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ABSTRACT. Let R be a ring with identity and let Jr be a collection
of subsets of R such that their left and right annihilators are generated by
the same idempotent. We extend the notion of the sharp, the left-sharp,
and the right-sharp partial orders to Jgr, present equivalent definitions of
these orders, and study their properties. We also extend the concept of
the core and the dual core orders to Jr, show that they are indeed partial
orders when R is a Baer *-ring, and connect them with one-sided sharp
and star partial orders.

1. INTRODUCTION

Let S be a semigroup and a € §. We say that a has an inner generalized
inverse a~ € S if a = aa”a, and a reflexive generalized inverse a’ € S if a =
ad’a, a’ = a’aa’. A semigroup in which every element has an inner generalized
inverse is called a regular semigroup. A reflexive generalized inverse of a that
commutes with a is called the group inverse of a. The group inverse, which
is unique if it exists (see [10]), is denoted by aF.

Let R be a ring and let us denote by G(R) the subset of elements in R
which have the group inverse. Let M, (F) be the ring of all n x n matrices over
a field F. In [18] (see also [19]), Mitra introduced the sharp partial order on
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G(M,(IF)). This order was generalized in [15] to G(R) where R is an arbitrary
ring with identity: For a,b € G(R) we write

(1.1) a<*b if afa=d* and acf = ba®

In [15], it was shown that <* is indeed a partial order on G(R). Recently
an application of this order to autonomous linear systems has been presented
in [11]. In particular, if real n x n state matrices of two autonomous linear
systems are related under the sharp partial order, then the difference of their
solutions is again a solution of another autonomous linear system. The minus
partial order <~ is another well-known partial order on a semigroup whose
elements have reflexive generalized inverses. This order was originally defined
by Hartwig in [9]. For a regular semigroup S and a,b € S we write

(1.2) a< b if da=db and ad =bd

where @’ is a reflexive generalized inverse of a. It turns out that ¢ <~ b if and
only if a“a = a~b and aa~ = ba~ for some inner generalized inverse a~ of
a. We remark that the minus partial order was one of the first orders which
was generalized and extensively studied in the literature. Let us present a
brief summary of some results on this order. This also motivates the main
definitions (see Definitions 2.2-4.4) of the sharp and related partial orders
which is the main topic of our study. The main idea is to describe the orders
in terms of the annihilators.

The algebra B(#H) of all bounded linear operators on a Hilbert space H is
an example of a semigroup that is not necessarily regular. Namely, A € B(H)
is regular if and only if the image of A is closed (see for example [21]). Tt
follows that if A is finite dimensional, then B(#) is a regular semigroup. Let
Ker A, Im A, Im A denote the kernel, the image and the closure of the image
of A € B(H), respectively. Motivated by Hartwig’s definition of the minus
partial order (1.2), Semrl introduced in [23] a new order <5 on B(H) in the
following way: For A, B € B(H) we write A <g B if there exist idempotent
operators P,Q € B(H) such that Im P = Im A, Ker A = KerQ, PA = PB,
and AQ = BQ. Semrl called this order the minus partial order on B(#) and
proved that this is indeed a partial order on B(H) for a general Hilbert space
‘H. He also showed that the partial order <g is the same as Hartwig’s minus
partial order <= when H is finite dimensional.

For a subset A of a ring R, let Ix(A) = {x € R : za = 0 for every a € A}
and rg(A) = {z € R : ax = 0 for every a € A} stand for the left annihilator
and the right annihilator of A in R, respectively. If the subset A is a singleton,
say A = {a}, then we simply write Iz (a) and rg(a), respectively. A ring R
is called a Rickart ring if for every a € A there exist idempotent elements
p,q € A such that rg (a) = pA and g (a) = Aq. Note that every Rickart ring
A has the (multiplicative) identity (see [4] or [12]). An example of a Rickart
ring is the algebra B(#). Observe that for A, B € B(H) we have (see [17,
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Lemma 2.1])
re)(A) =) (B) if and only if Ker A = Ker B

and
Ipu)(A) = lp@y(B) if and only if Im B =Im A.

Unless stated otherwise, let R denote a ring with the multiplicative iden-
tity 1 from now on. Note that for an idempotent p € R, Ig(p) = R(1 — p)
and rr(p) = (1 — p)R (see [5, Lemma 2.1]). These observations lead to
the following generalization of the minus order ([5, Definition 2.1]). For
a,b € R we write a <~ b if there exist idempotent elements p, ¢ € R such that
Ir(a) =R(1 —p), rr(a) = (1 — ¢)R, pa = pb, and aq = bq. It was shown in
[5] that this is indeed a partial order when R is a Rickart ring.

In [12], Baer rings were introduced as rings in which the right annihilator
of every subset is the principal right ideal generated by an idempotent. In
a Baer ring, left annihilators are also idempotent-generated, so clearly, every
Baer ring is a Rickart ring. A ring equipped with an involution * is called
a *x-ring. A x-ring R is said to be a Baer x-ring if for every subset A of R,
the right (equivalently, left) annihilator of A is the principal right (left) ideal
generated by a projection (i.e. a self-adjoint idempotent). In [24], the notion
of the minus partial order was extended to the power sets of Baer rings. We
denote the power set of a ring R by P(R). Let R be a ring and A, 8 C R.
We write

(1.3) A< B if Ig(A) =Ir(p),rr(A) =7rr(q),pA =pB, Ag = Bq

for some idempotent elements p,q € R. We call the relation <~ the minus
relation on P(R).

In [24], it was proved that when R is a Baer ring, the relation introduced
with (1.3) is a partial order on P(R).

For a ring ‘R with identity, let

Ir ={a € R:rr(a) = rgr(p) and Iz (a) = Ir(p)
for some idempotent p € R}.

It turns out (see [22]) that when R = B(H) with dimH < oo, Zg is exactly
the set G(R) of all group invertible operators in B(H). Independently to
[15] where definition (1.1) was introduced, Raki¢ presented in [22] another
generalization of the sharp partial order to rings using annihilators. Namely,
for a,b € R, we say that a <* bif a € Tr and a = pb = bp for some idempotent
p € R with rg(a) = rr(p) and Iz (a) = Iz (p).

Let now

Jr ={ACR:rr(A) =rr(p) and Ir(A) = Iz (p)
for some idempotent p € R}.
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The first goal of this paper is to extend the concept of the sharp partial order
<* (introduced on Zr by Raki¢ in [22]) to Jr and study its properties. This
is done in Section 2. In Section 3 we present the concept of the left-sharp and
the right-sharp partial orders on Jg, and finally, in Section 4, we introduce
the core and the dual core partial orders to Jx and show that they are indeed
partial orders when the ring R is a Baer *-ring.

2. THE SHARP ORDER

Suppose A € Jr and let p, ¢ € R be two idempotents such that rg(A) =
rr(p), Ir(A) = Ir(p), and rr(A) = rr(q), Ir(A) = Ir(q). It follows that
Ir(p) = Ir(q) and rg(p) = rr(q), and therefore (1 — p)g = 0 = q(1 — p), i.e.
qg=pq=qp,and (1 —q)p=0=p(l —q), ie. p=gp=pqg. We may conclude
that the idempotent p € R, such that rg(A) = rr(p) and Ix(A) = Ir(p) for
A € Jr, is unique. We denote it by p.4.

REMARK 2.1. Let A € Jg. Since then rg(A) = rr(pa) and Igr(A) =
Ir(pa), it follows that (1 —pa)A=0=A(1l —pa) and thus

A=paA=Apa.
We now introduce the notion of the sharp order on J%.

DEFINITION 2.2. Let A€ Jr and B C R. We write A <! B when
paA = paBB and Aps = Bpa. We call the relation <* the sharp order on Jr.

Next, we show that the relation < is a partial order for any ring R with
identity. First, let us present an auxiliary result.

LEMMA 2.3. Let A€ Jr, BC R, and A <* B. Then rr(B) C rr(A)
and Ir(B) CIr(A).

PrOOF. Let A <* B. Then pyA = puB, and Aps = Bpa. By Remark
2.1, A =paBB =DBpa. Suppose d € rg(B). Then Bd = 0 and thus p4Bd = 0.
Hence, Ad =0, i.e. d € rr(A). So, rr(B) C rr(A). We similarly show that
Ir(B) Clgr(A). O

THEOREM 2.4. The relation <! introduced with Definition 2.2 is a partial
order on Jr.

PROOF. Reflexivity: Clearly, A <* A for every A € Jx.

Antisymmetry: Let A, B € Jg with A <! B and B <! A. Then p4A =
paB, Apa = Bpa, and pgB = pgA, Bpg = Apg. Since then A = p4B = Bpa
and B = ppB = Bpp = pgA = Apg, it follows that A = paB = paBps =
.Ang = B.

Transitivity: Let A, B € Jr and C C R with A <! B and B <! C. Then
paA = paBB, Apa = Bpu, and pgB = ppC, Bps = Cps. By Lemma 2.3, we
have rz(ps) = rr(B) C rr(A) = rr(pa) and lr(ps) = Ir(B) C Ir(A) =
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Ir(pa). So, pa(l —pp) =0 = (1 — pp)pa and thus pa = paps = pppa.
From Bpp = Cpg we obtain Bpppa = Cpgpa and thus Aps = Bpa = Cpa.
Similarly, psB = psC yields paA = paBB = p4C. It follows that A <¥ C. O

With the next result we present new characterizations (i.e. equivalent
definitions) of the sharp partial order on Jx.

THEOREM 2.5. Let A € Jr and B C R. Then the following statements
are equivalent.
(i) A<*B.
(ii) There exists an idempotent p € R such that A = pAp = pBp, pB(1 —
p) = {0}, and (1 — p)Bp = {0},
(i) There exists an idempotent p € R such that lr(p) C Ir(A), rr(p) C
rr(A), pA = pB, and Ap = Bp.
(iv) There exists an idempotent p € R such that A = pB = Bp.

PROOF. (i)=-(ii): Trivial.

(ii)=-(iii): Suppose there exists an idempotent p € R such that A =
pAp = pBp, pB(1 — p) = {0}, and (1 — p)Bp = {0}. Then pB = pBp and
Bp = pBp and therefore

pA=A= Ap = pBp = pB = Bp.
Also, (1 —p)A = {0} = A(1 — p) and therefore Iz (p) C Ix(A) and r=(p) C
rr(A).

(ili)=-(i): Suppose (iii) holds. Since Iz (p) C Ir(A), rr(p) C rr(A), w
have Iz (p) C Ir(pa), TR (p) € rr(P4), and thus p4(1 —p) =0= (1 - )pA,
i.e. pap = pa = ppa. From pA = pB, Ap = Bp, we obtain papA = papB,
Appa = Bppa, and hence paA = paB , Aps = Bpa, ie. A<t B.

(iii)=-(iv): Suppose there exists an idempotent p € R such that Iz (p) C
Ir(A), rr(p) C rr(A), pA = pB, and Ap = Bp. Since then (1 — p)A =
A(1 — p) = {0} it follows that A = pA = Ap and thus A = pB = Bp.

(iv)=-(iii): Suppose A = pB = Bp for some idempotent p € R. Then
(I1-p)A=A(1-p)= {0} and thus ix(p) C Ir(A) and rg (p) C rr(A). Also,
clearly, pA = pBB and Ap = Bp. O

3. THE ONE-SIDED SHARP ORDERS

The sharp partial order (1.1) is defined with two conditions. If one of these
conditions is removed and perhaps some milder condition is added, does one
still get a partial order? Following definition (1.1), the left-sharp and the
right-sharp partial orders were introduced on G(R) in [16]. For a,b € G(R)
we write

at<b if dfa=d* and Ix(b) Clgr(a)
and
a<gb if ad® =ba* and rr(b) Crr(a).
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The relations $< and <f are called the left-sharp order and the right-sharp
order on G(R), respectively. In [16], it was shown that these relations are
partial orders when R is a ring with identity. It was also proved that for
a € G(R) and b € R the following holds: afa = ab if and only if praya = prayb,
and aaf = ba? if and only if ap{ay = bpgqy (here it turns out that pg,y = aal
(see [16, Lemma 2.1])). Following these observations, we now extend the
concept of one-sided sharp orders to Jr.

DEFINITION 3.1. Let A€ Jr and BCR.
(i) We write A< B when paA = paB and Ir(B) C Ig(A). We call the
relation #< the left-sharp order on Jr.
(ii) We write A <#B when Apas = Bpa and rg(B) C rr(A). We call the
relation <f the right-sharp order on Jr.

We show that these relations are partial orders on Jr when R is a ring
with identity. First, let us present a lemma which can be proved in a similar
way as Lemma 2.3 and hence we omitted its proof.

LEMMA 3.2. Let A € Jr and B C R. If Af< B, then rr(B) C rr(A),
and if A <iB, then lr(B) C Ir(A).

THEOREM 3.3. The relations $< and <f introduced with Definition 3.1
are partial orders on Jr .

PROOF. Let us show that the left-sharp order §< is a partial order on
Jr- The proof that the right-sharp order <t is a partial order is similar and
we omit it.

Reflexivity clearly holds.

Antisymmetry: Let A, B € Jr with A< B and Bf< A. Then A = py A =
paBB, B =ppB = pgA, and Ig(B) = Ig(A). Since (1 — pg)B = {0}, we have
(1—pg)A = {0} which implies A = pg.A. It follows that A = pgA = pgB = B.

Transitivity: Let A, B € Jr and C C R with A< B and Bf< C. Then
paA =paB, Ir(B) Clr(A), and pgB = ppC, Ir(C) C Ir(B). It follows that
Ir(C) C Ig(A). Also, by Lemma 3.2, we have rg(pg) = rr(B) C rr(A) =
rr(pa). So, pa(l—pp) =0 and thus p4 = paps. From ppB = pgC we obtain
papsB = papsC and thus py A = paB = paC, ie. AL C. O

THEOREM 3.4. Let A € Jr and B C R. Then the following statements
are equivalent.

(i) paA=paB.
(ii) There exists an idempotent p € R such that A = pAp = pBp and
pB(1 —p) = {0}.
(iii) There exists an idempotent p € R such that rr(p) C rr(A) and pA =
pB.

(iv) For every a € A there exists b € B such that b —a € rg(A) and for
every b € B there exists a € A such that b—a € rr(A).
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PRrROOF. Let A € Jr and B C R.

(i)=-(ii): Suppose (i) holds. By Remark 2.1, A = p4A = Ap4 and there-
fore A = paApa. Since pgA = paBB, it follows that A =p4Bp4. Also, since
paBpa = A=paB, it follows that paB(1 —p4) = {0}.

(ii)=-(iil): Since (ii) holds, pB(1 — p) = {0} for some idempotent p € R
and thus pB = pBp. We also have A = pAp = pBp. So, pA = A and
A = pBp = pB, and therefore pA = pB. Also, A(1 — p) = {0} and hence
rr(p) € rr(A).

(iii)=-(i): Since (iii) holds, it follows that rg (p) C rr(pa) for some idem-
potent p € R which yields pa(1 —p) =0, i.e. pag = pap. From pA = pB we
have papA = papB and hence pgA = paB.

(iv)<(i): Let a be any element in A and recall that rg(A) = rr(pa).
Then there exists b € B such that b — a € rg(A), i.e. A(b—a) = {0}, if and
only if p4(b—a) =0, i.e. paa = pab. So, for every a € A there exists b € B
such that b — a € rg(A) if and only if paA CpaB. We similarly prove that
for every b € B there exists a € A such that b — a € rg(A) if and only if
paB CpaA. a

REMARK 3.5. Note that if (i) holds, then in (ii) we can always take
p = pa. However, (ii) is not restricted to p4. Say, if A = {2F1;} C M3(R)
and B = {2E11 +3Es2} C M5(R), we may take p = F11 + E33 € M3(R). Here
E;;,1 <1i,7,<n denotes the standard basis of M, (R).

The following theorem could be shown similarly.

THEOREM 3.6. Let A € Jr and B C R. Then the following statements
are equivalent.

(i) Apa = Bpa.
(ii) There exists an idempotent p € R such that A = pAp = pBp and
(1 —p)Bp = {0}.
(iil) There exists an idempotent p € R such that lgr(p) C Ir(A) and Ap =
Bp.

(iv) For every a € A there exists b € B such that b — a € Ig(A) and for
every b € B there exists a € A such that b —a € lr(A).

Note that the three statements of Theorem 3.4 combined with the condi-
tion on left annihilators, i.e. Ig(B) C Igr(A), represent three equivalent defini-
tions of the left-sharp order on Jx. Similarly, the three statements of Theorem
3.6 combined with the condition on right annihilators, i.e. rg(B) C rg(A),
represent three equivalent definitions of the right-sharp order on Jx%.

In [16], it was proved that for a € G(R) and b € R the following holds:
P{a}@ = P{qyb if and only if a® = ab, and apiay = bpyqy if and only if a® = ba.
Does an analogue of this result hold for A € Jg and B C R?

LEMMA 3.7. Let A € Jr and B C R. If paA = paB, then A% = AB,
and if Apa = Bpa, then A2 = BA.
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ProoOF. Let A € Jr. By Remark 2.1 we have 4 = psAd = Apy. If
paA = puB for B C R, then AB = ApsB = ApsA = A% We similarly
prove that Ap4 = Bp.a, implies A% = BA. O

The converse of Lemma 3.7 need not be true in general as the following
example shows.

EXAMPLE 3.8. Let Zg denote the ring of integers modulo 6. Then Zg is a
commutative ring and all of the idempotents of Zg are 0, 1, 3, and 4. Consider
the subsets A = {0,3} and B = {1} of Zg. We have rz,(A) = rz,(3) = 4
and Iz, (A) = lz,(3) = 4, and thus A € Jz, and pa = 3. On the one hand,
A%? = A = AB, but on the other hand, pgqA = A and p4B = {3}, and so

pAA # paB.

Raki¢ introduced another generalization of the left-sharp and the right-
sharp orders in [22]. Namely, for a,b € R, we say that af; < b if a € Ig
and a = pyeb = bg for some idempotent ¢ € R with rz(a) = rr(q). We
write a <10 if a € Zg and a = gb = bpy,y for some idempotent ¢ € R with
Ir(a) = lr(q). Following this approach, we now introduce two new relations
on Jr and then prove that they again represent partial orders on Jg.

DEFINITION 3.9. Let A€ Jr and BCR.
(i) We write Af; < B when there exists an idempotent q with rr(A) =

rr(q) and
A = paB = Bg.
(ii) We write A <t1B when there exists an idempotent q with Ix(A) =
Ir(q) and
A =qgB = Bpy.

THEOREM 3.10. The relations §1 < and <1 introduced with Definitions
3.9 are partial orders on Jr.

PrOOF. We show that f;< is a partial order on Jz. The proof that <f;
is a partial order on Jx is similar and so we omit it.

Reflexivity is clear since A € Jr and thus A = pa A = Apa.

Antisymmetry: Let A, B € Jr with Af; < B and Bf; < A. Then A =
paBB = Bq for some idempotent ¢ € R with rg(A) = rr(q), and B = pgA =
Ar for some idempotent r € R with rg(B) = rg(r). Since A = Bq and
B = Ar, it follows that Ig(A) = Igr(B) and therefore Iz (A) = Ix(ps). So,
(1 —pp)A = {0} and therefore A = pp.A. This yields

A=pgA=B.

Transitivity: Let A, B € Jr and C C R with Af1< B and Bf;< C. Then
there exist idempotents ¢, € R such that rg(A) = rr(q), re(B) = rr(r),
A = paB = Bq, and B = ppC = Cr. Since A = paB, we have rg(pg) =
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rr(B) C rr(A) = rr(pa) and therefore p4(1 — pg) =0, i.e. pa = papp. It
follows

pAC = papsC =paBB = A.
Let s = rq. We have

Cs=Crq=Bqg=A.

To conclude the proof, we show that s is an idempotent with rz (s) = rgr(A).
Let a € A. Since A = p4B, there exists b € B such that a = p4b. Since r is
an idempotent and B = Cr, we may conclude that b = br, and so

as = arq = pabrqg = pabg = aq.
By A = Bq there exists b; € B such that a = byq. It follows that ag = by¢? =
big = a. Hence as = a and thus a(l — s) = 0 for every a € A. Therefore
1-serr(A) =rr(q). It follows that 0 = ¢(1 — s) and hence g = gs = grq.
So, 52 = rqrq = rq = s. Moreover, since s = rq and ¢ = ¢s, we may conclude
that rr(s) = rr(q) = rr(A). It follows that Af; < C. O

Let A€ Jr, BC R, and q € R. If A = Bq, then Ix(B) C Ir(A) and
therefore we may conclude that Af; < B implies Af< B. Similarly, A <#; 5
yields A <fB. Under what conditions do the converses of these two statements
hold? We leave this as an open question.

3.1. One-sided sharp orders for operators on Hilbert spaces. We now con-
sider one-sided sharp orders of the ring B(H) of all bounded linear operators
on a Hilbert space . We begin with some auxiliary results. For a *-ring R
and ACR, let A* ={a*€eR:aec A}

LEMMA 3.11. Let R be a *-ring and A, B C R. Then Ix(A) C Ir(B) if
and only if rr(A*) C rr(B*).

PrROOF. Let A, B C R with Ix(A) C Ix(B). Suppose z € rg(A*). Then
a*z = 0 and thus z*a = 0 for every a € A. So, z* € Ig(A) C Igr(B) which
yields that z*b = 0 for every b € B. It follows that b*z = 0 for every b € B
and thus z € rg (B*), i.e. rr(A*) C rg(B*). The converse implication can be
proved similarly. O

LEMMA 3.12. Let A,B C B(H). Then

re)(A) C rem(B) if and only if ﬂ Ker G C m Ker F.
GeA FeB

PrOOF. Let A,B C B(H) and let 75(3)(A) C rp)(B). Suppose = €
NaeaKerG. Since (N4 Ker G is a closed subspace of H, there exists a
projection P € B(H) such that Im P = (., KerG. So, Pxr = x and
GP = 0 for every G € A. It follows that FFP = 0 for every ' € B and
therefore 0 = FPx = Fux for every F' € B. Thus, x € [\pczKerF, ie.
Neea KerG € Npep Ker F.
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Conversely, let (g 4 Ker G C (N pegKer F and suppose X € rp)(A).
Then GX = 0 for every G € A which yields Im X C Ker G for every G € A.
So, Im X C Mgy KerG and thus Im X C (N zKer . It follows that
FX =0 for every F' € B and so 75(3)(A) € rpm)(B). O

LEMMA 3.13. Let A,B C B(H). Then

Ip)(A) C Iy (B) if and only if Zlm FC ZW
FeB GeA
PROOF. Let .A,B - B(H) By Lemma 3.11, lB(H)(A) - ZB(’H)(B)
if and only if 7p(3)(A*) € rpm)(B*) which is by Lemma 3.12 equiv-
alent to (gea- KerG C (Npep- Ker ' and this is further equivalent to
Naca Ker A* € NpegKer B*. It follows that Ip(3)(A) C Ip@)(B) if and

only if (NpegKer F*)7 C (NgeaKerG*) " ie. Y I FC Y ImG. 0O
FeB GeA

The following theorem is a direct consequence of Lemmas 3.12 and 3.13,
and Definition 3.1.

THEOREM 3.14. Let A € Jpy) and B C B(H). Then

(i) Af< B if and only if paA = paB and ZImG - Zlm F;
GeA FeB
(ii) A <tB if and only if Apa = Bpa and (\pegKer FF C (e 4 Ker G.

4. THE STAR, THE ONE-SIDED STAR, AND THE CORE ORDERS

A xring R is called a Rickart x-ring if the left (equivalently, right) an-
nihilator of any element a € R is generated by a (unique) projection. Recall
that a x-ring R is called proper if aa® = 0 implies a = 0 for every a € R, and
note that every Rickart *-ring is a proper *-ring [4]. In [8], Drazin introduced
another partial order, known as the star partial order. Although introduced
in a general setting of proper *x-semigroups, this order was mostly studied on
examples of proper *-rings, e.g. on the set of all n X n complex matrices, on
B(H), on Rickart *-rings (see [20], references therein, and [1, 7, 17]). Bak-
salary and Mitra introduced the left-star and the right-star partial orders in
[2] on the set of all m xn complex matrices and Dolinar et al. generalized in [6]
this concept to B(H) by using idempotent operators. In [17], the left-star and
the right-star partial orders were further generalized from B(H) to Rickart
x-rings. Very recently, in [24], these notions were extended to the power sets
of Baer *-rings. The definitions are as follows.

DEFINITION 4.1. Let R be a *-ring and A, B C R. We write
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(i) A< B if there exist projections p and q in R such that lx(A) = Iz (p),
rr(A) = rr(q), pA = pB, and Aq = Bq. We call the relation < the

*

star relation on P(R);

(ii) A *x< B if there exist a projection p and an idempotent q in R such
that Ig (A) = Ir(p), rr(A) = rr(q), pA = pB, and Aq = Bq. We call
the relation *< the left-star relation on P(R);

(iil) A <x B if there exist an idempotent p and a projection q in R such
that Iz (A) = Ir(p), rr(A) = rr(q), pA = pB, and Aq = Bq. We call
the relation <x the right-star relation on P(R).

In [24], it was proved that the relations <, * <, and < x are partial

*
orders when R is a Baer #-ring. Moreover, in [24], it was also shown that

the conditions in Definition 4.1 may be somewhat relaxed when R is a Baer
*-ring. Namely, the following result was proved.

PROPOSITION 4.2. Let R be a Baer x-ring and A,B C R. Then the
following statements hold:

(i) A< B if and only if there exist projections p,q € R such that lg(p) C

lR(A)7 7"7{((]) C ’I“R(A); pA = pB, and Aq = Bg;
(ii) A *x< B if and only if there exist a projection p and an idempotent q in
R such that Ig(p) C Ir(A), rr(q) C rr(A), pA =pB, and Aq = Bg;
(iil) A <x B if and only if there exist an idempotent p and a projection q in
R such that g (p) Clr(A), rr(q) C rr(A), pA =pB, and Aq = Bq.

Note that if Ig(s) = Ig(t) for some projections s,t € R, then (1 — s)t =
0 = (1 —¢t)s and therefore t = st and s = ts. It follows that s = s* = st = 1.
For a Baer *ring R and A C R we may conclude the projection p where
Ir(A) = Ig(p) is unique. We denote it by Ip(A). Similarly, there exists
the unique projection rp(A) such that rg(A) = rg(rp(A)). As a corollary
to Proposition 4.2, we now present a new characterization of the star, the
left-star, and the right-star partial orders on P(R) where R is a Baer *-ring.

THEOREM 4.3. Let R be a Baer x-ring and A, B C R. Then the following
statements hold:

(1) A<B if and only if A =Ip(A)B = Brp(A);

(ii) A «< B if and only if there exists an idempotent q in R such that
A =Ip(A)B = Bg;

(iii) A <= B if and only if there exists an idempotent p in R such that
A =pB=Brp(A).

ProOF. Let A<B for A,B C R. By Definition 4.1, ip(A)A = Ip(A)B

*

and Arp(A) = Brp(A). Since Ix(A) = Ir(Ip(A)), rr(A) = rr(rp(A)), we
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have A = Ip(A)A = Arp(A) and therefore A = Ip(A)B = Brp(A). Con-
versely, let A = Ip(A)B = Brp(A). Then Ip(A)A = Ip(A)B, Arp(A) =
Brp(A), ir(lp(A)) C Ir(A), and rr (rp(A)) C rr(A), and hence by Proposi-
tion 4.2, A< B.

Statements (ii) and (iii) can be proved similarly. O

In [3], Baksalary and Trenkler introduced the core partial order on the set
of all n x n complex matrices that have the group inverse (see also [13, 14]).
This order was generalized by Raki¢ in [22] to Zg where R is a Rickart #-ring.
Namely, for a,b € R we write

a<@b if a€Zgand a=Ip(a)b=bpp,.

Motivated by this definition we extend the concept of the core order to Jr
and show that this relation is indeed a partial order when R is a Baer *-ring.
DEFINITION 4.4. Let R be a *-ring, A € Jr and B C R.
(i) We write

A<®B if  A=Ip(A)B=Bpa.

We call the relation <@ the core relation on Ir.-
(il) We write

A<p B if A =paB = Brp(A)
and we call the relation <@g the dual core relation on Jr.

The relations introduced with Definitions 4.4 are related to one-sided star
and sharp orders as the next result shows.

THEOREM 4.5. Let R be a Baer *-ring, A € Jr and B C R. Then the
following statements hold
(i) A <® B if and only if A < B and A <t B;
(i) A <@ B if and only if A <« B and Af:1< B.

Proor. Suppose A <@ B, ie. A = Ip(A)B = Bp4. By Theorem 4.3
it follows that A * < B and by Definition 3.9 (ii) we have A <#;B since
Ir(A) =Ir(Ip(A)). Conversely, if A *< B and A <#; 5, then by Theorem 4.3
and Definitions 3.9 (ii) and 4.4 (i), A <® B.

The second statement can be proved similarly. O

Since *<, <1, <x*, and ;< are partial orders on Jr when R is a Baer
x-ring, we obtain the following result.

COROLLARY 4.6. Let R be a Baer %-ring. The core relation <@ and the
dual core relation <@g are partial orders on Jr.
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Let us conclude the paper with the following observation. Let R be a
Baer ring and A, B C R. In [24], it was shown that

(4.1) A< B if and only if A=pB=DBq

for some idempotent elements p,q € R. Comparing (4.1) with Theorem 2.5
and Definitions 3.9 and 4.4 we may conclude that if for A € Jg and B C R,
A < B where < is one of the orders from the set {<F #; <, <#;,<® <@g},
then A <™ B.
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