TOTALLY REAL THUE INEQUALITIES OVER IMAGINARY QUADRATIC FIELDS: AN IMPROVEMENT

István GaÁl, Borka Jadrijević and László Remete
University of Debrecen, Hungary and University of Split, Croatia

Abstract. In this paper we significantly improve our previous results of reducing relative Thue inequalities to absolute ones.

1. Results

Let $F(x, y)$ be a binary form of degree $n \geq 3$ with rational integer coefficients. Assume that $f(x)=F(x, 1)$ has leading coefficient 1 and distinct real roots $\alpha_{1}, \ldots, \alpha_{n}$. Let $0<\varepsilon<1$ and let $K \geq 1$. Let

$$
A=\min _{i \neq j}\left|\alpha_{i}-\alpha_{j}\right|, \quad B=\min _{i} \prod_{j \neq i}\left|\alpha_{j}-\alpha_{i}\right|, \quad C=\frac{K}{(1-\varepsilon)^{n-1} B}, \quad G=\frac{K^{1 / n}}{\varepsilon A}
$$

Let $m \geq 1$ be a square-free positive integer, and set $M=\mathbb{Q}(i \sqrt{m})$. Consider the relative inequality

$$
\begin{equation*}
|F(x, y)| \leq K \text { in } x, y \in \mathbb{Z}_{M} \tag{1.1}
\end{equation*}
$$

If F is irreducible, then (1.1) is called a Thue inequality. We emphasize that our statements are valid also if F is reducible.

If $m \equiv 3(\bmod 4)$, then $x, y \in \mathbb{Z}_{M}$ can be written as

$$
x=x_{1}+x_{2} \frac{1+i \sqrt{m}}{2}=\frac{\left(2 x_{1}+x_{2}\right)+x_{2} i \sqrt{m}}{2}
$$

[^0]$$
y=y_{1}+y_{2} \frac{1+i \sqrt{m}}{2}=\frac{\left(2 y_{1}+y_{2}\right)+y_{2} i \sqrt{m}}{2}
$$
and if $m \equiv 1,2(\bmod 4)$, then
$$
x=x_{1}+x_{2} i \sqrt{m}, \quad y=y_{1}+y_{2} i \sqrt{m}
$$
in both cases with $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{Z}$. Set $s=2$ if $m \equiv 3(\bmod 4)$ and $s=1$ if $m \equiv 1,2(\bmod 4)$. In the following theorem we formulate our statements parallelly in the two cases.

Theorem 1.1. Let $(x, y) \in \mathbb{Z}_{M}^{2}$ be a solution of (1.1). Then

$$
\begin{equation*}
\left|F\left(s x_{1}+(s-1) x_{2}, s y_{1}+(s-1) y_{2}\right)\right| \leq s^{n} K, \quad\left|F\left(x_{2}, y_{2}\right)\right| \leq \frac{s^{n} K}{(\sqrt{m})^{n}} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|F\left(s x_{1}+(s-1) x_{2}, s y_{1}+(s-1) y_{2}\right)\right| \cdot\left|F\left(x_{2}, y_{2}\right)\right| \leq \frac{s^{2 n} K^{2}}{2^{n} \cdot(\sqrt{m})^{n}} \tag{1.3}
\end{equation*}
$$

If $|y|>\max \left\{G,\left(\frac{s \cdot C}{\sqrt{m}}\right)^{\frac{1}{n-2}}\right\}$, then $x_{2} y_{1}=x_{1} y_{2}$.
If $|y|>\max \left\{G,(s \cdot C)^{\frac{1}{n-1}}\right\}$ and $s y_{1}+(s-1) y_{2}=0$, then $s x_{1}+(s-1) x_{2}=0$.
If $|y|>\max \left\{G,\left(\frac{s \cdot C}{\sqrt{m}}\right)^{\frac{1}{n-1}}\right\}$ and $y_{2}=0$, then $x_{2}=0$.
Remark 1.2. The present inequality (1.2) is much sharper than the corresponding inequalities of Theorem 2.1 of [1]. Moreover we obtain these inequalities without any conditions on the variables. This makes the applications much easier. If the values of F are non-zero, then (1.3) yields further new restrictions for the possible solutions of (1.1).

Proof of Theorem 1.1. Let $(x, y) \in \mathbb{Z}_{M}^{2}$ be an arbitrary solution of (1.1). Let $\beta_{j}=x-\alpha_{j} y, j=1, \ldots, n$, then inequality (1.1) can be written as

$$
\begin{equation*}
\left|\beta_{1} \cdots \beta_{n}\right| \leq K \tag{1.4}
\end{equation*}
$$

We have

$$
\beta_{j}=\frac{1}{s}\left(\left(s x_{1}+(s-1) x_{2}\right)-\alpha_{j}\left(s y_{1}+(s-1) y_{2}\right)\right)+\frac{i \sqrt{m}}{s}\left(x_{2}-\alpha_{j} y_{2}\right) .
$$

Obviously,

$$
\left|\operatorname{Re}\left(\beta_{j}\right)\right| \leq\left|\beta_{j}\right|, \quad\left|\operatorname{Im}\left(\beta_{j}\right)\right| \leq\left|\beta_{j}\right|, 1 \leq j \leq n .
$$

Further,

$$
\prod_{j=1}^{n}\left|\operatorname{Re}\left(\beta_{j}\right)\right| \leq \prod_{j=1}^{n}\left|\beta_{j}\right| \leq K, \text { and } \prod_{j=1}^{n}\left|\operatorname{Im}\left(\beta_{j}\right)\right| \leq \prod_{j=1}^{n}\left|\beta_{j}\right| \leq K
$$

which imply (1.2). Moreover,

$$
\begin{aligned}
\prod_{j=1}^{n}\left|\operatorname{Re}\left(\beta_{j}\right)\right| \cdot \prod_{j=1}^{n}\left|\operatorname{Im}\left(\beta_{j}\right)\right| & =\prod_{j=1}^{n}\left(\left|\operatorname{Re}\left(\beta_{j}\right)\right| \cdot\left|\operatorname{Im}\left(\beta_{j}\right)\right|\right) \\
& \leq \prod_{j=1}^{n} \frac{\left|\operatorname{Re}\left(\beta_{j}\right)\right|^{2}+\left|\operatorname{Im}\left(\beta_{j}\right)\right|^{2}}{2}=\prod_{j=1}^{n} \frac{\left|\beta_{j}\right|^{2}}{2} \leq \frac{K^{2}}{2^{n}}
\end{aligned}
$$

whence we obtain (1.3).
Assume now

$$
\begin{equation*}
|y| \geq G \tag{1.5}
\end{equation*}
$$

Let i_{0} be the index with $\left|\beta_{i_{0}}\right|=\min _{j}\left|\beta_{j}\right|$. Then $\left|\beta_{i_{0}}\right| \leq K^{\frac{1}{n}}$ and for $j \neq i_{0}$

$$
\begin{equation*}
\left|\beta_{j}\right| \geq\left|\beta_{j}-\beta_{i_{0}}\right|-\left|\beta_{i_{0}}\right| \geq\left|\alpha_{j}-\alpha_{i_{0}}\right| \cdot|y|-K^{\frac{1}{n}} \geq(1-\varepsilon) \cdot\left|\alpha_{j}-\alpha_{i_{0}}\right| \cdot|y| \tag{1.6}
\end{equation*}
$$

From (1.4) and (1.6) we have

$$
\begin{equation*}
\left|\beta_{i_{0}}\right| \leq \frac{K}{\prod_{j \neq i_{0}}\left|\beta_{j}\right|} \leq \frac{C}{|y|^{n-1}} \tag{1.7}
\end{equation*}
$$

Using that $\alpha_{i_{0}}|y|^{2}$ is real, by (1.7) we obtain

$$
\begin{aligned}
|\operatorname{Im}(x \bar{y})| & =\left|\operatorname{Im}\left(\alpha_{i_{0}}|y|^{2}-x \bar{y}\right)\right| \leq\left.\left|\alpha_{i_{0}}\right| y\right|^{2}-x \bar{y} \mid \\
& =|y|^{2} \cdot\left|\alpha_{i_{0}}-\frac{x \bar{y}}{y \bar{y}}\right|=|y|^{2} \cdot\left|\alpha_{i_{0}}-\frac{x}{y}\right| \leq \frac{C}{|y|^{n-2}} .
\end{aligned}
$$

If

$$
|y|>\left(\frac{s \cdot C}{\sqrt{m}}\right)^{\frac{1}{n-2}}
$$

then this implies $x_{2} y_{1}=x_{1} y_{2}$.
Inequality (1.7) indicates that $\left|\beta_{i_{0}}\right|$ is small for sufficiently large $|y|$ and so are its real and imaginary parts that can equal zero if we impose some extra assumptions.

$$
\begin{aligned}
& \quad \text { - If }|y|>(s C)^{\frac{1}{n-1}} \text {, then }\left|\left(s x_{1}+(s-1) x_{2}\right)-\alpha_{i_{0}}\left(s y_{1}+(s-1) y_{2}\right)\right|<1 \text {. So, } \\
& s y_{1}+(s-1) y_{2}=0 \text { implies } s x_{1}+(s-1) x_{2}=0 . \\
& \quad-\text { If }|y|>\left(\frac{s C}{\sqrt{m}}\right)^{\frac{1}{n-1}} \text {, then }\left|x_{2}-\alpha_{i_{0}} y_{2}\right|<1 . \text { So, } y_{2}=0 \text { implies } x_{2}=0 .
\end{aligned}
$$

2. How to apply Theorem 1.1?

Finally, we give useful hints for a practical application of Theorem 1.1. Using the same notation let us consider again the relative inequality (1.1). We describe our algorithm in case $m \equiv 3(\bmod 4)$, since the other case is completely similar.

First, we solve $F\left(x_{2}, y_{2}\right)=k_{1}$ for all $k_{1} \in \mathbb{Z}$ with $\left|k_{1}\right| \leq 2^{n} K /(\sqrt{m})^{n}$. Since the equation $F\left(x_{2}, y_{2}\right)=0$ can also have non-trivial solutions if F is reducible, we split our arguments into two cases.
A. First suppose $F\left(x_{2}, y_{2}\right)=0$. This makes possible to determine x_{2}, y_{2}. If F is irreducible, then $x_{2}=y_{2}=0$, if F is reducible, then x_{2}, y_{2} can be determined easily (if there are any). We then determine the solutions $(a, b) \in \mathbb{Z}^{2}$ of $|F(a, b)|=k_{2}$ for all k_{2} with $\left|k_{2}\right| \leq 2^{n} K$. Using all possible values of x_{2}, y_{2} for each solution (a, b) we determine $x_{1}=\left(a-x_{2}\right) / 2, y_{1}=\left(b-y_{2}\right) / 2$ and check if these are integers. (Note that if F is irreducible, then $x_{2}=y_{2}=0$ implies $\left|F\left(x_{1}, y_{1}\right)\right| \leq K$ and the procedure can be simplified.) Having all possible $x_{1}, x_{2}, y_{1}, y_{2}$ we test if $(x, y) \in \mathbb{Z}_{M}^{2}$ is a solution of (1.1).
B. Assume now $F\left(x_{2}, y_{2}\right)=k_{1} \neq 0$ for some $\left(x_{2}, y_{2}\right) \in \mathbb{Z}^{2}$. Then we solve $F(a, b)=k_{2}$ in $(a, b) \in \mathbb{Z}^{2}$ for all $k_{2} \in \mathbb{Z}$ with $\left|k_{1} k_{2}\right| \leq 2^{n} K^{2} /(\sqrt{m})^{n}$ (a part of this calculation was already performed by solving $\left.F\left(x_{2}, y_{2}\right)=k_{1}\right)$. Having a, b, x_{2}, y_{2} we calculate $x_{1}=\left(a-x_{2}\right) / 2, y_{1}=\left(b-y_{2}\right) / 2$. For x_{2}, y_{2} and integer values x_{1}, y_{1} we test if $(x, y)^{2} \in \mathbb{Z}_{M}$ is indeed a solution of (1.1).

REMARK 2.1. If m is sufficiently large, then by (1.2) we have $\left|F\left(x_{2}, y_{2}\right)\right|<$ 1. In case F is irreducible, this implies $x_{2}=y_{2}=0$, whence (1.1) reduces to an inequality in x_{1}, y_{1} over \mathbb{Z}.

Remark 2.2. Solving Thue equations over \mathbb{Z} is no problem any more by using well-known computer algebra packages. If F is reducible, this task is even easier.

References

[1] I. Gaál, B. Jadrijević and L. Remete, Totally real Thue inequalities over imaginary quadratic fields, Glas. Mat. Ser. III 53(73) (2018), 229-238.
I. Gaál

Mathematical Institute, University of Debrecen
H-4002 Debrecen Pf. 400 .
Hungary
E-mail: gaal.istvan@unideb.hu
B. Jadrijević

Faculty of Science, University of Split
Rudera Boškovića 33, 21000 Split
Croatia
E-mail: borka@pmfst.hr
L. Remete

Mathematical Institute, University of Debrecen
H-4002 Debrecen Pf. 400
Hungary
E-mail: remete.laszlo@science.unideb.hu
Received: 20.4.2020.
Revised: 2.11.2020.

[^0]: 2020 Mathematics Subject Classification. 11D59, 11D57.
 Key words and phrases. Relative Thue equations, Thue inequalities.
 Research supported in part by the EFOP-3.6.1-16-2016-00022 project. The project is co-financed by the European Union and the European Social Fund.

 Research supported by the ÚNKP-19-3 new national excellence program of the Ministry of human capacities.

