future work is guaranteed, since the ETC is growing con-
tinuously. Every day a few new triangle centers are added,
awaiting to be tested whether or not they share their trilin-
ear distance product with other centers.
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Tangential remainders
i trilinear center function search-6-9-13 value i trilinear center function search-6-9-13 value
3 a(b2−c2)3(a2−b2−c2)4 62.32822092189367 44 (b−c)3(2a−b−c)·

·(a−2b−2c)3 14.27293379474638
5 bc(a2−b2−c2)3· 45 (b−c)3(a−2b−2c)·

·(a2(b2+c2)−(b2−c2)2) 5.08075321118240 ·(2a−b−c)3 17.54515704225141
7 bc(a−b−c)2(b−c)3 -7.25734135716562 55 a(b−c)3(a−b−c)·

·(ab+ac−b2−c2)3 10.54263482016639
9 (b−c)3(a−b−c)4 -34.83523851439501 56 a(b−c)3(a−b−c)2·

·(ab+ac+b2+c2)3 -2.26993220290925
10 bc(b2−c2)(b−c)2 -2.36106585447966 57 (b−c)3(a−b−c)2 -3.71034493822937
11 bc(a−b−c)(b−c)5· 58 a(b−c)(b2−c2)2·

·(ab+ac−b2−c2)3 10.57329984291265 (ab+ac+b2+bc+c2)3 -1.45795477222064
20 bc(3a4−2a2(b2−c2)− 63 (b−c)3(a2−b2−c2)·

−(b2−c2)2) 176.82315634331623 ·(a−b−c)3 -57.29426844986488
21 (b−c)(a−b−c)· 65 (b+c)(b−c)3(a−b−c)2·

·(b2−c2)2(a2−b2−c2)3 29.19736986425203 ·(a2+ab+ac+2bc)3 -4.33523005169485
22 a(b2−c2)3(a4−b4−c4)· 66 bc(b4−c4)3(a4−b4−c4)2 77.10999885446101

·(a2−b2−c2)3 -223.89401674331905
23 a(b2−c2)3(a2−b2−c2)3· 75 a(b−c)3 -0.86891361128715

·(a4−b4+b2c2−c4) -28.06151358971226
24 a(b2−c2)3(a2−b2−c2)2· 76 a3(b2−c2)3 -0.5829933417003

·(a4−2a2(b2+c2)+b4+c4) 14.62241731719719
25, 81 (b+c)2(b−c)3 -1.7256277235825
394 a(b2−c2)3(a2−b2−c2)2 -5.02132305357783
27 bc(b+c)2(b−c)3· 82 (b−c)3(b2+c2)2·

·(a2−b2−c2)2 -23.86418264611576 ·(a2+b2+bc+c2)3 -2.7552998535293
28 (b+c)2(b−c)3(a2−b2−c2)2 -7.98316487555603 83 bc(b2+c2)2(b2−c2)3 -6.1052017302889
31 a2(b−c)3(b2+bc+c2)3 -1.14992786985712 85 a(b−c)3(a−b−c)5 -52.6095855034850
32 a3(b2− c2)3(b2 + c2)3 -0.94646193660754 86 bc(b+c)2(b−c)3 -2.8159081633291
37 a3(b+ c)(b− c)3 -0.49015639611069 87 (b−c)3(ab+ac−bc)5 -0.0012017084959
38 (b2+c2)(b−c)3(a2−bc)3 -35.23250675370688 88 (b−c)3(2a−b−c)2 3.8941592730472
39 a7(b2 + c2)(b2− c2)3 -0.19164804132159 89 (b−c)3(a−2b−2c)2 -2.2543301181918
43 (b−c)3(ab+ac−bc) -0.19597779819792 94 a3(b2−c2)3·

·(a2−b2−bc−c2)2 -17.011141733428
98 bc(b2−c2)3· 99 bc(b2−c2)2(2a2−b2−c2)3 14.834689935205

·(a2b2+a2c2−b4−c4)2 56.616091423347
100 (b−c)2(ab+ac−b2−c2)3 10.408092032867 105 (b−c)3(ab+ac−b2−c2)2 10.776490698571

Table 4: Tangential remainders (not listed in KIMBERLING’s encyclopedia of some triangle centers. The remainders of
centers are added to this list only if their trilinear center function is of reasonable length.
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