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TOTALLY REAL THUE INEQUALITIES OVER IMAGINARY

QUADRATIC FIELDS: AN IMPROVEMENT

István Gaál, Borka Jadrijević and László Remete

University of Debrecen, Hungary and University of Split, Croatia

Abstract. In this paper we significantly improve our previous results
of reducing relative Thue inequalities to absolute ones.

1. Results

Let F (x, y) be a binary form of degree n ≥ 3 with rational integer coeffi-
cients. Assume that f(x) = F (x, 1) has leading coefficient 1 and distinct real
roots α1, . . . , αn. Let 0 < ε < 1 and let K ≥ 1. Let

A = min
i6=j

|αi − αj |, B = min
i

∏

j 6=i

|αj − αi|, C =
K

(1− ε)n−1B
, G =

K1/n

εA
.

Let m ≥ 1 be a square-free positive integer, and set M = Q(i
√
m).

Consider the relative inequality

(1.1) |F (x, y)|≤ K in x, y ∈ ZM .

If F is irreducible, then (1.1) is called a Thue inequality. We emphasize that
our statements are valid also if F is reducible.

If m ≡ 3 (mod 4), then x, y ∈ ZM can be written as

x = x1 + x2

1 + i
√
m

2
=

(2x1 + x2) + x2i
√
m

2
,
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y = y1 + y2
1 + i

√
m

2
=

(2y1 + y2) + y2i
√
m

2
,

and if m ≡ 1, 2 (mod 4), then

x = x1 + x2i
√
m, y = y1 + y2i

√
m,

in both cases with x1, x2, y1, y2 ∈ Z. Set s = 2 if m ≡ 3 (mod 4) and s = 1
if m ≡ 1, 2 (mod 4). In the following theorem we formulate our statements
parallelly in the two cases.

Theorem 1.1. Let (x, y) ∈ Z2
M be a solution of (1.1). Then

(1.2) |F (sx1 + (s− 1)x2, sy1 + (s− 1)y2)|≤ snK, |F (x2, y2)|≤
snK

(
√
m)n

,

and

(1.3) |F (sx1 + (s− 1)x2, sy1 + (s− 1)y2)|·|F (x2, y2)|≤
s2nK2

2n · (√m)n
.

If |y|> max

{

G,
(

s·C√
m

)
1

n−2

}

, then x2y1 = x1y2.

If |y|> max
{

G, (s · C)
1

n−1

}

and sy1+(s−1)y2 = 0, then sx1+(s−1)x2 = 0.

If |y|> max

{

G,
(

s·C√
m

)
1

n−1

}

and y2 = 0, then x2 = 0.

Remark 1.2. The present inequality (1.2) is much sharper than the cor-
responding inequalities of Theorem 2.1 of [1]. Moreover we obtain these in-
equalities without any conditions on the variables. This makes the applica-
tions much easier. If the values of F are non-zero, then (1.3) yields further
new restrictions for the possible solutions of (1.1).

Proof of Theorem 1.1. Let (x, y) ∈ Z2
M be an arbitrary solution of

(1.1). Let βj = x− αjy, j = 1, . . . , n, then inequality (1.1) can be written as

(1.4) |β1 · · ·βn|≤ K.

We have

βj =
1

s
((sx1 + (s− 1)x2)− αj(sy1 + (s− 1) y2)) +

i
√
m

s
(x2 − αjy2).

Obviously,

|Re(βj)|≤ |βj |, |Im(βj)|≤ |βj |, 1 ≤ j ≤ n.

Further,

n
∏

j=1

|Re(βj)|≤
n
∏

j=1

|βj |≤ K, and

n
∏

j=1

|Im(βj)|≤
n
∏

j=1

|βj |≤ K,



THUE INEQUALITIES OVER IMAGINARY QUADRATIC FIELDS 193

which imply (1.2). Moreover,

n
∏

j=1

|Re(βj)|·
n
∏

j=1

|Im(βj)| =
n
∏

j=1

(|Re(βj)|·|Im(βj)|)

≤
n
∏

j=1

|Re(βj)|2+|Im(βj)|2
2

=
n
∏

j=1

|βj |2
2

≤ K2

2n
,

whence we obtain (1.3).
Assume now

(1.5) |y|≥ G.

Let i0 be the index with |βi0 |= minj |βj |. Then |βi0 |≤ K
1

n and for j 6= i0

(1.6) |βj |≥ |βj − βi0 |−|βi0 |≥ |αj − αi0 |·|y|−K
1

n ≥ (1 − ε) · |αj − αi0 |·|y|.
From (1.4) and (1.6) we have

(1.7) |βi0 |≤
K

∏

j 6=i0
|βj |

≤ C

|y|n−1
.

Using that αi0 |y|2 is real, by (1.7) we obtain

|Im(xy)| = |Im(αi0 |y|2−xy)|≤
∣

∣αi0 |y|2−xy
∣

∣

= |y|2·
∣

∣

∣

∣

αi0 −
xy

yy

∣

∣

∣

∣

= |y|2·
∣

∣

∣

∣

αi0 −
x

y

∣

∣

∣

∣

≤ C

|y|n−2
.

If

|y|>
(

s · C√
m

)
1

n−2

,

then this implies x2y1 = x1y2.
Inequality (1.7) indicates that |βi0 | is small for sufficiently large |y| and so

are its real and imaginary parts that can equal zero if we impose some extra
assumptions.

– If |y|> (sC)
1

n−1 , then |(sx1+(s− 1)x2)−αi0(sy1+(s− 1) y2)|< 1. So,
sy1 + (s− 1) y2 = 0 implies sx1 + (s− 1)x2 = 0.

– If |y|>
(

sC√
m

)
1

n−1

, then |x2−αi0y2|< 1. So, y2 = 0 implies x2 = 0.

2. How to apply Theorem 1.1?

Finally, we give useful hints for a practical application of Theorem 1.1.
Using the same notation let us consider again the relative inequality (1.1).
We describe our algorithm in case m ≡ 3 (mod 4), since the other case is
completely similar.
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First, we solve F (x2, y2) = k1 for all k1 ∈ Z with |k1|≤ 2nK/(
√
m)n.

Since the equation F (x2, y2) = 0 can also have non-trivial solutions if F is
reducible, we split our arguments into two cases.

A. First suppose F (x2, y2) = 0. This makes possible to determine x2, y2.
If F is irreducible, then x2 = y2 = 0, if F is reducible, then x2, y2 can
be determined easily (if there are any). We then determine the solutions
(a, b) ∈ Z2 of |F (a, b)|= k2 for all k2 with |k2|≤ 2nK. Using all possible values
of x2, y2 for each solution (a, b) we determine x1 = (a−x2)/2, y1 = (b− y2)/2
and check if these are integers. (Note that if F is irreducible, then x2 = y2 = 0
implies |F (x1, y1)|≤ K and the procedure can be simplified.) Having all
possible x1, x2, y1, y2 we test if (x, y) ∈ Z2

M is a solution of (1.1).
B. Assume now F (x2, y2) = k1 6= 0 for some (x2, y2) ∈ Z2. Then we solve

F (a, b) = k2 in (a, b) ∈ Z2 for all k2 ∈ Z with |k1k2|≤ 2nK2/(
√
m)n (a part

of this calculation was already performed by solving F (x2, y2) = k1). Having
a, b, x2, y2 we calculate x1 = (a−x2)/2, y1 = (b−y2)/2. For x2, y2 and integer
values x1, y1 we test if (x, y)2 ∈ ZM is indeed a solution of (1.1).

Remark 2.1. If m is sufficiently large, then by (1.2) we have |F (x2, y2)|<
1. In case F is irreducible, this implies x2 = y2 = 0, whence (1.1) reduces to
an inequality in x1, y1 over Z.

Remark 2.2. Solving Thue equations over Z is no problem any more by
using well-known computer algebra packages. If F is reducible, this task is
even easier.
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