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ABSTRACT

We have another look at the Feuerbach theorem with a
view to extending it in an oriented way to finite fields us-
ing the purely algebraic approach of rational trigonometry
and universal geometry. Our approach starts with the tan-
gent lines to three rational points on the unit circle, and
all subsequent formulas involve the three parameters that
define them. Tangency of incircles is treated in the ori-
ented setting via a simplified form of cyclography. Some
interesting features of the finite field case are discussed.
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Feuerbachov teorem i ciklografija u univerzalnoj
geometriji

SAŽETAK

Dajemo drugačiji pogled na Feuerbachov teorem s ciljem
da ga se orijentirano proširi na konačna polja koristeći
isključivo algebarski pristup racionalne trigonometrije i
univerzalne geometrije. Naš pristup počinje s tangen-
tama u tri racionalne točke na jediničnoj kružnici, i sve
naknadne formule uključuju tri parametra koja ih defini-
raju. Tangencijalnost upisanih kružnica promatra se u
orijentiranom okruženju koristeći pojednostavljene forme
ciklografije. Promatraju se neka zanimljiva dogad-anja u
slučaju konačnih polja.

Ključne riječi: Feuerbachov teorem, upisane kružnice,
univerzalna geometrija, ciklografija, konačna polja

1 Introduction

This paper looks to show that the Feuerbach Theorem, on
the tangency of the nine-point circle of a triangle with the
four incircles/excircles, holds for triangle geometry over
a general field, once the existence of an incircle is estab-
lished. While such an assumption is implicit in many ge-
ometric constructions, algebraically it requires a solution
to a quadratic equation, involving number theoretic condi-
tions. This is because incentres rely on bilines of a triangle,
which are the rational equivalents of angle bisectors in Ra-
tional Trigonometry ([9], [10]). Note also that we adopt
the four-fold symmetry towards the incentre hierarchy of
[6], where all four incentres /excentres are just referred to
as incentres. Over a general field, there is not a good dis-
tinction between these.

Our approach starts with the unit circle as an incircle,
choosing three rational points on it with parameters t1, t2

and t3, and then creating the basic starting triangle via the
tangents to these points. We are then able to make numer-
ous calculations of important points and lines in terms of
t1, t2 and t3, culminating with the novel result that all four
incentre quadrances are indeed squares in the underlying
field.
This then allows us to apply a simple form of the classical
theory of cyclography, which connects oriented circles to
relativistic geometry, even in the context of general fields,
and which yields a purely algebraic proof of the Feuerbach
theorem. So our approach establishes the result even over
finite fields.
Metrical geometry over finite fields is a subject still largely
in its infancy, and this result allows us to investigate several
novel features. One of them is what we might call overlap-
ping: a given finite field might actually be too small to
support distinct objects that may be familiar in the ratio-
nal, or more generally unbounded, field situation. To gain
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some intuition in this direction, we examine some discrete
versions of the Feuerbach result in some detail over the
prime field F17 to illustrate that new phenomenon really
do appear in the finite field case. We end with an exam-
ple in F23 which contains all the points of the Feuerbach
configuration without duplication.

2 History of the Feuerbach theorem

Recall that the nine-point circle of a triangle passes through
the three midpoints of the sides, the three feet of the alti-
tudes, and the three midpoints between the vertices and the
orthocentre.

Theorem 1 (Feuerbach) The nine-point circle of a trian-
gle is tangent to the four incircles of that triangle.

This celebrated theorem is one of the most challeng-
ing results in classical geometry, as its statement is sim-
ple and surprising, but proofs are highly non-trivial. It
was published in 1822 by Karl Wilhelm Feuerbach in
the book “Eigenschaften einiger merkwürdigen Punkte des
geradlinigen Dreiecks und mehrerer durch sie bestimmten
Linien und Figuren. Eine analytisch-trigonometrische Ab-
handlung” ([3]). Since Feuerbach’s initial exposition,
many authors have attempted proofs. Almost all of them
have relied on distances and/or angles, making them diffi-
cult to extend to more general situations, for example ge-
ometry over finite fields.
John Casey’s 1864 proof ([1]) used inversion and a form
of Ptolemy’s theorem for collinear points, along with a
suitable inversion and comparison of distance ratios of the
four incircles and the nine-point circle. Somewhat similar
proofs appeared in books of William M’Clelland (1891)
([7]) and Robert Lachlan (1893) ([5]) as semi-completed
exercises for the reader. However these proofs only cov-
ered the tangency of the interior incircle with the nine-
point circle, with the proof for the tangency of the exte-
rior incircles omitted, and relied on arguments involving
distances, angles and concyclic quadrangles.
Coxeter and Greitzer’s 1967 proof ([2]) builds upon
Casey’s proof and streamlines it, using a sequence of in-
versions and applications of Heron’s formula to set up and
transform different distance ratios to check what construc-
tions can be preserved under a given inversion.
Franz Hofbauer’s 2016 proof ([4]) currently stands as
perhaps the simplest proof, and uses the same skeleton
as Michael Scheer’s 2011 proof ([8]), except that where
Scheer used barycentric coordinates and the law of sines,
Hofbauer uses vector geometry and Heron’s formula.
Hofbauer’s proof starts with a triangle ABC with a circum-
radius R and side lengths a, b and c, chosen such that the
circumcentre O of the triangle is centred at the origin. By
assigning position vectors to the vertices of the triangle,

it becomes simple to find the position vectors of the nine-
point centre, interior incentre and an exterior incentre. Af-
ter establishing some relationships between the distances
in this set up, an application of Heron’s formula proves the
result.
Both the classical and more modern proofs can be critiqued
from several directions, especially when we intend to ex-
tend the theorem to universal geometry, over general fields.
Distances and angles are hard to generalize, constructions
based on diagrams can be problematic, and do we have
a consistent theory of inversion and cyclic quadrilaterals
over general fields? When we examine in some detail some
examples in finite fields at the end of this paper, another
possible question emerges: how do we actually know that
synthetic arguments create points and lines which are dis-
tinct? If further constructions require joins or meets of ex-
isting points, there are logical questions here that may be
hidden in a proof based on a physical construction.

3 Projective coordinates and quadrances

We work over a general field, characteristic two excluded.
Projective coordinates for points and lines are useful since
cross-product of coordinates express both joins of points
and meets of lines. So the affine point A = [a,b] will be ex-
pressed in projective coordinates as A = [1 : a : b] , and the
line l with equation r+sx+ty= 0 will be expressed in pro-
jective coordinates as l = (r,s, t) . Then the incidence be-
tween A and l is expressed as the dot product between their
respective coordinates being zero, that is r + sa+ tb = 0.
Then for distinct affine points A = [a1,a2] and B≡ [b1,b2]
we have their join

A1A2 = [1 : a1 : a2]× [1 : b1 : b2]

= (a1b2−a2b1 : a2−b2 : b1−a1)

and similarly for lines l1 : r1 + s1x+ t1y = 0 and
l2 : r2 + s2x+ t2y = 0 their meet is

l1l2 = (r1 : s1 : t1)× (r2 : s2 : t2)

= [s1t2− s2t1 : r2t1− r1t2 : r1s2− r2s1] .

In each case only the usual three-dimensional cross prod-
uct is involved, thus significantly reducing complexity of
elementary calculations.
Using an elementary concept from rational trigonometry
([9]) the (perpendicular) quadrance from a point P = [a,b]
to a line l = (r : s : t) with equation r+ sx+ ty = 0 is given

Q(P, l) =
(r+ sa+ tb)2

s2 + t2

assuming the line is non-null, that is its normal vector (s, t)
is not null, meaning that Q((s, t)) = s2 + t2 6= 0.
A circle will be an equation of the form (x−a)2 +

(y−b)2 = Q, with centre [a,b] and quadrance Q. We do
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not assume that Q is necessarily a square in the field, so
in general a circle does not have a well-defined “radius”.
When it does, then there will be two possible associated
radii. This observation will play an important role when
we discuss cyclography later.

4 Rational points on the unit circle

Since all starting incircles are equivalent under translation
and dilation, (actually the latter might require a quadratic
field extension) we can, without loss of generality, start
with the unit circle C0 : x2 + y2 = 1 with centre I0 = [0,0]
and quadrance R0 = 1 which we will arrange to be an in-
circle of our basic triangle. We choose three distinct points
on the unit circle

Zi =
[
1+ t2

i : 1− t2
i : 2ti

]
=

[
1− t2

i

1+ t2
i
,

2ti
1+ t2

i

]
for i = 1,2,3

where each t value in the field is distinct. The geometrical
meaning of the parameter values is shown in Figure 1.

Figure 1: Parameters t correspond to y-intercepts

Remark 1 In order to guarantee the existence of the
points on the circle, our choice of t-values must be such
that t2 + 1 6= 0. For the rational numbers, and a prime
field Fp satisfying p ≡ 3 (mod4) this condition holds au-
tomatically, but not so for a finite prime field where p ≡ 1
(mod4) .

Since the tangent to the point [r,s] on the unit circle
has equation rx + sy = 1, with projective coordinates
(−1 : r : s) , the tangent to C0 at Zi will be the line
zi =

(
−
(
1+ t2

i
)

: 1− t2
i : 2ti

)
for i = 1,2,3.

We can then define the vertex A1 to be the meet of z2 and
z3, and similarly define A2 and A3 which gives us our basic

triangle A1A2A3 which a calculation shows has vertices

A1 ≡ z2z3 = [1+ t2t3,1− t2t3, t2 + t3]

A2 ≡ z3z1 = [1+ t3t1,1− t3t1, t3 + t1]

A3 ≡ z1z2 = [1+ t1t2,1− t1t2, t1 + t2] .

To avoid having any vertices at infinity, we will further re-
quire that no two t-values have a product of −1, since tan-
gents zi and z j are parallel precisely when the chosen points
Zi and Z j are diametrically opposed, which amounts to the
condition tit j = −1. This construction guarantees that the
unit circle C0 will be tangent to the three sides of the trian-
gle A1A2A3, meaning it is one of the incircles of the trian-
gle.

Figure 2: If t1 = 1.8, t2 = −0.2 and t3 = −1.5, C0 is the
interior incircle

Figure 3: If t1 = 0.8, t2 = 0.5 and t3 =−0.4,C0 is an exte-
rior incircle

Remark 2 Over the rational numbers, different choices
for the t-values will determine whether or not C0 will be
the interior incircle or one of the exterior incircles. In-
deed, it can be shown that C0 will be the interior incircle
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precisely when (t1t2 +1)(t1t3 +1)(t2t3 +1) < 0. But over
general fields this kind of consideration is reduced in im-
portance.

5 The incentres

Since we know that I0 is an incentre, it is determined as the
meet of three of the bilines of the triangle A1A2A3, with
one biline from each vertex. The biline b1a is the join of
I0 = [0,0] and A1 so in projective coordinates it is

b1a = [1 : 0 : 0]× [1+ t2t3 : 1− t2t3 : t2 + t3]

= (0 :−(t2 + t3) : 1− t2t3)

and similarly

b2a = (0 :−(t3 + t1) : 1− t3t1)

and

b3a = (0 :−(t1 + t2) : 1− t1t2) .

Since bilines come in pairs, meeting perpendicularly at
their corresponding vertex, we can use the above equations
to find the remaining three bilines of A1A2A3. For example:
the biline perpendicular to b1a at A1 will have equation

b1b : (1− t2t3)x+(t2 + t3)y = c

and substituting the coordinates of A1 gives (1−t2t3)
2

1+t2t3
+

(t2+t3)
2

1+t2t3
= c which simplifies to c =

(1+t2
2)(1+t2

3)
(1+t2t3)

. Doing
this for the pairs of bilines corresponding to each vertex
yields the projective coordinates of the remaining bilines:

b1b =

(
−
(

1+ t2
2

)(
1+ t2

3

)
: (1− t2t3)(1+ t2t3) : (t2 + t3)(1+ t2t3)

)

b2b =(
−
(

1+ t2
3

)(
1+ t2

1

)
: (1− t3t1)(1+ t3t1) : (t3 + t1)(1+ t3t1)

)

b3b =(
−
(

1+ t2
1

)(
1+ t2

2

)
: (1− t1t2)(1+ t1t2) : (t1 + t2)(1+ t1t2)

)
.

Figure 4: All six bilines of A1A2A3

These six bilines meet three at a time at the four incentres,
which besides I0 = [0,0] are

I1 ≡ b2bb3b =[
(1+ t1t2)(1+ t3t1) :

(
1+ t2

1
)
(1− t2t3) :

(
1+ t2

1
)
(t2 + t3)

]
I2 ≡ b1bb3b =[
(1+ t1t2)(1+ t2t3) :

(
1+ t2

2
)
(1− t3t1) :

(
1+ t2

2
)
(t3 + t1)

]
I3 ≡ b1bb2b =[
(1+ t3t1)(1+ t2t3) :

(
1+ t2

3
)
(1− t1t2) :

(
1+ t2

3
)
(t1 + t2)

]
.

Figure 5: Incentres I0, I1, I2,I3 of the triangle A1A2A3

6 Equations of the incircles

Now that we have the centres of the incircles, we may de-
termine their quadrances, using the formula for the quad-
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rance from a point to a line, to get

R1 ≡ Q(I1,z1) =
(t1− t2)

2 (t1− t3)
2

(1+ t1t2)
2 (1+ t1t3)

2

R2 ≡ Q(I2,z2) =
(t2− t3)

2 (t2− t1)
2

(1+ t1t2)
2 (1+ t2t3)

2

R3 ≡ Q(I3,z3) =
(t3− t1)

2 (t3− t2)
2

(1+ t1t3)
2 (1+ t2t3)

2 .

Remark 3 Since each incentre will be equidistant to the
three sides of the triangle A1A2A3, we could actually use
any of the tangents z1, z2 or z3 to compute the quadrances
of the incircles.

As a consequence of these formulas, we may make the fol-
lowing deduction:

Theorem 2 If one of the incircles of a triangle has a quad-
rance which is a perfect square, then so do the others.

Proof. If one of the incircles has a quadrance which is a
square, then we can position and dilate it to be the unit cir-
cle using only affine transformations involving the field, in
which case the above formulas hold. Then translating back
and performing an inverse dilation shows that the original
incircles also have square quadrances. �

Figure 6: The four incentres and incircles

7 Coordinates of the nine point centre

The nine-point circle of a triangle is the circumcircle of
the three midpoints of the triangle. The following gives
the affine coordinates for the centre N of this nine point
circle in terms of the affine coordinates of three general
vertices. The formulas are conveniently expressed using
determinants of 3×3 matrices.

Theorem 3 In projective coordinates the centre of the
nine-point circle of the triangle G1G2G3 where G1 =
[1 : a1 : b1], G2 = [1 : a2 : b2] and G3 = [1 : a3 : b3] , is N =
[zN : xN : yN ] where

zN = 4

∣∣∣∣∣∣
a1 b1 1
a2 b2 1
a3 b3 1

∣∣∣∣∣∣
xN =

∣∣∣∣∣∣
a2

1 b1 1
a2

2 b2 1
a2

3 b3 1

∣∣∣∣∣∣−2

∣∣∣∣∣∣
a1b1 a1 1
a2b2 a2 1
a3b3 a3 1

∣∣∣∣∣∣+
∣∣∣∣∣∣

b1 b2
1 1

b2 b2
2 1

b3 b2
3 1

∣∣∣∣∣∣
yN =

∣∣∣∣∣∣
b2

1 a1 1
b2

2 a2 1
b2

3 a3 1

∣∣∣∣∣∣−2

∣∣∣∣∣∣
a1b1 b1 1
a2b2 b2 1
a3b3 b3 1

∣∣∣∣∣∣+
∣∣∣∣∣∣

a1 a2
1 1

a2 a2
2 1

a3 a2
3 1

∣∣∣∣∣∣ .
Proof. Since the nine-point circle of a triangle is the cir-
cumcircle of its median triangle, the nine-point centre is
the intersection of the perpendicular bisectors of the me-
dian triangle. The median triangle has vertices

M1 =
1
2

G2 +
1
2

G3 = [2 : a2 +a3 : b2 +b3]

M2 =
1
2

G1 +
1
2

G3 = [2 : a1 +a3 : b1 +b3]

M3 =
1
2

G1 +
1
2

G2 = [2 : a1 +a2 : b1 +b2] .

The perpendicular bisector of M1M2 has normal vector of
M2−M1 = (a1−a2,b1−b2) and passes through the point
1
2 M1 +

1
2 M2 so we can write it as[

(a1−a2,b1−b2)(
1
4
(a1 +a2 +2a3),

1
4
(b1 +b2 +2b3))

T :

: a1−a2 : b1−b2

]
and, similarly, the perpendicular bisector of M1M3 can be
written as[
(a1−a3,b1−b3)(

1
4
(a1 +2a2 +a3),

1
4
(b1 +2b2 +b3))

T :

: a1−a3 : b1−b3

]
.

The meet of these two lines may then be computed and
re-expressed in terms of determinants as above. �

Theorem 4 For our basic triangle A1A2A3 determined
by parameters t1, t2 and t3, the nine-point centre is N =
[zN : xN : yN ] where

zN = 8(t2t3 +1)(t1t3 +1)(t1t2 +1)
xN =−(3t1t2t3 + t1t2 + t1t3 + t2t3 + t1 + t2 + t3 +3)

· (3t1t2t3− t1t2− t1t3− t2t3 + t1 + t2 + t3−3)
yN = 2(t1 + t2 + t3 +3t1t2t3)(t1t2 + t1t3 + t2t3 +3) .
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Proof. We attain this result by substituting the coordinates
of the three points A1,A2 and A3 into the expressions for
the nine-point centre as determined by the previous theo-
rem and simplifying the result. �

Figure 7: The nine-point centre N of the triangle A1A2A3

8 Quadrance of the nine-point circle

We now come to our first somewhat remarkable calcula-
tion, that anticipates the subtlety of the Feuerbach theorem.

Figure 8: Tangency of the nine-point circle

Theorem 5 The quadrance of the nine-point circle is

RN =

(
t2
1 +1

)2 (t2
2 +1

)2 (t2
3 +1

)2

64(t1t2 +1)2 (t1t3 +1)2 (t2t3 +1)2 .

Proof. Since the median points of a triangle also lie on
the nine-point circle, we can use the nine-point centre and
any of the median points of the triangle A1A2A3 to compute

the quadrance of the nine-point circle. A median point of
A1A2A3 is

M1 =
1
2

A2 +
1
2

A3

=

[
2 :

1− t1t3
1+ t1t3

+
1− t1t2
1+ t1t2

:
t1 + t3
1+ t1t3

+
t1 + t2
1+ t1t2

]
.

So using the formula for the nine-point centre in the previ-
ous theorem, and after some miraculous simplification,

RN = Q(IN ,M1) =

(
−

(3t1t2t3 + t1t2 + t1t3 + t2t3 + t1 + t2 + t3 +3)
(3t1t2t3− t1t2− t1t3− t2t3 + t1 + t2 + t3−3)

8(t2t3 +1)(t1t3 +1)(t1t2 +1)

−
1−t1t3
1+t1t3

+ 1−t1t2
1+t1t2

2

)2

+

(
(t1 + t2 + t3 +3t1t2t3)(t1t2 + t1t3 + t2t3 +3)

4(t2t3 +1)(t1t3 +1)(t1t2 +1)

−
t1+t3
1+t1t3

+ t1+t2
1+t1t2

2

)2

=

(
t2
1 +1

)2 (t2
2 +1

)2 (t2
3 +1

)2

64(t1t2 +1)2 (t1t3 +1)2 (t2t3 +1)2 .

�

Remark 4 Notice that this quadrance for the nine-point
circle is also a square.

Our aim is to establish the Feuerbach theorem, but the pre-
vious results suggest that we can restate this in terms of the
classical theory of oriented cycles, or cyclography.

9 Cyclography

We now introduce a very simple version of the 19th cen-
tury theory of cyclography, but more generally over an ar-
bitrary field F. An oriented circle (note that we employ
the usage of one word) is an affine 3-point C = [a,b,r] in
the affine space A3 over the field F. The affine 2-point
P = [a,b] in A2 is called the centre of C, while the number
r is called the oriented radius of C, and we will also write
C = [P,r] . Two oriented circles are equal precisely when
both their centres and oriented radii agree. A point [x,y]
lies on C = [a,b,r] precisely when

(a− x)2 +(b− y)2 = r2.

This is the equation of a circle c with centre also [a,b]
and quadrance Q = r2. Clearly both C = [a,b,r] and C′ =
[a,b,−r] are associated to the same circle c. Note however
that a general circle cannot be expected to have associated
oriented circles: this will happen precisely when its quad-
rance is a square in F.
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When r = 0 we say the oriented circle is a null circle.
Over the rational numbers such null oriented circles have
only one point lying on them. This gives us the null plane
of null circles inside the three-dimensional space of points
[a,b,r] .

The space of oriented circles is naturally identified with
the three-dimensional affine space A3 over F. The ge-
ometry of oriented circles however embues this three-
dimensional space A3 with a relativistic 2 + 1 quadratic
form. In the rational case, non-horizontal lines (not in a
plane of the form r = r0) in this space A3 correspond to
pencils of homothetic oriented circles, with the meets of
such lines with the plane of null circles giving the (ori-
ented) homothetic centres.

To discuss homothetic centres, let’s agree to the useful
convention that if P = [a,b,c] is an affine point and v =
[r,s, t] is a vector, then P+ v is the affine point P+ v =
[a+ r,b+ s,c+ t] . Then for α 6= 0, the dilation centred
at P by α is the bijection of the plane that sends P+ v to
P+αv. The inverse is clearly the dilation centred at P by
α−1.

Proposition 1 The unique homothetic centre for the ori-
ented circles C1 = [a1,b1,r1] and C2 = [a2,b2,r2] where
r1 6= r2 is

P =

[
a1r2−a2r1

r2− r1
,

b1r2−b2r1

r2− r1

]
.

If r1 6= 0 then the dilation in the plane with centre P by a
factor of r2/r1 sends C1 to C2, and if r2 6= 0 then the plane
dilation with centre P by a factor of r1/r2 sends C2 to C1.

Proof. If C1 = [a1,b1,r1] and C2 = [a2,b2,r2] are circles
with r1 6= r2, then the vector w = (a2−a1,b2−b1,r2− r1)
is not horizontal, and so the line through those points of
the parametric form

[a1,b1,r1]+λw

will meet the null plane when r1+λ(r2− r1) = 0. This oc-
curs precisely when λ = − r1

r2−r1
and gives the point [P,0]

where P is the homothetic centre

P =

[
1

r2− r1
(a1r2−a2r1) ,

1
r2− r1

(b1r2−b2r1)

]
. �

Thus we can write

[a1,b1,r1] = [P,0]+
r1

r2− r1
w and

[a2,b2,r2] = [P,0]+
r2

r2− r1
w

which proves that if r1 6= 0 then the plane dilation centred
at P by r2/r1 sends C1 to C2, and similarly if r2 6= 0 then
the dilation by r1/r2 sends C2 to C1.

A point A1 lying on C1 and a point A2 lying on C2 are
homologous if they are images of each other under these
dilations. Now a dilation is an affine map, so directions are
maintained, in the sense that the vector determined by the
image of two points will be a multiple of the vector deter-
mined by the two points themselves. It follows that if A1
lying on C1 and a point A2 lying on C2 are homologous,
then the vector

−−→
C1A1 will be a multiple of the vector

−−→
C2A2.

This yields a direct construction of the homologous point
A2 to A1 once the homothetic centre is determined.

Three points in F3 generally determine a plane, and the
meet of such with the null plane will be a line, giving an
easy proof of a theorem of Monge that the three homothetic
centres of three oriented circles are in general collinear.
However if we start with ordinary, unoriented circles that
have square quadrances, then due to the choices of possi-
ble orientations there will be determined four such Monge
lines.

Definition 1 The quadrance between oriented circles
C1 = [a1,b1,r1] and C2 = [a2,b2,r2] is

Q(C1,C2)≡ (a2−a1)
2 +(b2−b1)

2− (r2− r1)
2 .

In the case of disjoint oriented circles in the rational num-
ber plane which are not contained in each other, this quad-
rance has the interpretation of the quadrance along a com-
mon homothetic tangent, meaning a tangent which passes
through the homothetic centre.

Definition 2 The oriented circles C1 = [a1,b1,r1] and
C2 = [a2,b2,r2] are tangent precisely when r1 6= r2 and
Q(C1,C2) = 0.

In other words, when the quadrance between their centres
is equal to the square of this (non-zero) difference of their
oriented radii, that is when

(a2−a1)
2 +(b2−b1)

2 = (r2− r1)
2 .

Example 1 The oriented circles C = [0,0,1] and D =
[2,0,1] are not tangent, even though their associated cir-
cles are. However the oriented circles C = [0,0,1] and
E = [2,0,−1] are tangent.

It is easy to see that if two oriented circles are tangent,
then so are their associated circles. One of the advantages
of the cyclographic set-up is that the points of tangency for
oriented circles can be obtained very directly.
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Theorem 6 (Oriented tangency) If the oriented circles
C1 = [a1,b1,r1] and C2 = [a2,b2,r2] are tangent then they
meet at exactly one point, which is

J =
r2

r2− r1
[a1,b1]−

r1

r2− r1
[a2,b2]

=[r2− r1 : r2a1− r1a2 : r2b1− r1b2] .

Proof. If the two oriented circles meet tangentially, they
will do so on the line joining their centres, so we can con-
sider a general affine combination

J =(1− t) [a1,b1]+ t [a2,b2]

=[ta2−a1 (t−1) , tb2−b1 (t−1)] .

Now in order for this to lie on C1 we require that

(ta2−a1 (t−1)−a1)
2 +(tb2−b1 (t−1)−b1)

2 = r2
1

which is just(
(a2−a1)

2 +(b2−b1)
2
)

t2 = r2
1.

But given that the two oriented circles are tangent, we can
rewrite this as

(r2− r1)
2 t2 = r2

1

so that

t =± r1

r2− r1
.

Similarly the condition that J lies on C1 is

(ta2−a1 (t−1)−a2)
2 +(tb2−b1 (t−1)−b2)

2 = r2
2

or
(r2− r1)

2 (1− t)2 = r2
2

so that 1− t =± r2
r2−r1

.

Now if t = r1
r2−r1

then 1− t = 1− r1
r2−r1

= 1
r2−r1

(r2−2r1)

and for this to equal ± r2
r2−r1

we would require either
r2−2r1 = r2 which would imply r1 = 0; or r2−2r1 =−r2
which would imply r1 = r2 which is not allowed. It follows
that t =− r1

r2−r1
so that 1− t = 1+ r1

r2−r1
= r2

r2−r1
. �

10 A cyclographic proof of the Feuerbach
theorem

We now show that the Incentre story we have developed so
far fits into this cyclographic point of view. Recall the four
incentres

I0 = [1 : 0 : 0]

I1 =
[
(1+ t1t2)(1+ t1t3) :

(
1+ t2

1

)
(1− t2t3) :

(
1+ t2

1

)
(t2 + t3)

]
I2 =

[
(1+ t1t2)(1+ t2t3) :

(
1+ t2

2

)
(1− t1t3) :

(
1+ t2

2

)
(t1 + t3)

]
I3 =

[
(1+ t1t3)(1+ t2t3) :

(
1+ t2

3

)
(1− t1t2) :

(
1+ t2

3

)
(t1 + t2)

]
.

And now introduce associated oriented radii, which are

r0 ≡ 1

r1 ≡
(t1− t2)(t1− t3)
(1+ t1t2)(1+ t1t3)

r2 ≡
(t2− t3)(t2− t1)
(1+ t1t2)(1+ t2t3)

r3 ≡
(t3− t1)(t3− t2)
(1+ t1t3)(1+ t2t3)

.

We have made some deliberate choices here. The nine-
point centre is

N ≡ [xN ,yN ] =
[
8w : u2− v2 : 2uv

]
where

v = t1 + t2 + t3 +3t1t2t3, u = t1t2 + t1t3 + t2t3 +3 and

w = (t2t3 +1)(t1t3 +1)(t1t2 +1) .

Introduce its associated oriented radius (noting the nega-
tive sign):

rN ≡−
(
t2
1 +1

)(
t2
2 +1

)(
t2
3 +1

)
8(t1t2 +1)(t1t3 +1)(t2t3 +1)

=−
(
t2
1 +1

)(
t2
2 +1

)(
t2
3 +1

)
8w

= 1− v2 +u2

8w
.

We have here used the identity

u2 + v2 =(
t2
1 +1

)(
t2
2 +1

)(
t2
3 +1

)
+8(t2t3 +1)(t1t3 +1)(t1t2 +1) .

Now we are able to both state and prove Feuerbach’s the-
orem in both a stronger and a more general setting: valid
over a general field, and with an oriented aspect.

Theorem 7 (Oriented Feuerbach theorem) The ori-
ented circle CN ≡ [N,rN ] is tangent to each of the ori-
ented circles C0 ≡ [I0,r0] ,C1 ≡ [I1,r1] ,C2 ≡ [I2,r2] and
C3 ≡ [I3,r3] .

Proof. We first establish the easier tangency of CN and C0
by first introducing the coordinates of N and rN as above
as

N = [xN ,yN ] =

[
u2− v2

8w
,

uv
4w

]
and rN = 1− u2 + v2

8w
.

Then the cyclographic condition for tangency of CN and C0
is x2

N + y2
N− (rN−1)2 = 0 which becomes(

u2− v2

8w

)2

+

(
2uv
8w

)2

=

(
v2 +u2

8w

)2

which is automatic.
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Now let’s consider the more challenging tangency of CN
and C1, which amounts to the condition(

xN−
(
1+ t2

1
)
(1− t2t3)

(1+ t1t2)(1+ t1t3)

)2

+

(
yN−

(
1+ t2

1
)
(t2 + t3)

(1+ t1t2)(1+ t1t3)

)2

=

(
rN−

(t1− t2)(t1− t3)
(1+ t1t2)(1+ t1t3)

)2

which we can write more concisely as(
u2− v2

8w
−
(
1+ t2

1
)(

1− t2
2 t2

3
)

w

)2

+

(
2uv
8w
−
(
1+ t2

1
)
(t2 + t3)(1+ t2t3)

w

)2

=

(
1− u2 + v2

8w
− (t1− t2)(t1− t3)(1+ t2t3)

w

)2

.

Now after establishing common denominators, the numer-
ators of the terms in this equation will be

A≡ u2− v2−8
(
1+ t2

1
)(

1− t2
2 t2

3
)

=− t2
1 t2

2 t2
3 + t2

1 t2
2 + t2

1 t2
3 +9t2

2 t2
3 −4t2

1 t2t3−4t1t2
2 t3

−4t1t2t2
3 +4t1t2 +4t1t3 +4t2t3−9t2

1 − t2
2 − t2

3 +1

B≡ 2uv−8
(
1+ t2

1
)
(t2 + t3)(1+ t2t3)

=−2t2
1 t2

2 t3−2t2
1 t2t2

3 +6t1t2
2 t2

3 −6t2
1 t3−6t2

2 t3−6t2t2
3

−6t2
1 t2 +2t1t2

2 +2t1t2
3 +24t1t2t3 +6t1−2t2−2t3

and

C ≡ 8w−
(
u2 + v2)−8(t1− t2)(t1− t3)(1+ t2t3)

=− t2
1 t2

2 t2
3 − t2

1 t2
2 − t2

1 t2
3 −9t2

2 t2
3 −8t2

1 t2t3 +8t1t2
2 t3

+8t1t2t2
3 +8t1t2 +8t1t3−8t2t3−9t2

1 − t2
2 − t2

3 −1

and then A2 +B2 = C2 is a valid Pythagorean identity in
t1, t2 and t3. This establishes the tangency of CN and C1,
and the cases of CN and C2, and CN and C3, follow sym-
metrically. �

Feuerbach’s theorem is then a consequence because we
know tangency of oriented circles implies tangency of the
associated circles. Note that our proof extends the oriented
version, which is more powerful than the original, to gen-
eral fields.

We may now well ask: what is the geometric meaning of
“oriented circles” over more general fields, for example
the complex numbers, or a finite field? We do not have a
good answer to this interesting question at this point. It ap-
pears that our understanding of universal geometry is still
in early stages!

11 Points of tangency

We can now use the Oriented tangency theorem to find the
points of tangency of the incircles with the nine-point cir-
cle to be:

J0 ≡C0CN =
rN [x0,y0]− r0 [xN ,yN ]

rN− r0

= [r0− rN : r0xN− x0rN : r0yN− y0rN ]

J1 ≡C1CN =
rN [x1,y1]− r1 [xN ,yN ]

rN− r1

= [r1− rN : r1xN− x1rN : r1yN− y1rN ]

J2 ≡C2CN =
rN [x2,y2]− r2 [xN ,yN ]

rN− r2

= [r2− rN : r2xN− x2rN : r2yN− y2rN ]

J3 ≡C3CN =
rN [x3,y3]− r3 [xN ,yN ]

rN− r3

= [r3− rN : r3xN− x3rN : r3yN− y3rN ] .

12 Additional features in finite fields

Our geometrical intuition has been directed for thousands
of years by physical constructions on flat surfaces. But
with the view of Rational trigonometry, we see that met-
rical theorems can be investigated even over finite fields.
The formulas that we have so far derived In our set-up of
the Feuerbach theorem are applicable to arbitrary fields,
but there are additional aspects that appear which we can
illustrate in the simple case of a finite prime field Fp.

We assumed that the three original t values that determined
the original points on the unit circle were distinct, that no
t value satisfies t2 =−1, and that the product of any two t
values is not equal to −1. In addition we usually separate
the case where the oriented radius of the nine-point circle
is equal to the oriented radius of any of the incircles, for
example if we start with an equilateral triangle.

It is of some interest to investigate cases over a finite field
when such assumptions are not necessarily holding. This
leads to situations where aspects of the Feuerbach frame-
work hold, but others do not which will be unfamiliar to
the student of Euclidean geometry over the real or ratio-
nal numbers. Finite field geometry is a rich ground which
holds the promise to enrich the subject and strengthen ties
to number theory and combinatorics.

To focus the discussion, we consider the case of working
in the field F17. When one of our formulas does not ap-
ply, because a denominator in the affine expression is 0,
we substitute a blank −.
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13 Examples in F17

13.1 Example 1: t-values of {3,7,15}

Figure 9: Example 1 with t values of 3,7,15 in F17

With these t-values, letting t1 = 3, t2 = 7 and t3 = 15, we
obtain the following:

A1 = [8,14]
A2 = [2,10]
A3 = [13,2]

I0 = [0,0]
I1 = [11,15]
I2 = [9,11]
I3 = [5,6]
N = [2,9]

r0 = 1
r1 = 11
r2 = 12
r3 = 2
rN = 1

J0 =−
J1 = [13,5]
J2 = [6,15]
J3 = [16,12]

Since r0 = rN , the expressions for the coordinates of the
corresponding point of tangency J0 will be undefined.

Remark 5 Such a case does not arise when working in
the rational field. This is because only one of the incir-
cles has a radii with the same sign as that of the nine-point
circle, and that incircle can only have the same radius as
the nine-point circle if their centres coincide (which only
occurs when the starting triangle is equilateral).

13.2 Example 2: t-values of {2,7,11}

Figure 10: Example 2 with t values of 2,7,11 in F17

With these t-values, letting t1 = 2, t2 = 7 and t3 = 11, we
obtain the following:

A1 = [6,12]
A2 = [5,5]
A3 = [15,4]

I0 = [0,0]
I1 = [9,1]
I2 = [10,10]
I3 = [7,3]
N = [14,13]

r0 = 1
r1 = 9
r2 = 1
r3 = 4
rN = 13

J0 = [13,6]
J1 = [2,8]
J2 = [4,14]
J3 = [2,8]

Since the radius of the nine-point circle is not the same
as the radius of any of the incircles this time, none of the
t-values are a square root of −1 and no product of two t-
values is −1, we can show that the nine-point circle is tan-
gent to the four incircles of the triangle A1A2A3. However,
we do run into the issue of J1 and J3 coinciding.

Remark 6 While a proof is not attempted here, it is sus-
pected that there does not exist a case where all the tangent
points exist and are distinct in F17, based on extensive (but
not exhaustive) testing of different combinations of t-values
in F17. This is most likely a result of F17 being “too small”
for all J points to be distinct.
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13.3 Example 3: t-values of {4,7,15}

Figure 11: Example 3 with t values of 4,7,15 in F17

With these t-values, we have exactly one square root of−1
and no products for −1. Letting t1 = 4, t2 = 7 and t3 = 15,
we obtain the following:

A1 = [8,14]
A2 = [6,7]
A3 = [2,8]

I0 = [0,0]
I1 = [0,0]
I2 = [3,12]
I3 = [3,12]
N = [3,3]

r0 = 1
r1 = 16
r2 = 8
r3 = 9
rN = 0

J0 = [3,3]
J1 = [3,3]
J2 = [3,3]
J3 = [3,3]

As expected, since we have a square root of −1 in our t-
values, we get overlapping incentres and a nine-point ra-
dius of zero, resulting in all the points of tangency concen-
trating at the nine-point centre. These overlapping coordi-
nates are a result of the factor

(
1+ t2

1
)

going to zero since
t1 is a square root of −1 in our field. This means that I1
has both coordinates go to zero while I2 and I3 simplify
to get the same coordinates. This case results in the nine-
point circle becoming a null circle. Notably, since we do
not have any products of t-values giving −1, we are still
able to find coordinates for all the significant points.

14 A complete finite field example in F23

If we choose our t-values in F23 to be t1 = 2, t2 = 5 and
t3 = 13, we obtain the following:

A1 = [6,17]
A2 = [11,21]
A3 = [18,9]

I0 = [0,0]
I1 = [22,1]
I2 = [19,7]
I3 = [1,12]
N = [18,21]

r0 = 1
r1 = 18
r2 = 7
r3 = 8
rN = 13

J0 = [10,4]
J1 = [3,4]
J2 = [1,6]
J3 = [6,16]

Since we can find a nice example in F23 without any sig-
nificant points overlapping, we know that the “smallest”
prime finite field for the Feuerbach theorem (which we can
think of as the finite field of least order such that all signif-
icant points can be distinct with an appropriate choice of
t-values) will be less that or equal to F23. It is perhaps in-
teresting to consider this kind of question, which has both
a geometrical, a combinatorial, and a number theoretic as-
pect simultaneously.

Figure 12: When t1 = 2, t2 = 5 and t3 = 13, we get the
following constructions in F2

23
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