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Abstract. Let R be a ring with identity and let JR be a collection
of subsets of R such that their left and right annihilators are generated by
the same idempotent. We extend the notion of the sharp, the left-sharp,
and the right-sharp partial orders to JR, present equivalent definitions of

these orders, and study their properties. We also extend the concept of
the core and the dual core orders to JR, show that they are indeed partial
orders when R is a Baer ∗-ring, and connect them with one-sided sharp
and star partial orders.

1. Introduction

Let S be a semigroup and a ∈ S. We say that a has an inner generalized

inverse a− ∈ S if a = aa−a, and a reflexive generalized inverse a′ ∈ S if a =
aa′a, a′ = a′aa′. A semigroup in which every element has an inner generalized
inverse is called a regular semigroup. A reflexive generalized inverse of a that
commutes with a is called the group inverse of a. The group inverse, which
is unique if it exists (see [10]), is denoted by a♯.

Let R be a ring and let us denote by G(R) the subset of elements in R
which have the group inverse. Let Mn(F) be the ring of all n×n matrices over
a field F. In [18] (see also [19]), Mitra introduced the sharp partial order on
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G(Mn(F)). This order was generalized in [15] to G(R) where R is an arbitrary
ring with identity: For a, b ∈ G(R) we write

(1.1) a ≤♯ b if a♯a = a♯b and aa♯ = ba♯.

In [15], it was shown that ≤♯ is indeed a partial order on G(R). Recently
an application of this order to autonomous linear systems has been presented
in [11]. In particular, if real n × n state matrices of two autonomous linear
systems are related under the sharp partial order, then the difference of their
solutions is again a solution of another autonomous linear system. The minus

partial order ≤− is another well-known partial order on a semigroup whose
elements have reflexive generalized inverses. This order was originally defined
by Hartwig in [9]. For a regular semigroup S and a, b ∈ S we write

(1.2) a ≤− b if a′a = a′b and aa′ = ba′

where a′ is a reflexive generalized inverse of a. It turns out that a ≤− b if and
only if a−a = a−b and aa− = ba− for some inner generalized inverse a− of
a. We remark that the minus partial order was one of the first orders which
was generalized and extensively studied in the literature. Let us present a
brief summary of some results on this order. This also motivates the main
definitions (see Definitions 2.2–4.4) of the sharp and related partial orders
which is the main topic of our study. The main idea is to describe the orders
in terms of the annihilators.

The algebra B(H) of all bounded linear operators on a Hilbert space H is
an example of a semigroup that is not necessarily regular. Namely, A ∈ B(H)
is regular if and only if the image of A is closed (see for example [21]). It
follows that if H is finite dimensional, then B(H) is a regular semigroup. Let
KerA, Im A, Im A denote the kernel, the image and the closure of the image
of A ∈ B(H), respectively. Motivated by Hartwig’s definition of the minus
partial order (1.2), Šemrl introduced in [23] a new order ≤S on B(H) in the
following way: For A,B ∈ B(H) we write A ≤S B if there exist idempotent
operators P,Q ∈ B(H) such that Im P = Im A, KerA = KerQ, PA = PB,
and AQ = BQ. Šemrl called this order the minus partial order on B(H) and
proved that this is indeed a partial order on B(H) for a general Hilbert space
H. He also showed that the partial order ≤S is the same as Hartwig’s minus
partial order ≤− when H is finite dimensional.

For a subset A of a ring R, let lR(A) = {x ∈ R : xa = 0 for every a ∈ A}
and rR(A) = {x ∈ R : ax = 0 for every a ∈ A} stand for the left annihilator
and the right annihilator of A inR, respectively. If the subset A is a singleton,
say A = {a}, then we simply write lR(a) and rR(a), respectively. A ring R
is called a Rickart ring if for every a ∈ A there exist idempotent elements
p, q ∈ A such that rR(a) = pA and lR(a) = Aq. Note that every Rickart ring
A has the (multiplicative) identity (see [4] or [12]). An example of a Rickart
ring is the algebra B(H). Observe that for A,B ∈ B(H) we have (see [17,
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Lemma 2.1])

rB(H)(A) = rB(H)(B) if and only if KerA = KerB

and

lB(H)(A) = lB(H)(B) if and only if Im B = Im A.

Unless stated otherwise, let R denote a ring with the multiplicative iden-
tity 1 from now on. Note that for an idempotent p ∈ R, lR(p) = R(1 − p)
and rR(p) = (1 − p)R (see [5, Lemma 2.1]). These observations lead to
the following generalization of the minus order ([5, Definition 2.1]). For
a, b ∈ R we write a ≤− b if there exist idempotent elements p, q ∈ R such that
lR(a) = R(1 − p), rR(a) = (1− q)R, pa = pb, and aq = bq. It was shown in
[5] that this is indeed a partial order when R is a Rickart ring.

In [12], Baer rings were introduced as rings in which the right annihilator
of every subset is the principal right ideal generated by an idempotent. In
a Baer ring, left annihilators are also idempotent-generated, so clearly, every
Baer ring is a Rickart ring. A ring equipped with an involution ∗ is called
a ∗-ring. A ∗-ring R is said to be a Baer ∗-ring if for every subset A of R,
the right (equivalently, left) annihilator of A is the principal right (left) ideal
generated by a projection (i.e. a self-adjoint idempotent). In [24], the notion
of the minus partial order was extended to the power sets of Baer rings. We
denote the power set of a ring R by P(R). Let R be a ring and A,B ⊆ R.
We write

(1.3) A ≤− B if lR(A) = lR(p), rR(A) = rR(q), pA = pB,Aq = Bq

for some idempotent elements p, q ∈ R. We call the relation ≤− the minus
relation on P(R).

In [24], it was proved that when R is a Baer ring, the relation introduced
with (1.3) is a partial order on P(R).

For a ring R with identity, let

IR = {a ∈ R : rR(a) = rR(p) and lR(a) = lR(p)

for some idempotent p ∈ R}.

It turns out (see [22]) that when R = B(H) with dimH < ∞, IR is exactly
the set G(R) of all group invertible operators in B(H). Independently to
[15] where definition (1.1) was introduced, Rakić presented in [22] another
generalization of the sharp partial order to rings using annihilators. Namely,
for a, b ∈ R, we say that a ≤♯ b if a ∈ IR and a = pb = bp for some idempotent
p ∈ R with rR(a) = rR(p) and lR(a) = lR(p).

Let now

JR = {A ⊆ R : rR(A) = rR(p) and lR(A) = lR(p)

for some idempotent p ∈ R}.



180 G. DOLINAR, B. KUZMA, J. MAROVT AND B. UNGOR

The first goal of this paper is to extend the concept of the sharp partial order
≤♯ (introduced on IR by Rakić in [22]) to JR and study its properties. This
is done in Section 2. In Section 3 we present the concept of the left-sharp and
the right-sharp partial orders on JR, and finally, in Section 4, we introduce
the core and the dual core partial orders to JR and show that they are indeed
partial orders when the ring R is a Baer ∗-ring.

2. The sharp order

Suppose A ∈ JR and let p, q ∈ R be two idempotents such that rR(A) =
rR(p), lR(A) = lR(p), and rR(A) = rR(q), lR(A) = lR(q). It follows that
lR(p) = lR(q) and rR(p) = rR(q), and therefore (1 − p)q = 0 = q(1 − p), i.e.
q = pq = qp, and (1− q)p = 0 = p(1− q), i.e. p = qp = pq. We may conclude
that the idempotent p ∈ R, such that rR(A) = rR(p) and lR(A) = lR(p) for
A ∈ JR, is unique. We denote it by pA.

Remark 2.1. Let A ∈ JR. Since then rR(A) = rR(pA) and lR(A) =
lR(pA), it follows that (1− pA)A = 0 = A(1 − pA) and thus

A = pAA = ApA.

We now introduce the notion of the sharp order on JR.

Definition 2.2. Let A ∈ JR and B ⊆ R. We write A ≤♯ B when

pAA = pAB and ApA = BpA. We call the relation ≤♯ the sharp order on JR.

Next, we show that the relation ≤♯ is a partial order for any ring R with
identity. First, let us present an auxiliary result.

Lemma 2.3. Let A ∈ JR, B ⊆ R, and A ≤♯ B. Then rR(B) ⊆ rR(A)
and lR(B) ⊆ lR(A).

Proof. Let A ≤♯ B. Then pAA = pAB, and ApA = BpA. By Remark
2.1, A = pAB = BpA. Suppose d ∈ rR(B). Then Bd = 0 and thus pABd = 0.
Hence, Ad = 0, i.e. d ∈ rR(A). So, rR(B) ⊆ rR(A). We similarly show that
lR(B) ⊆ lR(A).

Theorem 2.4. The relation ≤♯ introduced with Definition 2.2 is a partial

order on JR.

Proof. Reflexivity: Clearly, A ≤♯ A for every A ∈ JR.
Antisymmetry: Let A,B ∈ JR with A ≤♯ B and B ≤♯ A. Then pAA =

pAB, ApA = BpA, and pBB = pBA, BpB = ApB. Since then A = pAB = BpA
and B = pBB = BpB = pBA = ApB, it follows that A = pAB = pABpB =
ApB = B.

Transitivity: Let A,B ∈ JR and C ⊆ R with A ≤♯ B and B ≤♯ C. Then
pAA = pAB, ApA = BpA, and pBB = pBC, BpB = CpB. By Lemma 2.3, we
have rR(pB) = rR(B) ⊆ rR(A) = rR(pA) and lR(pB) = lR(B) ⊆ lR(A) =
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lR(pA). So, pA(1 − pB) = 0 = (1 − pB)pA and thus pA = pApB = pBpA.
From BpB = CpB we obtain BpBpA = CpBpA and thus ApA = BpA = CpA.
Similarly, pBB = pBC yields pAA = pAB = pAC. It follows that A ≤♯ C.

With the next result we present new characterizations (i.e. equivalent
definitions) of the sharp partial order on JR.

Theorem 2.5. Let A ∈ JR and B ⊆ R. Then the following statements

are equivalent.

(i) A ≤♯ B.
(ii) There exists an idempotent p ∈ R such that A = pAp = pBp, pB(1−

p) = {0}, and (1− p)Bp = {0}.
(iii) There exists an idempotent p ∈ R such that lR(p) ⊆ lR(A), rR(p) ⊆

rR(A), pA = pB, and Ap = Bp.
(iv) There exists an idempotent p ∈ R such that A = pB = Bp.

Proof. (i)⇒(ii): Trivial.
(ii)⇒(iii): Suppose there exists an idempotent p ∈ R such that A =

pAp = pBp, pB(1 − p) = {0}, and (1 − p)Bp = {0}. Then pB = pBp and
Bp = pBp and therefore

pA = A = Ap = pBp = pB = Bp.

Also, (1 − p)A = {0} = A(1 − p) and therefore lR(p) ⊆ lR(A) and rR(p) ⊆
rR(A).

(iii)⇒(i): Suppose (iii) holds. Since lR(p) ⊆ lR(A), rR(p) ⊆ rR(A), we
have lR(p) ⊆ lR(pA), rR(p) ⊆ rR(pA), and thus pA(1 − p) = 0 = (1 − p)pA,
i.e. pAp = pA = ppA. From pA = pB, Ap = Bp, we obtain pApA = pApB,
AppA = BppA, and hence pAA = pAB , ApA = BpA, i.e. A ≤♯ B.

(iii)⇒(iv): Suppose there exists an idempotent p ∈ R such that lR(p) ⊆
lR(A), rR(p) ⊆ rR(A), pA = pB, and Ap = Bp. Since then (1 − p)A =
A(1 − p) = {0} it follows that A = pA = Ap and thus A = pB = Bp.

(iv)⇒(iii): Suppose A = pB = Bp for some idempotent p ∈ R. Then
(1−p)A = A(1−p) = {0} and thus lR(p) ⊆ lR(A) and rR(p) ⊆ rR(A). Also,
clearly, pA = pB and Ap = Bp.

3. The one-sided sharp orders

The sharp partial order (1.1) is defined with two conditions. If one of these
conditions is removed and perhaps some milder condition is added, does one
still get a partial order? Following definition (1.1), the left-sharp and the
right-sharp partial orders were introduced on G(R) in [16]. For a, b ∈ G(R)
we write

a ♯≤ b if a♯a = a♯b and lR(b) ⊆ lR(a)

and
a ≤♯ b if aa♯ = ba♯ and rR(b) ⊆ rR(a).
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The relations ♯≤ and ≤♯ are called the left-sharp order and the right-sharp
order on G(R), respectively. In [16], it was shown that these relations are
partial orders when R is a ring with identity. It was also proved that for
a ∈ G(R) and b ∈ R the following holds: a♯a = a♯b if and only if p{a}a = p{a}b,

and aa♯ = ba♯ if and only if ap{a} = bp{a} (here it turns out that p{a} = aa♯

(see [16, Lemma 2.1])). Following these observations, we now extend the
concept of one-sided sharp orders to JR.

Definition 3.1. Let A ∈ JR and B ⊆ R.

(i) We write A♯≤ B when pAA = pAB and lR(B) ⊆ lR(A). We call the

relation ♯≤ the left-sharp order on JR.

(ii) We write A ≤♯B when ApA = BpA and rR(B) ⊆ rR(A). We call the

relation ≤♯ the right-sharp order on JR.

We show that these relations are partial orders on JR when R is a ring
with identity. First, let us present a lemma which can be proved in a similar
way as Lemma 2.3 and hence we omitted its proof.

Lemma 3.2. Let A ∈ JR and B ⊆ R. If A♯≤ B, then rR(B) ⊆ rR(A),
and if A ≤♯B, then lR(B) ⊆ lR(A).

Theorem 3.3. The relations ♯≤ and ≤♯ introduced with Definition 3.1

are partial orders on JR.

Proof. Let us show that the left-sharp order ♯≤ is a partial order on
JR. The proof that the right-sharp order ≤♯ is a partial order is similar and
we omit it.

Reflexivity clearly holds.
Antisymmetry: LetA,B ∈ JR withA♯≤ B and B♯≤ A. ThenA = pAA =

pAB, B = pBB = pBA, and lR(B) = lR(A). Since (1 − pB)B = {0}, we have
(1−pB)A = {0} which implies A = pBA. It follows thatA = pBA = pBB = B.

Transitivity: Let A,B ∈ JR and C ⊆ R with A♯≤ B and B♯≤ C. Then
pAA = pAB, lR(B) ⊆ lR(A), and pBB = pBC, lR(C) ⊆ lR(B). It follows that
lR(C) ⊆ lR(A). Also, by Lemma 3.2, we have rR(pB) = rR(B) ⊆ rR(A) =
rR(pA). So, pA(1−pB) = 0 and thus pA = pApB. From pBB = pBC we obtain
pApBB = pApBC and thus pAA = pAB = pAC, i.e. A♯≤ C.

Theorem 3.4. Let A ∈ JR and B ⊆ R. Then the following statements

are equivalent.

(i) pAA = pAB.
(ii) There exists an idempotent p ∈ R such that A = pAp = pBp and

pB(1− p) = {0}.
(iii) There exists an idempotent p ∈ R such that rR(p) ⊆ rR(A) and pA =

pB.
(iv) For every a ∈ A there exists b ∈ B such that b − a ∈ rR(A) and for

every b ∈ B there exists a ∈ A such that b− a ∈ rR(A).
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Proof. Let A ∈ JR and B ⊆ R.
(i)⇒(ii): Suppose (i) holds. By Remark 2.1, A = pAA = ApA and there-

fore A = pAApA. Since pAA = pAB, it follows that A =pABpA. Also, since
pABpA = A = pAB, it follows that pAB(1− pA) = {0}.

(ii)⇒(iii): Since (ii) holds, pB(1 − p) = {0} for some idempotent p ∈ R
and thus pB = pBp. We also have A = pAp = pBp. So, pA = A and
A = pBp = pB, and therefore pA = pB. Also, A(1 − p) = {0} and hence
rR(p) ⊆ rR(A).

(iii)⇒(i): Since (iii) holds, it follows that rR(p) ⊆ rR(pA) for some idem-
potent p ∈ R which yields pA(1 − p) = 0, i.e. pA = pAp. From pA = pB we
have pApA = pApB and hence pAA = pAB.

(iv)⇔(i): Let a be any element in A and recall that rR(A) = rR(pA).
Then there exists b ∈ B such that b − a ∈ rR(A), i.e. A(b − a) = {0}, if and
only if pA(b − a) = 0, i.e. pAa = pAb. So, for every a ∈ A there exists b ∈ B
such that b − a ∈ rR(A) if and only if pAA ⊆pAB. We similarly prove that
for every b ∈ B there exists a ∈ A such that b − a ∈ rR(A) if and only if
pAB ⊆pAA.

Remark 3.5. Note that if (i) holds, then in (ii) we can always take
p = pA. However, (ii) is not restricted to pA. Say, if A = {2E11} ⊆ M3(R)
and B = {2E11+3E22} ⊆ M3(R), we may take p = E11+E33 ∈ M3(R). Here
Eij , 1 ≤ i, j,≤ n denotes the standard basis of Mn(R).

The following theorem could be shown similarly.

Theorem 3.6. Let A ∈ JR and B ⊆ R. Then the following statements

are equivalent.

(i) ApA = BpA.
(ii) There exists an idempotent p ∈ R such that A = pAp = pBp and

(1− p)Bp = {0}.
(iii) There exists an idempotent p ∈ R such that lR(p) ⊆ lR(A) and Ap =

Bp.
(iv) For every a ∈ A there exists b ∈ B such that b − a ∈ lR(A) and for

every b ∈ B there exists a ∈ A such that b− a ∈ lR(A).

Note that the three statements of Theorem 3.4 combined with the condi-
tion on left annihilators, i.e. lR(B) ⊆ lR(A), represent three equivalent defini-
tions of the left-sharp order on JR. Similarly, the three statements of Theorem
3.6 combined with the condition on right annihilators, i.e. rR(B) ⊆ rR(A),
represent three equivalent definitions of the right-sharp order on JR.

In [16], it was proved that for a ∈ G(R) and b ∈ R the following holds:
p{a}a = p{a}b if and only if a2 = ab, and ap{a} = bp{a} if and only if a2 = ba.
Does an analogue of this result hold for A ∈ JR and B ⊆ R?

Lemma 3.7. Let A ∈ JR and B ⊆ R. If pAA = pAB, then A2 = AB,
and if ApA = BpA, then A2 = BA.
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Proof. Let A ∈ JR. By Remark 2.1 we have A = pAA = ApA. If
pAA = pAB for B ⊆ R, then AB = ApAB = ApAA = A2. We similarly
prove that ApA = BpA, implies A2 = BA.

The converse of Lemma 3.7 need not be true in general as the following
example shows.

Example 3.8. Let Z6 denote the ring of integers modulo 6. Then Z6 is a
commutative ring and all of the idempotents of Z6 are 0, 1, 3, and 4. Consider
the subsets A = {0, 3} and B = {1} of Z6. We have rZ6

(A) = rZ6
(3) = 4

and lZ6
(A) = lZ6

(3) = 4, and thus A ∈ JZ6
and pA = 3. On the one hand,

A2 = A = AB, but on the other hand, pAA = A and pAB = {3}, and so
pAA 6= pAB.

Rakić introduced another generalization of the left-sharp and the right-
sharp orders in [22]. Namely, for a, b ∈ R, we say that a♯1≤ b if a ∈ IR
and a = p{a}b = bq for some idempotent q ∈ R with rR(a) = rR(q). We
write a ≤♯1b if a ∈ IR and a = qb = bp{a} for some idempotent q ∈ R with
lR(a) = lR(q). Following this approach, we now introduce two new relations
on JR and then prove that they again represent partial orders on JR.

Definition 3.9. Let A ∈ JR and B ⊆ R.

(i) We write A♯1≤ B when there exists an idempotent q with rR(A) =
rR(q) and

A = pAB = Bq.

(ii) We write A ≤ ♯1B when there exists an idempotent q with lR(A) =
lR(q) and

A = qB = BpA.

Theorem 3.10. The relations ♯1≤ and ≤♯1 introduced with Definitions

3.9 are partial orders on JR.

Proof. We show that ♯1≤ is a partial order on JR. The proof that ≤♯1
is a partial order on JR is similar and so we omit it.

Reflexivity is clear since A ∈ JR and thus A = pAA = ApA.
Antisymmetry: Let A,B ∈ JR with A♯1≤ B and B♯1≤ A. Then A =

pAB = Bq for some idempotent q ∈ R with rR(A) = rR(q), and B = pBA =
Ar for some idempotent r ∈ R with rR(B) = rR(r). Since A = Bq and
B = Ar, it follows that lR(A) = lR(B) and therefore lR(A) = lR(pB). So,
(1− pB)A = {0} and therefore A = pBA. This yields

A = pBA = B.

Transitivity: Let A,B ∈ JR and C ⊆ R with A♯1≤ B and B♯1≤ C. Then
there exist idempotents q, r ∈ R such that rR(A) = rR(q), rR(B) = rR(r),
A = pAB = Bq, and B = pBC = Cr. Since A = pAB, we have rR(pB) =
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rR(B) ⊆ rR(A) = rR(pA) and therefore pA(1 − pB) = 0, i.e. pA = pApB. It
follows

pAC = pApBC = pAB = A.

Let s = rq. We have

Cs = Crq = Bq = A.

To conclude the proof, we show that s is an idempotent with rR(s) = rR(A).
Let a ∈ A. Since A = pAB, there exists b ∈ B such that a = pAb. Since r is
an idempotent and B = Cr, we may conclude that b = br, and so

as = arq = pAbrq = pAbq = aq.

By A = Bq there exists b1 ∈ B such that a = b1q. It follows that aq = b1q
2 =

b1q = a. Hence as = a and thus a(1 − s) = 0 for every a ∈ A. Therefore
1− s ∈ rR(A) = rR(q). It follows that 0 = q(1 − s) and hence q = qs = qrq.
So, s2 = rqrq = rq = s. Moreover, since s = rq and q = qs, we may conclude
that rR(s) = rR(q) = rR(A). It follows that A♯1≤ C.

Let A ∈ JR, B ⊆ R, and q ∈ R. If A = Bq, then lR(B) ⊆ lR(A) and
therefore we may conclude that A♯1≤ B implies A♯≤ B. Similarly, A ≤♯1B
yields A ≤♯B. Under what conditions do the converses of these two statements
hold? We leave this as an open question.

3.1. One-sided sharp orders for operators on Hilbert spaces. We now con-
sider one-sided sharp orders of the ring B(H) of all bounded linear operators
on a Hilbert space H. We begin with some auxiliary results. For a ∗-ring R
and A ⊆ R, let A∗ = {a∗ ∈ R : a ∈ A}.

Lemma 3.11. Let R be a ∗-ring and A,B ⊆ R. Then lR(A) ⊆ lR(B) if

and only if rR(A∗) ⊆ rR(B∗).

Proof. Let A,B ⊆ R with lR(A) ⊆ lR(B). Suppose z ∈ rR(A∗). Then
a∗z = 0 and thus z∗a = 0 for every a ∈ A. So, z∗ ∈ lR(A) ⊆ lR(B) which
yields that z∗b = 0 for every b ∈ B. It follows that b∗z = 0 for every b ∈ B
and thus z ∈ rR(B∗), i.e. rR(A∗) ⊆ rR(B∗). The converse implication can be
proved similarly.

Lemma 3.12. Let A,B ⊆ B(H). Then

rB(H)(A) ⊆ rB(H)(B) if and only if
⋂

G∈A

KerG ⊆
⋂

F∈B

KerF.

Proof. Let A,B ⊆ B(H) and let rB(H)(A) ⊆ rB(H)(B). Suppose x ∈
⋂

G∈A KerG. Since
⋂

G∈A KerG is a closed subspace of H, there exists a
projection P ∈ B(H) such that Im P =

⋂

G∈AKerG. So, Px = x and
GP = 0 for every G ∈ A. It follows that FP = 0 for every F ∈ B and
therefore 0 = FPx = Fx for every F ∈ B. Thus, x ∈

⋂

F∈B KerF , i.e.
⋂

G∈A KerG ⊆
⋂

F∈B KerF .
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Conversely, let
⋂

G∈A KerG ⊆
⋂

F∈B KerF and suppose X ∈ rB(H)(A).
Then GX = 0 for every G ∈ A which yields Im X ⊆ KerG for every G ∈ A.
So, Im X ⊆

⋂

G∈A KerG and thus Im X ⊆
⋂

F∈B KerF . It follows that
FX = 0 for every F ∈ B and so rB(H)(A) ⊆ rB(H)(B).

Lemma 3.13. Let A,B ⊆ B(H). Then

lB(H)(A) ⊆ lB(H)(B) if and only if
∑

F∈B

Im F ⊆
∑

G∈A

ImG.

Proof. Let A,B ⊆ B(H). By Lemma 3.11, lB(H)(A) ⊆ lB(H)(B)
if and only if rB(H)(A

∗) ⊆ rB(H)(B
∗) which is by Lemma 3.12 equiv-

alent to
⋂

G∈A∗ KerG ⊆
⋂

F∈B∗ KerF and this is further equivalent to
⋂

A∈A KerA∗ ⊆
⋂

B∈B KerB∗. It follows that lB(H)(A) ⊆ lB(H)(B) if and

only if
(
⋂

F∈B KerF ∗
)⊥

⊆
(
⋂

G∈A KerG∗
)⊥

, i.e.
∑

F∈B

Im F ⊆
∑

G∈A

ImG.

The following theorem is a direct consequence of Lemmas 3.12 and 3.13,
and Definition 3.1.

Theorem 3.14. Let A ∈ JB(H) and B ⊆ B(H). Then

(i) A♯≤ B if and only if pAA = pAB and
∑

G∈A

ImG ⊆
∑

F∈B

Im F ;

(ii) A ≤♯B if and only if ApA = BpA and
⋂

F∈B KerF ⊆
⋂

G∈A KerG.

4. The star, the one-sided star, and the core orders

A ∗-ring R is called a Rickart ∗-ring if the left (equivalently, right) an-
nihilator of any element a ∈ R is generated by a (unique) projection. Recall
that a ∗-ring R is called proper if aa∗ = 0 implies a = 0 for every a ∈ R, and
note that every Rickart ∗-ring is a proper ∗-ring [4]. In [8], Drazin introduced
another partial order, known as the star partial order. Although introduced
in a general setting of proper ∗-semigroups, this order was mostly studied on
examples of proper ∗-rings, e.g. on the set of all n× n complex matrices, on
B(H), on Rickart ∗-rings (see [20], references therein, and [1, 7, 17]). Bak-
salary and Mitra introduced the left-star and the right-star partial orders in
[2] on the set of allm×n complex matrices and Dolinar et al. generalized in [6]
this concept to B(H) by using idempotent operators. In [17], the left-star and
the right-star partial orders were further generalized from B(H) to Rickart
∗-rings. Very recently, in [24], these notions were extended to the power sets
of Baer ∗-rings. The definitions are as follows.

Definition 4.1. Let R be a ∗-ring and A,B ⊆ R. We write
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(i) A≤
∗
B if there exist projections p and q in R such that lR(A) = lR(p),

rR(A) = rR(q), pA = pB, and Aq = Bq. We call the relation ≤
∗
the

star relation on P(R);
(ii) A ∗≤ B if there exist a projection p and an idempotent q in R such

that lR(A) = lR(p), rR(A) = rR(q), pA = pB, and Aq = Bq. We call

the relation ∗≤ the left-star relation on P(R);
(iii) A ≤∗ B if there exist an idempotent p and a projection q in R such

that lR(A) = lR(p), rR(A) = rR(q), pA = pB, and Aq = Bq. We call

the relation ≤∗ the right-star relation on P(R).

In [24], it was proved that the relations ≤
∗
, ∗ ≤, and ≤ ∗ are partial

orders when R is a Baer ∗-ring. Moreover, in [24], it was also shown that
the conditions in Definition 4.1 may be somewhat relaxed when R is a Baer
∗-ring. Namely, the following result was proved.

Proposition 4.2. Let R be a Baer ∗-ring and A,B ⊆ R. Then the

following statements hold:

(i) A≤
∗
B if and only if there exist projections p, q ∈ R such that lR(p) ⊆

lR(A), rR(q) ⊆ rR(A), pA = pB, and Aq = Bq;
(ii) A ∗≤ B if and only if there exist a projection p and an idempotent q in

R such that lR(p) ⊆ lR(A), rR(q) ⊆ rR(A), pA = pB, and Aq = Bq;
(iii) A ≤∗ B if and only if there exist an idempotent p and a projection q in

R such that lR(p) ⊆ lR(A), rR(q) ⊆ rR(A), pA = pB, and Aq = Bq.

Note that if lR(s) = lR(t) for some projections s, t ∈ R, then (1 − s)t =
0 = (1 − t)s and therefore t = st and s = ts. It follows that s = s∗ = st = t.
For a Baer ∗-ring R and A ⊆ R we may conclude the projection p where
lR(A) = lR(p) is unique. We denote it by lp(A). Similarly, there exists
the unique projection rp(A) such that rR(A) = rR(rp(A)). As a corollary
to Proposition 4.2, we now present a new characterization of the star, the
left-star, and the right-star partial orders on P(R) where R is a Baer ∗-ring.

Theorem 4.3. Let R be a Baer ∗-ring and A,B ⊆ R. Then the following

statements hold:

(i) A≤
∗
B if and only if A = lp(A)B = Brp(A);

(ii) A ∗≤ B if and only if there exists an idempotent q in R such that

A = lp(A)B = Bq;
(iii) A ≤∗ B if and only if there exists an idempotent p in R such that

A = pB = Brp(A).

Proof. Let A≤
∗
B for A,B ⊆ R. By Definition 4.1, lp(A)A = lp(A)B

and Arp(A) = Brp(A). Since lR(A) = lR(lp(A)), rR(A) = rR(rp(A)), we
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have A = lp(A)A = Arp(A) and therefore A = lp(A)B = Brp(A). Con-
versely, let A = lp(A)B = Brp(A). Then lp(A)A = lp(A)B, Arp(A) =
Brp(A), lR(lp(A)) ⊆ lR(A), and rR(rp(A)) ⊆ rR(A), and hence by Proposi-
tion 4.2, A≤

∗
B.

Statements (ii) and (iii) can be proved similarly.

In [3], Baksalary and Trenkler introduced the core partial order on the set
of all n× n complex matrices that have the group inverse (see also [13, 14]).
This order was generalized by Rakić in [22] to IR where R is a Rickart ∗-ring.
Namely, for a, b ∈ R we write

a ≤ ♯© b if a ∈ IR and a = lp(a)b = bp{a}.

Motivated by this definition we extend the concept of the core order to JR

and show that this relation is indeed a partial order when R is a Baer ∗-ring.

Definition 4.4. Let R be a ∗-ring, A ∈ JR and B ⊆ R.

(i) We write

A ≤ ♯© B if A = lp(A)B = BpA.

We call the relation ≤ ♯© the core relation on JR.

(ii) We write

A ≤ ♯© B if A = pAB = Brp(A)

and we call the relation ≤ ♯© the dual core relation on JR.

The relations introduced with Definitions 4.4 are related to one-sided star
and sharp orders as the next result shows.

Theorem 4.5. Let R be a Baer ∗-ring, A ∈ JR and B ⊆ R. Then the

following statements hold

(i) A ≤ ♯© B if and only if A ∗≤ B and A ≤♯1B;
(ii) A ≤ ♯© B if and only if A ≤∗ B and A♯1≤ B.

Proof. Suppose A ≤ ♯© B, i.e. A = lp(A)B = BpA. By Theorem 4.3
it follows that A ∗ ≤ B and by Definition 3.9 (ii) we have A ≤ ♯1B since
lR(A) = lR(lp(A)). Conversely, if A ∗≤ B and A ≤♯1B, then by Theorem 4.3
and Definitions 3.9 (ii) and 4.4 (i), A ≤ ♯© B.

The second statement can be proved similarly.

Since ∗≤, ≤♯1, ≤∗, and ♯1≤ are partial orders on JR when R is a Baer
∗-ring, we obtain the following result.

Corollary 4.6. Let R be a Baer ∗-ring. The core relation ≤ ♯© and the

dual core relation ≤ ♯© are partial orders on JR.
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Let us conclude the paper with the following observation. Let R be a
Baer ring and A,B ⊆ R. In [24], it was shown that

(4.1) A ≤− B if and only if A = pB = Bq

for some idempotent elements p, q ∈ R. Comparing (4.1) with Theorem 2.5
and Definitions 3.9 and 4.4 we may conclude that if for A ∈ JR and B ⊆ R,
A ≤ B where ≤ is one of the orders from the set {≤♯, ♯1≤,≤♯1,≤

♯©,≤ ♯©},
then A ≤− B.
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