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Abstract. Let A, B be positive integers such that min{A,B} > 1,
gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions
of ternary purely exponential Diophantine equations due to R. Scott and
R. Styer, we prove that, for any positive integer n, if A > B3/8, then
the equation (A2n)x + (B2n)y = ((A2 + B2)n)z has no positive integer
solutions (x, y, z) with x > z > y; if B > A3/6, then it has no solutions
(x, y, z) with y > z > x. Thus, combining the above conclusion with some
existing results, we can deduce that, for any positive integer n, if B ≡ 2
(mod 4) and A > B3/8, then this equation has only the positive integer
solution (x, y, z) = (1, 1, 1).

1. Introduction

Let N be the set of all positive integers. Let n be a positive integer, and let
a, b be positive integers such that min{a, b} > 1 and gcd(a, b) = 1. Recently,
P.-Z. Yuan and Q. Han ([9]) proposed the following conjecture:

Conjecture 1.1. For any n, if min{a, b} ≥ 4, then the equation

(1.1) (an)x + (bn)y = ((a+ b)n)z, x, y, z ∈ N

has only the solution (x, y, z) = (1, 1, 1).

Since Conjecture 1.1 is much broader than Jeśmanowicz’ conjecture con-
cerning Pythagorean triples (see [2] and the survey paper on the conjectures
of Jeśmanowicz and Terai which was published by G. Soydan, M. Demirci, I.
N. Cangül and A. Togbé, ([5])), it is unlikely to be solved in the short term.
There are only a few scattered results on Conjecture 1.1 at present (see [6]).
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Let A,B be positive integers such that min{A,B} > 1, gcd(A,B) = 1
and 2|B. In the same paper, P.-Z. Yuan and Q. Han ([9]) deal with the
solutions (x, y, z) of (1.1) for the case that (a, b) = (A2, B2). Then (1.1) can
be rewritten as

(1.2) (A2n)x + (B2n)y = ((A2 +B2)n)z , x, y, z ∈ N.

For this equation, they proved that, for any n > 1, if B ≡ 2 (mod 4), then
(1.2) has no solutions (x, y, z) with y > z > x; in particular, if B = 2, then
Conjecture 1.1 is true for any n.

In this paper, using an upper bound for solutions of ternary purely expo-
nential Diophantine equations due to R. Scott and R. Styer ([4]), we prove a
general result as follows:

Theorem 1.2. For any n, if A > B3/8, then (1.2) has no solutions

(x, y, z) with x > z > y; if B > A3/6, then (1.2) has no solutions (x, y, z)
with y > z > x.

Thus, combining Theorem 1.2 with the above mentioned results of [9], we
can deduce the following corollary:

Corollary 1.3. For any n, if B ≡ 2 (mod 4) and A > B3/8, then (1.2)
has only the solution (x, y, z) = (1, 1, 1).

This implies that, for any fixed B with B ≡ 2 (mod 4), then Conjecture
1.1 is true for (a, b) = (A2, B2) except for finitely many values of A.

2. Lemmas

For any positive integer m, let rad(m) denote the product of all distinct
prime divisors of m, and let rad(1) = 1. Obviously, rad(m) is equal to the
largest squarefree divisor of m.

Lemma 2.1 ([6, Theorem 1.1], [9, Proposition 3.1]). Assume n > 1
in (1.1) and let (x, y, z) be a solution of (1.1) with (x, y, z) 6= (1, 1, 1). If

min{a, b} > 2, then either

x > z > y, rad(n) | b, b = b1b2, b
y
1 = nz−y, b1, b2 ∈ N, b1 > 1, gcd(b1, b2) = 1

or
y > z > x, rad(n) | a, a = a1a2, a

x
1 = nz−x,

a1, a2 ∈ N, a1 > 1, gcd(a1, a2) = 1.

Remark 2.2. Because when min{a, b} = 2, there might be a solution
(x, y, z) to (1.1) with y > z = x (see [1, 3, 7, 8]), the condition min{a, b} > 2
in Lemma 2.1 is necessary.

Lemma 2.3. If B ≡ 2 (mod 4) and (x, y, z) 6= (1, 1, 1) is a solution to

(1.2), then x > z > y.
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Proof. When n > 1, Lemma 2.1 shows that Lemma 2.3 is equivalent to
[9, Theorem 1.3].

So we can assume n = 1. Suppose (1.2) has a solution (x, y, z) 6= (1, 1, 1),
so that

(2.1) A2x +B2y = (A2 +B2)z .

Clearly (1, 1, 1) is the only possible solution to (1.2) with z = 1, so in (2.1)
we have

(2.2) z > 1.

Since z ≥ 2, if max{x, y} ≤ z, then we have

(A2 +B2)z = A2x +B2y ≤ A2z +B2z < (A2 +B2)z ,

a contradiction from which we get

(2.3) z < max{x, y}.
Next, we show that y < z using a straightforward approach which works when
n = 1 (as well as when n > 1 as in [9]).

It is a familiar elementary result (see, for example, [9, Lemma 3.2]) that,
if (2.1) holds, there are positive integers u and v such that 2 | v, u2 + v2 =
A2 +B2, (u, v) = 1, and

±(u± v
√
−1)z = Ax +By

√
−1,

with

(2.4) ν2(v) + ν2(z) = ν2(B
y)

where, for any positive integer m, 2ν2(m) || m. 2 || B, so A2+B2 ≡ 5 (mod 8),
so 2 || v, so that (2.4) becomes

1 + ν2(z) = y,

so that

(2.5) z ≥ 2y−1 ≥ y

and z = y implies y ≤ 2. Since z > 1 and y = z = 2 implies

A2x = A2(A2 + 2B2)

which contradicts (A, 2B) = 1, we must have

(2.6) y < z.

(2.3) and (2.6) combine to give y < z < x.

Lemma 2.4 ([9, Theorem 1.4]). For any n, if B = 2, then (1.2) has only

the solution (x, y, z) = (1, 1, 1).



198 M.-H. LE AND G. SOYDAN

Lemma 2.5 ([4, Theorem 3]). Let G,H,K be fixed positive integers with

min{G,H,K} > 1, gcd(G,H) = 1 and 2 ∤ K. Further, let PQ be the largest

squarefree divisor of GH, with P and Q chosen so that (GH/P )1/2 is an

integer. If there exists a positive integer Z such that G + H = KZ , then Z
satisfies

(2.7) Z



























≤ 1

2
Q, if P = 1,

≤ 1

2
(Q + 1), if P = 2,

<
1

2
P 1/2Q logP, if P ≥ 3.

Lemma 2.6. Under the assumptions of Lemma 2.5, we have

(2.8) Z ≤ 1

2
PQ.

Proof. Obviously, by (2.7), (2.8) holds for P ≤ 2. Let

(2.9) f(t) =
log t

t1/2
, t ≥ 3.

Then we have

(2.10) f ′(t) =
2− log t

2t3/2
, t ≥ 3,

where f ′(t) is the derivative of f(t). We see from (2.9) and (2.10) that f(e2) =
2/e is the maximum value of f(t). Therefore, if P ≥ 3, then from (2.7) and
(2.9) we get

Z <
1

2
P 1/2Q logP =

(

1

2
PQ

)(

logP

P 1/2

)

=

(

1

2
PQ

)

(f(P )) ≤
(

1

2
PQ

)(

2

e

)

<
1

2
PQ.

This implies that (2.8) holds for P ≥ 3. The lemma is proved.

Lemma 2.7. For any n, the solutions (x, y, z) of (1.2) satisfy z ≤ AB/2.

Proof. Since AB/2 ≥ 3, the lemma holds for (x, y, z) = (1, 1, 1). We
now assume that (x, y, z) is a solution of (1.2) with (x, y, z) 6= (1, 1, 1). Then,
by Lemma 2.1, we have either x > z > y or y > z > x.

Since min{A2, B2} ≥ 4, by Lemma 2.1, if x > z > y, then we have

(2.11) B = B1B2, B1, B2 ∈ N, gcd(B1, B2) = 1,

(2.12) B2y
1 = nz−y

and

(2.13) A2xnx−z +B2y
2 = (A2 +B2)z .
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Take G = A2xnx−z, H = B2y
2 , K = A2 + B2 and Z = z. Let PQ be the

largest squarefree divisor of GH . Since gcd(A,B) = 1, by (2.11) and (2.12),
we have

(2.14)
PQ = rad(GH) = rad(A2xnx−z) · rad(B2y

2 )

= rad(AB1) · rad(B2) = rad(AB) ≤ AB.

Therefore, applying Lemma 2.6 to (2.13), we get from (2.14) that

(2.15) z ≤ PQ

2
≤ AB

2
.

Similarly, if y > z > x, then we have

(2.16) A = A1A2, A1, A2 ∈ N, gcd(A1, A2) = 1,

(2.17) A2x
1 = nz−x

and

(2.18) A2x
2 +B2yny−z = (A2 +B2)z .

Take G = A2x
2 , H = B2yny−z, K = A2+B2 and Z = z. By (2.16) and (2.17),

we have

(2.19)
PQ = rad(GH) = rad(A2x

2 ) · rad(B2yny−z)

= rad(A2) · rad(BA1) = rad(AB) ≤ AB,

where PQ is the largest squarefree divisor of GH . Therefore, applying Lemma
2.6 to (2.18), we see from (2.19) that z satisfies (2.15). Thus, the lemma is
proved.

3. Proofs

Proof of Theorem 1.2. By Lemma 2.4, the theorem holds for B = 2.
We may therefore assume that B ≥ 4.

We now prove the first part of the theorem. Since 2 ∤ A and A > B3/8,
we have A ≥ 9. Let (x, y, z) be a solution of (1.2) with x > z > y. By (2.13),
we have A2xnx−z < (A2+B2)z , whence we get (A2n)x−z < (1+B2/A2)z and

(3.1) log(A2n) ≤ (x− z) log(A2n) < z log

(

1 +
B2

A2

)

.

Since log(1 + t) < t for any t > 0, by (3.1), we have

(3.2)
A2

B2
log(A2n) < z.

On the other hand, by Lemma 2.7, we have z ≤ AB/2. Hence, by (3.2),
we get

(3.3)
A2

B2
log(A2n) <

AB

2
.
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Further, since A > B3/8, we see from (3.3) that

(3.4) log(A2n) < 4.

But, since A ≥ 9 and n ≥ 1, (3.4) is false. Therefore, the first part of the
theorem is proved.

Using the same method as before, we can easily prove the second part
of the theorem. Since 2 ∤ A and B > A3/6, we have A ≥ 3 and B ≥ 6.
Let (x, y, z) be a solution of (1.2) with y > z > x. By (2.18), we have
B2yny−z < (A2 +B2)z , whence we get

(3.5)
B2

A2
log(B2n) ≤ B2

A2
(y − z) log(B2n) < z.

Further, by Lemma 2.7, we have z ≤ AB/2. Hence, by (3.5), we get

(3.6)
B2

A2
log(B2n) <

AB

2
.

Furthermore, since B > A3/6, we see from (3.6) that

(3.7) log(B2n) < 3.

But, since B ≥ 6 and n ≥ 1, (3.7) is false. Thus, the second part of the
theorem is proved. The proof is complete.

Proof of Corollary 1.3. Combining Theorem 1.2 with Lemma 2.3,
we obtain the corollary immediately.
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