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ON REPRESENTATIONS OF REDUCTIVE p–ADIC GROUPS

OVER Q–ALGEBRAS

Goran Muić

University of Zagreb, Croatia

Abstract. In this paper we study certain category of smooth modules
for reductive p–adic groups analogous to the usual smooth complex repre-
sentations but with the field of complex numbers replaced by a Q–algebra.
We prove some fundamental results in these settings, and as an example
we give a classification of admissible unramified irreducible representations
using the reduction to the complex case.

1. Introduction

In this paper we define and study certain category of smooth modules for
reductive p–adic groups analogous to the usual smooth complex representa-
tions ([1, 2, 3, 4, 8]). Nowadays there is an active current research in the field
of complex representation theory as one can observe from the review articles
[18, 19]. Representations in positive characteristic are also well understood
thanks to the recent works of Henniart, Vignéras and others (see [12]). But
the representations of reductive p-adic groups on the vector spaces over ex-
tensions of Q such as number fields are not well–understood beyond the study
of fields of definition of complex representations ([17]). In this paper we start
to consider such problems. On the example of a classification of unramified
representations the reader will realize how rich and more interesting is this
theory than the complex one (but it seems a lot more simpler than the case
of positive characteristic ([11])). It is based on the description of Z–structure
of the Satake isomorphism due to Gross ([10]).
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As with the approach in positive characteristic mentioned above, we use
extensively Hecke algebra approach combined with the theory of semisimple
algebras to reduce to the case of algebraically closed field. This is not new,
basic ideas can be found already in the book by Curtis and Reiner ([9]). The
theory in positive characteristic is more involved and it is based on a rather
deep decomposition theorem ([12, Theorem I.1]). In our case, we just use very
basic theory of semisimple rings ([13, Chapter XVII]) due to the fact that we
work in characteristic zero. We expect application in the case of complex
representations too but we leave it for another occasion.

In this paper rings are always associative commutative rings with 1 6= 0
(as in [14]). Also homomorphism of rings always send 1 onto 1. The identity
of a subring S of a ring R is always the identity of R. Ring modules are
always unital i.e., 1 acts as identity. We fix a non—Archimedean local field k.
Let G be a reductive p–adic group which by abuse of notation is a group of
k–points of a Zariski connected reductive group defined over k. As indicated
at appropriate places, for some results in the paper we may assume that G
is just an l–group (see [3]) but for introduction we stick with the assumption
that G is a reductive p–adic group. I was informed by Casselman that new
version of his classical book [8] would contain extensive theory of parabolic
induction and Jacquet modules for smooth representations with coefficients
in the rings (see Definition 1.1).

We continue with expected form of the definition of modules that we
consider. The following Definitions 1.1 and 1.2 are essentially taken from ([1,
1.16]) but see also ([21, Chapter I]).

Definition 1.1. Let A be a ring. An (A, G)–module is an A–module
V together with a homomorphism G −→ GLA(V ) such that the stabilizer of
every element in V is open in G.

The book by Vignéras ([21, Chapter I]) contains many basic results for
such modules. Obviously, when A = C we obtain usual smooth complex
representation of G. More interesting example is when we use for A a center
Z(G) of the category of smooth complex representations of G (see [1]).

Definition 1.1 implies that

V = ∪L V L (the union ranges over all open compact subgroups of G),

and every

V L def
= {v ∈ V ; l.v = v, l ∈ L}

is an A–module.
When A = C, the definition below gives us usual complex admissible

representation of G.

Definition 1.2. An (A, G)–module V is A–admissible if V L is finitely
generated A–module for all open–compact subgroups L ⊂ G.
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We consider category

C (A, G)

of all (A, G)–modules. Obviously, C (A, G) is an Abelian category.
Now, we assume that A is Q–algebra for the rest of the paper. Then, as

expected, the functor V 7→ V L from the category C (A, G) into category of
A–modules is exact, for all open compact subgroups L ⊂ G (see Lemma 2.1).
An important consequence of the fact that we work with rings is the following
fundamental result (see Lemma 2.3).

Lemma 1.3. Let a ⊂ A be an ideal of A. Then, for any (A, G)–module
V , and for any open compact subgroup L ⊂ G, we have the following:

(aV )
L
= aV L.

Since we work with rings it is natural to consider the annihilator AnnA(V )
in A of an (A, G)–module V . For irreducible but not A–admissible modules
V , the annihilator is just a prime ideal (see Lemma 2.4 and the example after
the proof of that lemma). But when V is irreducible and A–admissible, the
situation is much more manageable as can be seen from the theorem that we
recall below (see Theorem 2.5).

Theorem 1.4. Assume that A is a Q–algebra. Then, we have the follow-
ing:

(i) For every irreducible A–admissible (A, G)–module V , the annihilator
of V is a maximal ideal. In fact, if we write m = AnnA(V ), then V is
an irreducible A/m–admissible (A/m, G)–module.

(ii) Let Irrm be the set of equivalence classes of irreducible A/m–admissible
(A/m, G)–modules. Then, the disjoint union

∪m Irrm (m ranges over maximal ideals of A)

can be taken to be the set of equivalence classes of irreducible A–
admissible (A, G)–modules.

(iii) Assume that A is a finitely generated C–algebra. Let Irr(G) be the set
of equivalence of complex irreducible admissible representations of G
(see [3]). Let Max(A) be the set of all maximal ideals in A. Then, the
set Irr(G)×Max(A) parameterizes irreducible A–admissible (A, G)–
modules.

Lemma 1.3 recalled above is of the fundamental importance in the proof of
this theorem. Maintaining the notation of the theorem, the identity action of
G on A/m is an example of irreducible A/m–admissible (A/m, G)–module.
We call it the trivial representation. Therefore, Irrm is always non–empty.
When G is a reductive p–adic group, we will prove the existence of other
more complicated representation. But in the present generality, G could be
the trivial group, and we can not do better.
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Section 3 discusses the existence of irreducible (A, G)–modules via Hecke
algebra adapted from the classical complex case ([3]). (See also [21, Chapter
I] or [8].) Let H(G, A) be the Hecke algebra of A–valued locally constant
and compactly supported functions on G and H(G, L, A) its subalgebra of
all L–biinvariant functions in H(G, A) for L ⊂ G open compact. Usual rela-
tion between non–degenerateH(G, A)–modules and smooth (G, A)–modules
is valid as well as usual results for irreducible (G, A)–module regarding irre-
ducibility of V L. The main result of Section 3 is Theorem 3.3 in which we give
very explicit construction of irreducible (G, A)–module V from the known
irreducible module V L for H(G, L, A). This is an improvement over the clas-
sical treatment in ([3], Proposition 2.10 c)) and it is needed for many results
that follow in this paper such as the description of ring of endomorphisms in
Theorem 4.1 which is the main result of Section 4, as well as the following
fundamental result which is the main result of Section 5 (see Theorem 5.1).

Theorem 1.5. Assume that A is a field and hence an extension of Q,
since it is a Q-algebra. Let L ⊂ G be an open compact subgroup. Let V be an
irreducible (A, G)–module such that V L 6= 0 and A–finite dimensional (i.e.,
V L is an A–admissible irreducible H (G, L, A)–module). Then, for any field
extension A ⊂ B, there exists irreducible (B, G)–modules V1, . . . , Vt such that
the following holds:

(i) V L
i 6= 0 for all 1 ≤ i ≤ t.

(ii) V L
i are B–admissible irreducible H (G, L, B)–modules.

(iii) VB
def
= B ⊗A V ≃ V1 ⊕ · · · ⊕ Vt as (B, G)–modules.

We warn the reader that we do not assume that V is A–admissible but
that V L 6= 0 is A–admissible. On the level of L–invariants, the decomposition
in (iii) is contained in Lemma 5.2 and it is based on some very simple facts from
the theory of semi–simple rings ([13, Chapter XVII]). A more complicated case
of positive characteristic requires more elaborated tools ([11, Theorem I.1]).

We warn the reader that because of Theorem 1.4, the assumption that A
is a field is expected. Theorem 1.5 has many applications. They are contained
in Section 6. We recall just the following one (see Corollary 6.1).

Corollary 1.6. Assume that A is any subfield of C. Let L ⊂ G be an
open compact subgroup. Let V be an irreducible (A, G)–module such that
V L 6= 0 and A–finite dimensional. Then, V is A–admissible (see Definition
1.2).

This is proved reducing to the well–known result in the complex case via
Theorem 1.5. We remind the reader that by a result of Jacquet ([16, The-
orem VI.2.2]), every irreducible (C, G)–module is C–admissible. But in the
generality that we consider we are not sure that every irreducible (A, G)–
module is A–admissible without assumptions stated in Corollary 1.6. without
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additional and probably much deeper considerations which was kindly pro-
vided to us by Vignéras ([22]). In the present form Corollary 1.6 is quite
useful since it fundamentally contributes to the construction of unramified
irreducible representations (see Theorem 7.2 in Section 7).

Theorem 1.7. Let k be a non–Archimedean local field. Let O ⊂ k be its
ring of integers, and let ̟ be a generator of the maximal ideal in O. Let q
be the number of elements in the residue field O/̟O. Assume that G is a
k–split Zariski connected reductive group. Let A be its maximal k–split torus.
Let W be the Weyl group of A in G. We write Â for the complex torus dual
to A. The orbit space

X
def
= Â/W

is an affine variety defined over Q. Let K = G(O) be a hyperspecial maximal
compact subgroup of G. We normalize a Haar measure on G such that

∫

K
dg =

1 (see Section 3). Let Q be the algebraic closure of Q inside C. Let A be
any subfield of Q if G is simply–connected, or an extension of Q(q1/2) in
Q otherwise. We define the (commutative) Hecke algebra H (G, K, A) with
respect to above fixed Haar measures. Then, we have the following:

(i) (Satake isomorphims over subfields of Q) Maximal ideals in H(G,K,
A) are parame-terized by points in X(Q) such that points in X(Q) give
the same maximal ideal if and only if they are Gal(Q/A)–conjugate:
for x ∈ X(Q), we denote by mx,A the corresponding maximal ideal.
The corresponding quotient H (G, K, A) /mx,A is denoted by F (x,A).
It is a finite (field) extension of A, and it is also naturally irreducible
A–admissible H (G, K, A)–module. The map Gal(Q/A).x 7→ F (x,A)
is a bijection between Gal(Q/A)–orbits in X(Q), and the set of equiv-
alence classes of irreducible A–admissible irreducible H (G, K, A)–
modules.

(ii) For each x ∈ X(Q), the (A, G)–module (see Theorem 3.3 for the
notation)

V(x,A)
def
= V(mx,K)

is an irreducible and A–admissible (A, G)–module. We have

VK(x,A) ≃ F (x,A)

as H (G, K, A)–modules, and

End(A, G) (V(x,A)) ≃ F (x,A).

(iii) V(x,A) is absolutely irreducible (see Corollary 6.3 for the standard
definition of absolute irreducibility) if and only if x ∈ X(A).

(iv) Let x ∈ X(Q). Then, for any Galois extension A ⊂ B which con-
tains F (x,A), V(x,B) is absolutely irreducible. Moreover, there exist
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t = dimA F (x,A) mutually different elements (among them x) in
Gal(Q/B).x, say x = y1, y2, . . . , yt, such that we have the following:

(V(x,A))B
def
= B ⊗A V(x,A) ≃ V(x,B)⊕ V(y2,B)⊕ · · · ⊕ V(yt,B).

Furthermore, V (x,B),V(y2,B), . . . ,V(yt,B) are mutually non–isomor-
phic (B, G)–modules.

(v) (Classification of unramified admissible representations over subfields
of Q) The map

Gal(Q/A).x 7→ V(x,A)

is a bijection between Gal(Q/A)–orbits in X(Q), and the set of equiv-
alence classes of unramified A–admissible irreducible (A, G)–modules.

Besides above mentioned result, the key point is the description of Satake
isomorphism ([7]) over Z due to Gross ([10]) and a technical lemma about
affine varieties proved in the Appendix (see Lemma A.1 in Section A).

The first ideas about the content of the paper were realized while the au-
thor visited the Hong Kong University of Science and Technology in January
of 2018. The author would like to thank A. Moy and the Hong Kong Uni-
versity of Science and Technology for their hospitality. I would like to thank
Marko Tadić for showing me the reference [17]. The discussions with Marie–
France Vignéras and William Casselman were useful in the process of revision
of the manuscript. Marie–France Vignéras kindly provided me with the ref-
erences [11, 12, 21], and wrote the proof that every irreducible representation
is admissible ([22]). We would like to thank two referees for suggestions on
improvements of our exposition and several minor corrections.

2. Basic properties of (A, G)–modules

In this section we assume that G is an l–group ([3, 1.1]). This means
that G is a topological group with Hausdorff topology such that there is a
fundamental system of neighborhoods of the unit element consisting of open
compact subgroups. We always assume that A is a Q–algebra. In this section
we prove basic properties of (A, G)–modules.

We start with the following result.

Lemma 2.1. The functor V 7→ V L from the category C (A, G) into cate-
gory of A–modules is exact.

Proof. It is enough to show that if V1 −→ V2 −→ V3 is an exact sequence
in C (A, G), then V L

1 −→ V L
2 −→ V L

3 is also exact. It is obvious that the
image of V L

1 is contained in the kernel of V L
2 −→ V L

3 . Conversely, let v be an
element in the kernel of V L

2 −→ V L
3 . Then, there exists w ∈ V1 whose image
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is v under the map V1 −→ V2. Let L
′ ⊂ L be an open compact subgroup such

that w ∈ V L′

1 and v ∈ V L′

2 . Let

w0 =
1

#(L/L′)





∑

γ∈L/L′

γ.w



 .

Then, w0 ∈ V L
1 , and v is image of w0 under the map V1 −→ V2 since v is

L–stable.

Lemma 2.2. Assume that A is a Noetherian ring. Let Cadm (A, G) be
a full subcategory of C (A, G) consisting of all A–admissible modules (see
Definition 1.2). Then, Cadm (A, G) is an Abelian category.

Proof. Let L ⊂ G be an open–compact subgroup. Let V be an object
in Cadm (A, G). Then, by definition V L is finitely generated A–module. If
W ⊂ V is a submodule, then WL ⊂ V L. Hence, WL is finitely generated
A–module since A is a Noetherian ring. Next, if U is a quotient module of V .
Then, UL is a quotient module of V L. Now, we apply Lemma 2.1 to prove
that UL is finitely generated A–module. This shows that submodules and
quotients belong to Cadm (A, G). This implies that category Cadm (A, G) is
Abelian.

The following lemma is one of the key technical results.

Lemma 2.3. Let a ⊂ A be an ideal of A. Then, for any (A, G)–module
V , and for any open compact subgroup L ⊂ G, we have the following:

(aV )
L
= aV L.

Proof. Obviously, we have

aV L ⊂ (aV )L ,

for any open–compact subgroup L.

Let v ∈ (aV )
L
. Then, there exists v1, . . . , vl ∈ V , a1, . . . , al ∈ a such that

v =

l
∑

i=1

aivi.

We select L′ ⊂ L an open compact subgroup such that v1 . . . , vl ∈ V L′

. Then

# (L/L′) · v =
l

∑

i=1

ai





∑

γ∈L/L′

γ.vi



 .

Obviously, we have
∑

γ∈L/L′

γ.vi ∈ V L.
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Thus, we have
# (L/L′) · v ∈ aV L.

Now, we consider the ring of all endomorphims of End(A, G) (V ) of an
irreducible (A, G)–module V . See also Theorem 4.1 where we relate to the
Hecke algebras. We remark that when G is countable at infinity, and A = C,
this ring is always isomorphic to C (see [3, Proposition 2.11]). In general, the
situation is more interesting.

Lemma 2.4. Let V be an irreducible (A, G)–module. Then, the annihi-
lator of V , denoted by AnnA(V ), in A is a prime ideal. Moreover, if we
let p = AnnA(V ), then the module V extends naturally to an irreducible
(k(p), G)–module, where k(p) is the field of fractions of A/p. The ring
End(A, G) (V ) of all endomorphisms is a divison algebra naturally isomorphic
to End(k(p), G) (V ), and therefore central over k(p).

Proof. By definition of a prime ideal, we need to show that ab ∈
AnnA(V ) implies a ∈ AnnA(V ) or b ∈ AnnA(V ). Indeed, if b 6∈ AnnA(V ),
then bV is a non–zero (A, G)–submodule of V . Hence, bV = V because V is
irreducible. Hence,

aV = a (bV ) = abV = 0,

since ab ∈ AnnA(V ). This implies a ∈ AnnA(V ).
By Schur’s lemma, End(A, G) (V ) is a divison algebra. Obviously, A/p

embeddes into the center of End(A, G) (V ). The center is a field. Therefore,
k(p) embeddes into the center. Now, V can be regarded as as a (k(p), G)–
module. It is obviously irreducible since V was originally irreducible (A, G)–
module. Next, it is clear that

End(k(p), G) (V ) ⊂ End(A, G) (V ) .

Finally, since k(p) belongs to the center of End(A, G) (V ), we have

End(A, G) (V ) ⊂ End(k(p), G) (V ) .

Here is an example for Lemma 2.4. The example shows that if an irre-
ducible module is not A–admissible, then the annihilator could be a prime
ideal which is not maximal. Consider the ring of polynomials Q[T ] over Q.
Then, we let A to be the localization of Q[T ] at the prime ideal generated by
T . Let K be the field of fractions of Q[T ] and of A. Then, A is a Q–algebra
and a local ring with a unique maximal ideal, say m, the one generated by T .
We let G = K× and equip it with a discrete topology. In this way, we obtain
an l–group. Let V = K. Then, V is in an obvious way an irreducible (A, G)–
module. Its annihilator is {0} which is a prime ideal in A. We remark that V
is not A–admissible since K is not finitely generated over A. We remark also
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mV = V , and End(A, G) (V ) = K. Finally, we remark that G is countable at
infinity since it is a countable set.

The following theorem gives further description of irreducible A–admissi-
ble modules and an improvement over Lemma 2.4.

Theorem 2.5. Assume that A is a Q–algebra, and G an l–group. Then,
we have the following:

(i) For every irreducible A–admissible (A, G)–module V , the annihilator
of V is a maximal ideal. In fact, if we write m = AnnA(V ), then V is
an irreducible A/m–admissible (A/m, G)–module.

(ii) Let Irrm be the set of equivalence classes of irreducible A/m–admissible
(A/m, G)–modules. Then, the disjoint union

∪m Irrm (m ranges over maximal ideal of A)

can be taken to be the set of equivalence classes of irreducible A–
admissible (A, G)–modules.

(iii) Assume that A is a finitely generated C–algebra. Let Irr(G) be the set
of equivalence classes of complex irreducible admissible representations
of G (see [3]). Let Max(A) be the set of all maximal ideals in A.
Then, the set Irr(G)×Max(A) parameterizes irreducible A–admissible
(A, G)–modules.

Proof. We prove (i). Since V is irreducible, for each maximal ideal
m ⊂ A, we have mV = 0 or mV = V . Assume that mV = V for all m. Then,
for an open compact subgroup L ⊂ G, applying Lemma 2.3, we must have

V L = (mV )
L
= mV L,

for all m. Then, because of Lemma 2.6, we must have V L = 0. Since L is
arbitrary, we obtain V = 0. This is a contradiction. Thus, there exists at
least one maximal ideal m such that mV = 0. Then, m ⊂ AnnA(V ). Hence,

AnnA(V ) = m.

It is is obvious that (ii) follows from (i) at once. Finally for (iii), we
remark that by Nullstellensatz A/m = C for each m ∈ Max(A). Hence, (iii)
is an obvious consequence of (ii).

Maintaining the notation of the theorem, the identity action of G on A/m
is an example of irreducibleA/m–admissible (A/m, G)–module. We call it the
trivial module. Therefore, Irrm is always non–empty. When G is a reductive
p–adic group, we will prove the existence of other more complicated modules.
But in the present generality, G could be the trivial group, and we can not do
better. Section 3 discusses the existence of irreducible (A, G)–modules via
Hecke algebra adapted from the classical complex case ([3]).

The following general result follows from ([14, Chapter 4, Theorems 4.6.,
4.8]) and it is needed in the proof of Theorem 2.5.
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Lemma 2.6. Let V be a finitely generated unital module over a commu-
tative ring R with identity. Then, if mV = V for all maximal ideals m ⊂ R,
then V = 0.

Proof. We include the proof for the sake of completeness. Let Vm be the
localization of V atm. Then, by the assumption of the lemma and Nakayama’s
lemma, Vm = 0.

Let v ∈ V . Then, by above observation, there exists

sv,m ∈ R−m

such that

sv,m.v = 0 in V ,

for all maximal ideals m.
The collection of all sv,m, where m ranges over all maximal ideals of R,

generates an ideal, say I, that is not contained in any m. But, then

I = R.

Thus, there exists m1, . . . ,mk, and r1, . . . , rl ∈ R such that

1R =

l
∑

i=1

risv,mi
.

Then, we have

v = 1R.v =

l
∑

i=1

risv,m.v = 0.

This proves V = 0.

Let A ⊂ B be an extension of rings. Then, for (A, G)–module V we can
consider (B, G)–module defined as follows:

VB
def
= VB/A

def
= B ⊗A V.

Lemma 2.7. Assume that A is a Q–algebra. Then, under the above as-
sumptions, we have the following:

(i) For each open compact subgroup L ⊂ G, we have the following:

V L
B = B ⊗A V L.

(ii) The VB is B–admissible whenever V is A–admissible.
(iii) The assignment V 7→ VB can be regarded as a functor C (A, G) −→

C (B, G) and as a functor Cadm (A, G) −→ Cadm (B, G).

Proof. (i) has the proof similar to the proof of Lemma 2.3. (ii) follows
from (i). Finally, the first functor in (iii) is obvious. The second one is well–
defined because of (ii).
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Let V be an (A, G)–module. Let p ⊂ A be a prime ideal, and let Ap be
the localization of A at p. Then, we write Vp for the (Ap, G)–module VAp

.

Theorem 2.8. Assume that A is a Q–algebra, and G an l–group. Let
V be an irreducible A–admissible (A, G)–module. Then, for a prime ideal
p ⊂ A, we have the following:

Vp =

{

is Ap–admissible irreducible (Ap, G)–module, if p = AnnA(V ),

0, if p 6= AnnA(V ).

Moreover, if p = AnnA(V ), then

AnnAp
(Vp) = mp,

where the right–hand side is the localization of p. Using the canonical isomor-
phism of localizations A/p ≃ Ap/mp, Vp is isomorphic to V as an (A/p, G)–
module.

Proof. We recall that AnnA(V ) is a maximal ideal. Therefore, if p 6=
AnnA(V ) is a prime ideal, then AnnA(V )− p 6= ∅. Select x ∈ AnnA(V )− p.
Then x/1 ∈ Ap is invertible and it acts as zero on Vp. Thus, Vp is zero.

Assume p = AnnA(V ). Then, the maximal ideal mp, obtained by the
localization of p, obviously annihilates Vp. None of the other elements in Ap

can kill Vp since by the properties of the localization and irreducibility of V
would exist an s ∈ A − p which kills V which is not possible. This proves
AnnAp

(V ) = mp.
Next, we may regard Vp as (A/p, G)–module. Hence, the argument

similar to the one used in the computation of the annihilator above shows
that V −→ Vp, given by v 7→ 1 ⊗ v is injective map of (A/p, G)–modules.
Since, the usual properties of localization imply

A/p ≃ Ap/mp,

Hence, the map is an isomorphism of (A/p, G)–modules. Hence, Vp is irre-
ducible (Ap, G)–module. It is Ap–admissible by Lemma 2.7 (ii).

3. Existence of irreducible representations

In this section we assume that A is a Q–algebra, and G an l–group. The
goal of this section is to discuss existence of irreducible (A, G)–modules. As
it may be expected, we use Hecke algebra adapted from the classical complex
case ([3]) but there are some improvements of the classical complex case. The
main result of this section is Theorem 3.3. We remark that the basic idea of
the present approach to the construction of Hecke algebra over A was already
well–known (see [15, 2.2], for the case of profinite groups).

Let L ⊂ G be an open compact subgroup. Let A be a Q–algebra. We
consider the space H (G,L,A) of all functions f : G −→ A which are L–
biinvariant and have compact support i.e., they are supported on finitely many
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double cosets LxL, where x ∈ G. If 1T denotes the characteristic function of
a subset T ⊂ G, then every function f ∈ H (G,L,A) can be written uniquely
in the form:

f =
∑

x∈L\G/L

ax ·1LxL, where ax ∈ A, equal to zero for all but finitely many x.

The Hecke algebra H (G,A) with coefficients in A is just the union of all
H (G,L,A) when L ranges over all open compact subgroups of G.

When A = C, we obtain usual Hecke algebras ([8, 3]) The product is
given by the convolution

f ⋆ g(x) =

∫

G

f(xy−1)g(y)dy.

We recall that H (G,L,C) is associative C–algebra with identity 1L/vol(L).
It is a subalgebra of H (G,C) for all L. As it is easy to see and also can be
seen by inspecting the construction of Haar measure on G (see the proof of
[3, Proposition 1.18]), we see that if we select an open compact subgroup and
require that its volume is equal to one (a rational number!), then all volumes of
all open compact subgroups are rational. Moreover, above defined convolution
⋆ makes H (G,Q) into an associative Q–algebra (in general without identity),
and H (G,L,Q) an associative Q–algebra with identity 1L/vol(L). Let us
explain why H (G,Q) is closed under convolution. The reader can easily show
that this boils down to showing that 1xL ⋆ 1yL ∈ H (G,Q) for all x, y ∈ G,
and open compact subgroups L ⊂ G. Indeed, we have the following:

(3.1)

1xL ⋆ 1yL(z) =

∫

G

1xL(zt
−1)1yL(t)dt

=

∫

yL

1xL(zt
−1)dt = vol

((

Lx−1z
)

∩ yL
)

=M(x, y, z) · vol
(

L ∩ yLy−1
)

∈ Q,

where M(x, y, z) is the number of right cosets of the open compact subgroup
L∩yLy−1 in which is decomposed Lx−1z∩yL. We remark that Lx−1z∩yL 6= ∅
is equivalent to zL = xl1yL for some l1 ∈ L determined uniquely modulo left
coset l′1

(

L ∩ yLy−1
)

. Also, we have the following:

Lx−1z ∩ yL = Ll1y ∩ yL = Ly ∩ yL =
(

L ∩ yLy−1
)

· y.

This implies that M(x, y, z) = 1 whenever Lx−1z ∩ yL 6= ∅.
An explicit computation using defining integral shows that 1xL ⋆ 1yL is

right–invariant under L. Thus, if we write

(3.2) G = ∪zzL (disjoint union),

then

(3.3) 1xL ⋆ 1yL =
∑

z

M(x, y, z) · vol
(

L ∩ yLy−1
)

· 1zL.
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The sum is of course finite since Lx−1z ∩ yL 6= ∅ implies that x−1z ∈ LyL.
This proves our claim about H (G,Q). We fix such choice of Haar measure
and define ⋆ as we explained.

Now, it is obvious that as Q–vector spaces

H (G,L,A) = H (G,L,Q)⊗Q A,

H (G,A) = H (G,Q)⊗Q A.

This enables to define the structure of associative A–algebra H (G,L,A) and
H (G,A). Furthermore,

(3.4) ǫL = ǫL,A =
1L

vol(L)
⊗Q 1A.

is the identity of H (G,L,A). Furthermore, H (G,L,A) is a subalgebra of
H (G,A), for all open compact subgroups L. We omit ⊗1A from the notation
in this and similar situations in the text that follows.

Let V be an (A, G)–module. Then there exists a unique (subject to the
choice of Haar measure above) homomorphism of A–algebras H(G,A) −→
EndA (V ) defined as follows. For f ∈ H(G,A), and v ∈ V , we select an open
compact subgroup L ⊂ G such that f is right invariant by L, implying that
we can write f as a finite sum f =

∑

x f(x)1xL, and v ∈ V L. Then, we let
f.v = vol(L) ·

∑

x f(x)x.v. This agrees with the usual definition
∫

G
f(y)y.vdy

when A = C (see [3, 2.3]). Let us show that our definition is correct. Indeed,
if L′ ⊂ G is another open compact subgroup such that f is right invariant
by L′, implying that we can write f as a finite sum f =

∑

x′ f(x′)1x′L′ , and

v ∈ V L′

. We decompose into disjoint unions of left cosets:

L = ∪l1 l1L ∩ L′ and L′ = ∪l′
1
l′1L ∩ L′.

Then, we have

vol(L′) ·
∑

x′

f(x′)x′.v = vol(L′) ·
∑

x′

1

[L′ : L ∩ L′]





∑

l′
1

f(x′l′1) x
′l′1.v





= vol(L ∩ L′) ·
∑

x′

∑

l′
1

f(x′l′1) x
′l′1.v

= vol(L ∩ L′) ·
∑

x

∑

l1

f(xl1) xl1.v

= vol(L) ·
∑

x

f(x) x.v.

This shows that the action of elements of H(G,A) is well–defined. Next, we
check that constructed map H(G,A) −→ EndA (V ) is a homomorphism of
A–algebras. Indeed, for an arbitrary open compact subgroup L ⊂ G, and
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x, y ∈ G, we put f = 1xL ⊗ 1A and g = 1yL ⊗ 1A. Then, for v ∈ V L, we
remark that

y.v ∈ V L∩yLy−1

.

If we write as a disjoint union

L = ∪l1 l1
(

L ∩ yLy−1
)

,

then by definition of the action

fg.v = f. (g.v) = vol(L)f. (y.v) = vol(L)vol
(

L ∩ yLy−1
)

∑

l1

xl1y.v.

On the other hand using (3.2) and (3.3), by the definition of the action, we
have the following:

f ⋆ g.v = vol(L) ·
∑

z as in (3.2)

Lx−1z∩yL 6=∅

vol
(

L ∩ yLy−1
)

z.v

= vol(L)vol
(

L ∩ yLy−1
)

∑

l1

xl1y.v

This proves the claim that H(G,A) −→ EndA (V ) is a homomorphism of A–
algebras. Moreover, the constructed H(G,A)–module V is non–degenerate
(see [3, 2.5]) since for any v ∈ V there exists an open compact subgroup
L ⊂ G such that (see (3.4))

ǫL.v = v.

Furthermore, it easy to check that

(3.5) x. (f.v) = (lxf) .v, f ∈ H(G,A), v ∈ V,

where lx is the left translation lxf(y) = f(x−1y).
Finally, it is easy to check the following standard result.

Lemma 3.1. A non–degenerate H(G,A)–module gives rise to a unique
(A, G)–module such that (3.5) holds. The category of all (A, G)–modules
can be identified with the category of all non–degenerate H(G,A)–modules. In
particular, an irreducible H(G,A)–module is also irreducible (A, G)–module.

The following lemma is also standard (see [3, Proposition 2.10]).

Lemma 3.2. (i) For an irreducible (A, G)–module V , and an open
compact subgroup L ⊂ G, H (G,L,A)–module V L is either 0 or irre-
ducible.

(ii) Let L ⊂ G be an open–compact subgroup. Assume that Vi, i = 1, 2,
are irreducible (A, G)–modules such that V L

i 6= 0, i = 1, 2. Then, V1
is equivalent to V2 as (A, G)–modules if and only if V L

1 is equivalent
to V L

2 as H (G,L,A)–modules.
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Proof. We just sketch the proof. Let L ⊂ G be an open–compact sub-
group.

Then, ǫL defined in (3.4) is the identity of the associative algebra
H (G,L,A). Moreover, we have the following:

(3.6) H (G,L,A) = ǫLH (G,A) ǫL.

Now, we sketch the proof of (i). If 0 $ W $ V L is a H (G,L,A)–

submodule of V L. Then, V1
def
= H (G,A)W is an (A, G)–submodule of V

such that V L
1 =W . Since V is irreducible and V L 6=W this a contradiction.

For (ii), by adjusting the notation, we proceed as in the proof of b) in ([3,
Proposition 2.10]).

The following theorem is also standard. It is a part of ([3, Proposition
2.10 c)]) but we make it more explicit.

Theorem 3.3. Let L ⊂ G be an open–compact subgroup. Then, for each
maximal proper left ideal I ⊂ H (G,L,A), there exists a unique left ideal J ′

of H (G,A) such that the following three conditions hold:

(i) J ′ ⊂ H (G,A) ǫL
(ii) I ⊂ J ′

(iii) H (G,A) ǫL/J
′ is irreducible.

The left ideal J ′ is a unique maximal proper left–ideal, denoted by JI = JI,L,
in H (G,A) ǫL which contains I. It is a sum of all proper left ideals in
H (G,A) ǫL which contain I. Moreover, ǫL ⋆ JI,L = I.

(iv) Regarding

V(I, L)
def
= H (G,A) ǫL/JI,L

as an (A, G)–module, we have that its space of L–invariants is isomor-
phic to (irreducible module) H (G,L,A) /I as a H (G,L,A)–module.
Up to isomorphism, V(I, L) is a unique irreducible (A, G)–module
with this property.

(v) The (A, G)–module

W(I, L)
def
= H (G,A) ǫL/H (G,A) I

has a unique maximal proper subrepresentation, and the corresponding
quotient is V(I, L). The canonical projection W(I, L)L −→ V(I, L)L

is isomorphism of H (G,L,A)–modules.
(vi) If f ∈ H (G,L,A) does not belong to all maximal left ideals of

H (G,L,A), then there exists an irreducible (A, G)–module such that
f acts as a non–zero operator. More explicitly, if f 6∈ I, then f is not
zero on V(I, L).

(vii) The ideal I ∩AǫL is a prime ideal in AǫL ≡ A. The ideal is maximal,
if A–module H (G,L,A) /I is finite.
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Proof. If J is a proper left ideal contained in H (G,A) ǫL which contains
I, then ǫLJ is a left ideal in H (G,L,A) which contains I. Since I is maximal
proper left ideal, we must have ǫLJ = I or ǫLJ = H (G,L,A). In the latter
case, we have

J ⊃ H (G,A) ǫLJ = H (G,A)H (G,L,A) = H (G,A) ǫL.

Hence,

J = H (G,A) ǫL.

This is a contradiction. Therefore, if JI denotes the sum of all proper left
ideals J containing I, then

ǫLJI = I.

Obviously, JI satisfies conditions (i)–(iii). The uniqueness is clear from its
construction. Of course, we need to establish the existence of at least one
such ideal J to be able to define JI . This is easy. We just need to take
J = H (G,A) I.

For (iv), regarding them as (A, G)–modules and using Lemma 2.1, we
have

(H (G,A) ǫL/JI)
L = H (G,L,A) /ǫLJI = H (G,L,A) /I.

The uniqueness in the last part of (iv) follows from Lemma 3.2 (ii). Next, (v)
is just the reformulation of maximality and uniqueness of JI . (vi) is obvious.
We remark that maximal left ideals of H (G,L,A) exist by Zorn’s lemma.
Finally, (vii) follows from Lemma 2.6 using simplified arguments of Lemma
2.4 and Theorem 2.5.

Corollary 3.4. Let L ⊂ G be an open–compact subgroup. Then, for
each irreducible H (G,L,A)–module U there exists a unique up to an iso-
morphism irreducible (A, G)–module V such that its space of L–invariants is
isomorphic to U as H (G,L,A)–modules. Furthermore, the annihilator of an
A–module U is equal to the annihilator of V (see Lemma 2.4 for the definition
of the annihilator). In addition, if U is A–finite, then the annihilator of V is
a maximal ideal.

Proof. This first part is immediate from Lemma 3.2 and Theorem 3.3.
Next, as in the proof of Lemma 2.4, the annihilator AnnA(U) is a prime
ideal, say p. Now, the action of H (G,L,A) on U factors through the canon-
ical map H (G,L,A) −→ H (G,L,A/p). In this way, we may regard U
as a H (G,L,A/p)–module. Now, Lemma 3.2 (ii) and Theorem 3.3 (iv)
guarantee that there exists, unique up to an isomorphism, an irreducible
(A/p, G)–module V1 such that its space of L–invariants is isomorphic to U
as H (G,L,A/p)–modules. If we regard V1 as an (A, G)–module, then we
obtain an irreducible module with the space of L–invariants isomorphic to
U as H (G,L,A)–modules. Hence V1 is isomorphic to V by Lemma 3.2 (ii).
This clearly implies that the annihilator of V contains p. They are clearly
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equal. Otherwise, the annihilator of U would be larger. Finally, the last claim
follows from Theorem 3.3 (vii).

4. An application of Theorem 3.3

In this section we again assume that A is a Q–algebra, and G an l–group.
The goal of this section is to discuss

End(A, G) (V ) = EndH(G, A) (V ) ,

for an irreducible (A, G)–module V . We also consider

EndH(G, L, A)

(

V L
)

,

for an open compact subgroup L ⊂ G such that V L 6= 0. It is obvious that
the restriction map gives an embedding

End(A, G) (V ) = EndH(G, A) (V ) →֒ EndH(G, L, A)

(

V L
)

.

In general, they are both division algebras central over the field of fractions
k(p) of A/p where p is annihilator of V in A. We have the following result (see
[8, Proposition 2.2.2] for the proof of the similar result by different means).

Theorem 4.1. Assume that V is an irreducible (A, G)–module. Then,
the restriction map End(A, G) (V ) −→ EndH(G, L, A)

(

V L
)

induces an iso-
morphism of division algebras over k(p).

Proof. We use Theorem 3.3. We select maximal proper left ideal I ⊂
H (G,L,A) such that we have the following isomorphism of (A, G)–modules

V ≃ V(I, L).

Then,

V L ≃ H (G,L,A) /I

as H (G,L,A)–modules.
Now, we give elementary description of

EndH(G, L, A) (H (G,L,A) /I) .

First, let f + I ∈ H (G,L,A) /I such that I ⋆ f ⊂ I. Then, the map
h+ I 7→ h⋆ f + I belongs to EndH(G, L, A) (H (G,L,A) /I). We call this map
ϕf . Conversely, let

ϕ ∈ EndH(G, L, A) (H (G,L,A) /I) .

If we put f + I = ϕ(ǫL + I), then

I ⋆ f + I = I ⋆ (f + I) = I ⋆ ϕ(ǫL + I) = ϕ(I ⋆ ǫL + I) = ϕ(I) = I.

Hence, I ⋆ f ⊂ I. Also,

ϕ(h+ I) = ϕ(h ⋆ ǫL + I) = h ⋆ f + I, h ∈ H (G,L,A) .

Thus, ϕ = ϕf . This proves the following lemma.



220 G. MUIĆ

Lemma 4.2. A–algebra with identity ǫL+I consisting of all f+I such that
I ⋆ f ⊂ I is anti–isomorphic to EndH(G, L, A) (H (G,L,A) /I): f + I 7→ ϕf ,
ϕfϕg = ϕ = ϕg⋆f .

Now, we prove the theorem. By the remark before the statement of
the theorem it is enough to show that the restriction map is surjective. Let
ϕ ∈ EndH(G, L, A) (H (G,L,A) /I). By Lemma 3.2, we can write ϕ = ϕf for
some f ∈ H (G, L, A) such that I ⋆ f ⊂ I. Using Theorem 3.3, we can write

V(I, L)
def
= H (G,A) ǫL/H (G,A)JI,L,

where JI,L is a unique maximal proper left ideal in H (G,A) ǫL which contains
I. Moreover,

ǫL ⋆ JI,L = I.

After these preparations we define ψ ∈ End(A, G) (V(I, L)) by

ϕ(h+ JI,L) = h ⋆ f + JI,L, h ∈ H (G,A) ǫL.

First of all, this map is well–defined since h− h′ ∈ JI,L implies that

(h− h′) ⋆ f ∈ JI,L ⋆ f.

We observe that JI,L ⋆ f is left ideal in H (G,A) ǫL. Also, we note that

ǫL ⋆ JI,L ⋆ f = I ⋆ f ⊂ I.

Consequently, we have the following. The sum JI,L ⋆ f +H (G,A) I is a left
ideal in H (G,A) ǫL which contains I, and satisfies

ǫL ⋆ (JI,L ⋆ f +H (G,A) I) = I.

This shows that this ideal is proper ideal in H (G,A) ǫL, and contains I.
Thus, it is contained in JI,L. In particular, we have JI,L ⋆ f ⊂ JI,L. Hence,
(h − h′) ⋆ f ∈ JI,L. This shows that ϕ is well–defined. Obviously, it belongs
to End(A, G) (V(I, L)). Finally, the space of L–invariants in V(I, L) is equal
to

ǫL ⋆ V(I, L) = ǫLH (G,A) ǫL/JI,L ≃ H (G,L,A) /I.

The isomorphism is h + JI,L 7→ h + I, for h ∈ H (G,L,A), and it is an
isomorphism of H (G,L,A)–modules. We transfer ϕ via that isomorphism to
ǫL ⋆ V(I, L). As a result, we obtain the following map:

h+ JI,L 7→ h ⋆ f + JI,L,

which is clearly the restriction of ψ.
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5. Another application of Theorem 3.3

The aim of this section is to prove the following theorem.

Theorem 5.1. Assume that A is a field and hence an extension of Q,
since it is a Q-algebra. Let G be an l–group and L ⊂ G an open compact
subgroup. Let V be an irreducible (A, G)–module such that V L 6= 0 and
A–finite dimensional (i.e., V L is an A–admissible irreducible H (G, L, A)–
module). Then, for any field extension A ⊂ B, there exists irreducible (B, G)–
modules V1, . . . , Vt such that the following holds:

(i) V L
i 6= 0 for all 1 ≤ i ≤ t.

(ii) V L
i are B–admissible irreducible H (G, L, B)–modules.

(iii) VB
def
= B ⊗A V ≃ V1 ⊕ · · · ⊕ Vt as (B, G)–modules.

Proof. First, we recall that H (G, L, A) is an associative A–algebra
with identity ǫL,A (see equation (3.4)). We can identify

H (G, L, B) = B ⊗A H (G, L, A) ,

and consequently
ǫL,B = 1⊗A ǫL,A.

Next, by Lemma 2.7 (i), we have

(B ⊗A V )
L
= B ⊗A V L.

Next, since V is irreducible and V L 6= 0, we conclude that V L is an irreducible
H (G, L, A)–module (see Lemma 3.2 (i)). Put

W = V L,

and
WB = B ⊗A W.

Obviously, the latter is a B–admissible module for H (G, L, B). We write

ϕA,W : H (G, L, A) −→ EndA(W ),

and
ϕB,WB

: H (G, L, B) −→ EndB(WB)

for the corresponding homomorphism of A–algebras and B–algebras, respec-
tively. For example, ϕA,W is the restriction of the homomorphism of A–
algebras H (G, A) −→ EndA(V ) constructed in Section 3 to a subalgebra
H (G, L, A) which keeps W = V L invariant.

We let HA,W be the image of ϕA,W . Similar notation we introduce for
the field B. Then, we have

ϕB,WB
= idB ⊗B ϕA,W .

Next, by Schur’s lemma, we have that

(5.1) D
def
= EndH(G, L, A) (W )
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is a division algebra whose center contains A. Since, by the assumption V L is
A–finite dimensional, we conclude that D is finite dimensional over A. Hence,
we have the following standard result.

Lemma 5.2. Maintaining above assumptions, we have the following:

(i) HA,W is simple A–algebra; its unique simple module up to an isomor-
phism is W .

(ii) HA,W = EndD(W ).
(iii) HB,WB

= B ⊗A EndD(W ) is a semisimple B–algebra.

Proof. (ii) is a consequence of Jacobson’s density theorem (known as
Wedderburn’s theorem, see [13, Chapter XVII, Corollary 3.5]). (i) is well–
known once we have (ii) (see [13, Chapter XVII, Theorem 5.5]). For (iii), we
note that ([13, Chapter XVII, Theorem 6.2]) implies that B ⊗A EndD(W ) is
a semisimple B–algebra. Finally, we have

HB,WB
= ϕB,WB

(H (G, L, B))

= idB ⊗B ϕA,W (B ⊗A H (G, L, A))

= B ⊗A HA,W

= B ⊗A EndD(W ).

This completes the proof of (iii).

As a corollary of Lemma 5.2 (iii), there exists B–admissible modules
W1,W2, . . .Wt of HB,WB

(and consequently of H (G, L, B)) such that

(5.2) B ⊗A V L = B ⊗A W =WB ≃W1 ⊕W2 ⊕ · · · ⊕Wt

as H (G, L, B)–modules.
Now, we apply Theorem 3.3. Select v ∈ V L, v 6= 0, and decompose it

according to the decomposition in (5.2):

(5.3) v =

t
∑

i=1

wi wi ∈Wi.

We let

I
def
= AnnH(G, L, A)(v), V ≃ H (G, L, A) /I,

Ii
def
= AnnH(G, L, B)(wi), Wi ≃ H (G, L, B) /Ii, 1 ≤ i ≤ t.

Remark 5.3. In what follows we use repeatedly the following elementary
observation. Let X and Y be non–zero vector spaces over the field A. Let

Z ⊂ X , Z 6= 0, be a subspace. Then, if
∑l

i=1 xi ⊗ yi ∈ Z ⊗A Y , with A–
linearly independent vectors y1, . . . , yl, then x1, . . . , xl ∈ Z. Indeed, if α is an
A–linear functional on Y , then there exists an A–linear map X ⊗A Y −→ X
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such that x⊗y 7→ α(y)x. It maps Z⊗AY into Z. Now, since y1, . . . , yl are A–
linearly independent, there exists linear functionals α1, . . . , αt on Y such that

αi(yj) = δij (a Kronecker delta). Consequently, αk

(

∑l
i=1 xi ⊗ yi

)

= xk ∈ Z.

Lemma 5.4. AnnH(G, L, A)(1⊗ v) = B ⊗A I = I1 ∩ I2 ∩ · · · ∩ It.

Proof. AnnH(G, L, A)(1⊗v) = I1∩I2∩· · ·∩It is obvious from (5.2) and
(5.3). Also, B⊗A I ⊂ AnnH(G, L, A)(1⊗v) is obvious. The converse inclusion
follows from elementary Remark 5.3.

Now, following Theorem 3.3, we construct maximal left ideals

J
def
=

∑

J′⊂H(G, A)ǫL,A a left ideal

ǫL,AJ′=I

J ′ ⊂ H (G, A) ǫL,A,

Ji
def
=

∑

J′⊂H(G, B)ǫL,B a left ideal

ǫL,BJ′=Ii

J ′ ⊂ H (G, B) ǫL,B, 1 ≤ i ≤ t.

Then, we have (see Theorem 3.3 (iv))

V ≃ VA(I, L)
def
= H (G, A) ǫL,A/J.

Consequently, since B is a field, we have

(5.4) B ⊗A V ≃ H (G, B) ǫL,B/B ⊗A J.

We also define irreducible (B, G)–modules using (Theorem 3.3 (iv))

Vi
def
= H (G, B) ǫL,B/Ji, 1 ≤ i ≤ t.

By Theorem 3.3 (iv), we have

V L
i = H (G, B) /Ii ≃Wi

as H (G, L, B)–modules for all 1 ≤ i ≤ t. Thus, V1, V2, . . . , Vt satisfies (i) and
(ii) of the theorem. It remains to prove (iii). We need the following lemma.

Lemma 5.5. B ⊗A J = J1 ∩ J2 ∩ · · · ∩ Jt.

Proof. We prove B ⊗A J ⊂ Ji for all i = 1, . . . , t. Indeed, let J ′ ⊂
H (G, L, A) ǫL,A be a left ideal such that ǫL,AJ

′ = I. Then, we define a left
ideal in H (G, L, B) ǫL,B as follows:

J ′′
i
def
= H (G, B) ⋆ Ii + B ⊗A J ′.

Then, applying Lemma 5.4, we obtain

ǫL,BJ
′′
i = ǫL,B (H (G, B) ⋆ Ii + B ⊗A J ′) = Ii+B⊗AǫL,AJ

′ = Ii+B⊗AI = Ii,

for all 1 ≤ i ≤ t. Consequently, we have

B ⊗A J ′ ⊂ J ′′
i ⊂ Ji, 1 ≤ i ≤ t.
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Since J ′ is arbitrary, we obtain

B ⊗A J ⊂ Ji, 1 ≤ i ≤ t.

This proves

B ⊗A J ⊂ J1 ∩ J2 ∩ · · · ∩ Jt.

Conversely, let f ∈ J1 ∩ J2 ∩ · · · ∩ Jt. Then, we define a left ideal

J ′′ def
= H (G, B) f ⊂ J1 ∩ J2 ∩ · · · ∩ Jt.

Then, for each i, we have

ǫL,BJ
′′ ⊂ Ii,

by the definition of ideals Ji and an argument as above with Ji. Hence, by
Lemma 5.4, we obtain

(5.5) ǫL,BJ
′′ ⊂ B ⊗A I.

Now, we write

f =

l
∑

i=1

bi ⊗ fi, fi ∈ H (G, A) , bi ∈ B,

where b1, . . . , bl are A—linearly independent. Then, (5.5) implies that

l
∑

i=1

bi ⊗ ǫL,BF ⋆ fi ∈ B ⊗A I,

for any F ∈ H (G, A). Applying now Remark 5.3 we obtain

ǫL,BF ⋆ fi ∈ I,

for all F ∈ H (G, A) and all i. This implies that

fi ∈ H (G, A) fi ⊂ J,

for all i. Consequently, we obtain that

f =

l
∑

i=1

bi ⊗ fi ∈ B ⊗A J.

This proves that

J1 ∩ J2 ∩ · · · ∩ Jt ⊂ B ⊗A J.

The proof of lemma is complete.

Now, we are ready to prove (iii) in the theorem, and thus complete the
proof of the theorem. By (5.4) and Lemma 5.5, we have the following inclusion
of (B, G)–modules:

B ⊗A V →֒ V1 ⊕ V2 ⊕ · · · ⊕ Vt.
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But the map is surjective since the map is surjective on level of L–invariants
by counting A–dimensions (see (5.2)) which implies the following:

B ⊗A V = H (G, B)
(

B ⊗A V L
)

=

t
∑

i=1

H (G, B)Wi = ⊕t
i=1Vi.

This completes the proof of the theorem.

6. Applications and improvements of Theorem 5.1

We start this section with the following application of Theorem 5.1.

Corollary 6.1. Assume that A is any subfield of C. Let G be a reductive
p–adic group (i.e., a group of k–points of a reductive group over a local non–
Archimedean field k). Let L ⊂ G be an open compact subgroup. Let V be
an irreducible (A, G)–module such that V L 6= 0 and A–finite dimensional.
Then, V is A–admissible (see Definition 1.2).

Proof. We can select B = C in Theorem 5.1 since A ⊂ C. Then all
Wi, 1 ≤ i ≤ t, are irreducible smooth complex representations of a reductive
p–adic group G. Then, by a result of Jacquet ([16, Theorem VI.2.2]), every
representation Wi is C–admissible. This implies that C ⊗A V is. Hence, for

every open compact subgroup L0 ⊂ G, the complex vector space (C⊗A V )
L0

is finite dimensional. But, by Lemma 2.7 (i), we have

C⊗A V L0 ≃ (C⊗A V )
L0 .

But then

dimA V
L0 = dimC (C⊗A V )

L0 ,

proving the corollary.

The following is analogue of the result for finite dimensional representa-
tions of associative algebras (see [9, Section 29]).

Corollary 6.2. Assume that A is a field and hence an extension of
Q, since it is a Q-algebra. Let G be an l–group and L ⊂ G an open compact
subgroup. Assume that V and U are A–admissible irreducible (A, G)–modules
such that V L 6= 0, UL 6= 0. Assume that there exists a field extension A ⊂ B
such that VB and UB have non–disjoint Jordan–Hölder series. Then, V ≃ U
as (A, G)–modules.

Proof. By Theorem 5.1 (iii), both representations VB and UB are
semisimple and have finite length. By Theorem 5.1 (i) and (ii), every ir-
reducible composition factor has a non–zero and B–finite dimensional space
of L–invariants. Consequently, both V L

B and UL
B are semi–simple, and since

VB and UB have a common irreducible factor, we obtain

HomH(G, L, B)(V
L
B , U

L
B ) 6= 0.
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But by the results that can be found in ([9, Section 29]):

HomH(G, L, B)(V
L
B , U

L
B ) ≃ B ⊗A HomH(G, L, A)(V

L, UL).

Thus, we obtain
HomH(G, L, A)(V

L, UL) 6= 0.

Then, Lemma 3.2 (ii) implies that V ≃ U .

Another application of Theorem 5.1 is the following corollary.

Corollary 6.3. Assume that A is a field and hence an extension of Q,
since it is a Q-algebra. Let G be an l–group and L ⊂ G an open compact
subgroup. Let V be an A–admissible irreducible (A, G)–module such that
V L 6= 0. Then, V is absolutely irreducible (i.e., VB is irreducible for all field
extensions A ⊂ B, see [8] and [17]) if and only if End(A, G) (V ) = A.

Proof. Assume that End(A, G) (V ) = A. Then, using the notation of

Lemma 5.2, HA,W = EndA(W ), where W = V L. Thus, if A ⊂ B is a field
extension, using Lemma 5.2 (ii), we obtain

HB,WB
= B ⊗A EndA(W ) = EndB(WB).

This implies that WB is irreducible H (G, L, B)–module. Applying Theorem
5.1 we conclude that VB is irreducible.

Conversely, assume that V is absolutely irreducible. Then obviouslyW =
V L is absolutely irreducible A–admissible H (G, L, A)–module (see Lemma
3.2). Now, we apply the following lemma ([9, Section 29]).

Lemma 6.4. Assume that U is an A–admissible irreducible H (G, L, A)–
module. Then, U is absolutely irreducible if and only if EndH(G, L, A)(U) =
A.

Finally, Theorem 4.1 completes the proof.

We remark that if V is absolutely irreducible, then VB is also absolutely ir-
reducible module for all field extensions A ⊂ B. One needs to apply Corollary
6.3 and the following observation:

C ⊗B VB ≃ C ⊗B (B ⊗A V ) ≃ C ⊗A V = VC .

for field extensions A ⊂ B ⊂ C.
Finally, we give an improvement of Theorem 5.1.

Corollary 6.5. Assume that A is a field and hence an extension of Q,
since it is a Q-algebra. Let G be an l–group and L ⊂ G an open compact

subgroup. Let V be an irreducible (A, G)–module such that W
def
= V L 6= 0

and A–admissible. Then, we can extend V to an obvious (K, G)–module, say
V ext, where K is the center of the division algebra End(A, G)(V ). Then, for
any field extension K ⊂ B, there exists a unique irreducible (B, G)–module
V ext(B) such that the following holds:
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(i) V ext(B)L 6= 0.
(ii) V ext(B)L is B–admissible irreducible H (G, L, B)–module.

(iii) V ext
B

def
= B⊗A V

ext is direct sum of finite number of copies of V ext(B).

In addition, we define D as before (see (5.1)). Then, if F is a maximal subfield
of D (which must contain K), then V ext(F) is absolutely irreducible.

Proof. This follows from Theorem 5.1 and Corollary 6.3 but we need
some preparation. We warn the reader that we use notation from the first
part of the proof of Theorem 5.1 freely (see Lemma 5.2). Applying Theorem
4.1, we obtain (see (5.1)) the following isomorphism of A–algebras (see (5.1)):

End(A, G)(V ) ≃ D.

In particular, K is the center of D. We let

W ext =
(

V ext
)L
.

Moreover, we have the following isomorphism:

EndH(G, L, K)

(

W ext
)

= EndH(G, L, A)(W ) = D.

In difference to what we have in the proof of Theorem 5.1 (see the state-
ment of Lemma 5.2), the simple algebra

HK,W = EndD(W
ext)

has K as its center. Thus, by ([9, Section 68]) we obtain

HB,W ext
B

= B ⊗K EndD(W
ext)

is a simple B–algebra. This observation is responsible for the existence of
unique V ext(B). We leave the details to the reader.

It remains to prove that V ext(F) is absolutely irreducible. We need the
following lemma.

Lemma 6.6. F–algebra F ⊗K D is isomorphic to the F–algebra of all
matrices of size t× t with coefficients in F where t = dimKD.

Proof. This is a part of the standard theory of simple algebras (see [9,
Section 68]).

As in the proof of Corollary 6.2, by the results of ([9, Section 29]), we
have

EndH(G, L, F)

(

(

V ext
F

)L
)

≃ F ⊗K EndH(G, L, K)

(

(

V ext
)L

)

= F ⊗K D.

Thus, by Lemma 6.6, we see that

EndH(G, L, F)

(

(

V ext
F

)L
)

is a matrix algebra of size t×t with coefficients in F . Since, by already proved

part (iii) of the corollary, the module (V ext
F )

L
is a direct sum of finite number
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of copies of (V ext(F))
L
, we conclude that the number of copies is equal to t

and

EndH(G, L, F)

(

(

V ext(F)
)L

)

= F .

Finally, Theorem 4.1 and Corollary 6.3 complete the proof.

7. An example: construction of unramified irreducible

representations

Let k be a non–Archimedean local field. Let O ⊂ k be its ring of integers,
and let ̟ be a generator of the maximal ideal in O. Let q be the number
of elements in the residue field O/̟O. Let G be a k–split Zariski connected
reductive group. To simplify notation we write G for the group G(k) of k–
points. Similarly, we do for other algebraic subgroups defined over k.

Let

K
def
= G(O)

be a hyperspecial maximal compact subgroup of G ([20, 3.9.1]). We normalize
a Haar measure on G such that

∫

K dg = 1 (see Section 3).
We recall the structure of the algebra

H (G, K, C)

is obtained via Satake isomorphism ([7]). In more detail, let A be a maximal
k–split torus of G. Let X∗(A) (resp., X∗(A)) be the group of k–rational char-
acters (resp., cocharacters) of A. LetW be the the Weyl group of A in G. The

group W acts on A and its complex dual torus Â. The Satake isomorphism
enables us to identify H (G, K, C) with the algebra of W–invariants

C[X∗(Â)]W ,

where

C[X∗(Â)]

is the C-group algebra of finitely generated free Abelian group. This is also
the algebra of regular functions on complex algebraic torus Â. The action of
W on the torus is algebraic, and therefore

X
def
= Â/W,

is the complex affine variety ofW–orbits in Â. Its algebra of regular functions
is

C[X ] = C[X∗(Â)]W .

Thus, the Satake isomorphism identifies H (G, K, C) with C[X ] (it depends
on the choice of a Borel subgroup B = AU of G, where U is the unipotent
radical).
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By the standard Nullstellensatz, a point x ∈ X defines a maximal ideal
mx in H (G, K, C). Then, we apply Theorem 3.3 to construct irreducible
(admissible) (C, G)–module module, denoted by V(mx,K). We have

V(mx,K)K ≃ H (G, K, C) /mx ≃ C,

the one dimensional module coming from the evaluation of C[X ] at x. There-
fore, V(mx,K) is a complex unramified irreducible representation. Different
x ∈ X give rise to non–isomorphic V(mx,K) (C, G)–modules. This completes
the description of complex unramified representations in terms of Hecke alge-
bra H (G, K, C).

By a careful analysis of Z–structure of Satake isomorphim ([10]) due to
Gross, we obtain the following.

Lemma 7.1. Let A be field which is any extension of Q if G is simply–
connected, or just an extension of Q(q1/2) otherwise. Then, we have the
following isomorphism of A–algebras.

H (G, K, A) ≃ A⊗Q Q[X∗(Â)]W = A[X∗(Â)]W .

Since Â is a split torus, it is defined over Q (and consequently all exten-

sions of Q) by considering the group algebra Q[X∗(Â)]. The action ofW on Â

preserves Q[X∗(Â)] and consequently it is defined over Q. This implies that

the variety X is defined over Q via Q[X∗(Â)]W .
Now, we prove the main result of this section and of the paper.

Theorem 7.2. Let k be a non–Archimedean local field. Let O ⊂ k be its
ring of integers, and let ̟ be a generator of the maximal ideal in O. Let q
be the number of elements in the residue field O/̟O. Assume that is G is a
k–split Zariski connected reductive group. Let A be its maximal k–split torus.
Let W be the Weyl group of A in G. We write Â for the complex torus dual
to A. Let W be the Weyl group of A in G. The orbit space

X
def
= Â/W

is an affine variety defined over Q. Let K = G(O) be a hyperspecial maximal
compact subgroup of G. We normalize a Haar measure on G such that

∫

K dg =

1 (see Section 3). Let Q be the algebraic closure of Q inside C. Let A be
any subfield of Q if G is simply–connected, or an extension of Q(q1/2) in
Q otherwise. We define the (commutative) Hecke algebra H (G, K, A) with
respect to above fixed Haar measures. Then, we have the following:

(i) (Satake isomorphims over subfields of Q) Maximal ideals in H(G, K,
A) are parame-terized by points in X(Q) such that points in X(Q) give
the same maximal ideal if and only if they are Gal(Q/A)–conjugate:
for x ∈ X(Q), we denote by mx,A the corresponding maximal ideal.
The corresponding quotient H (G, K, A) /mx,A is denoted by F (x,A).
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It is a finite (field) extension of A, and it is also naturally irreducible
A–admissible H (G, K, A)–module. The map Gal(Q/A).x 7→ F (x,A)
is a bijection between Gal(Q/A)–orbits in X(Q), and the set of equiv-
alence classes of irreducible A–admissible irreducible H (G, K, A)–
modules.

(ii) For each x ∈ X(Q), the (A, G)–module (see Theorem 3.3 for the
notation)

V(x,A)
def
= V(mx,K)

is an irreducible and A–admissible (A, G)–module. We have

VK(x,A) ≃ F (x,A)

as H (G, K, A)–modules, and

End(A, G) (V(x,A)) ≃ F (x,A).

(iii) V(x,A) is absolutely irreducible if and only if x ∈ X(A).
(iv) Let x ∈ X(Q). Then, for any Galois extension A ⊂ B which con-

tains F (x,A), V(x,B) is absolutely irreducible. Moreover, there exist
t = dimA F (x,A) mutually different elements (among them x) in
Gal(Q/B).x, say x = y1, y2, . . . , yt, such that we have the following:

(V(x,A))B = B ⊗A V(x,A) ≃ V(x,B)⊕ V(y2,B)⊕ · · · ⊕ V(yt,B).

Furthermore, V (x,B),V(y2,B), . . . ,V(yt,B) are mutually non–isomor-
phic (B, G)–modules.

(v) (Classification of unramified admissible representations over subfields
of Q) The map

Gal(Q/A).x 7→ V(x,A)

is a bijection between Gal(Q/A)–orbits in X(Q), and the set of equiv-
alence classes of unramified A–admissible irreducible (A, G)–modules.

Proof. It is obvious that the algebraic closure of A is Q. This means
that we can apply Lemma A.1 to any affine A–variety. We apply it to X
which has the structure of affine A–variety by letting

A[X ] = A⊗Q Q[X∗(Â)]W = A[X∗(Â)]W .

We identify H (G, K, A) with A[X ] via A–algebras isomorphism given by
Lemma 7.1.

By Lemma A.1, for each x ∈ X(Q), there exists a unique maximal ideal
mx,A ⊂ A[X ] such that mx,A is the kernel of A–algebra homomorphism

A[X ] −→ Q given by the evaluation at x; the image is a finite (field) exten-
sion, denoted by F (x,A) of A. Two points in X(Q) give the same maximal
ideal in A[X ] if and only if they are Gal(Q/A)–conjugate. Now, (i) easily
follows.
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In (ii), we use explicit construction of V(x,A)
def
= V(mx,K) from Theorem

3.3. The isomorphism VK(x,A) ≃ Bx,A asH (G, K, A)–modules also follows
from Theorem 3.3. The deep thing is the fact that V(x,A) is A–admissible.
This is a consequence of our assumption that A ⊂ Q ⊂ C and Corollary 6.1
to Theorem 5.1. Next, by Theorem 4.1, we have

End(A, G) (V(x,A)) ≃ EndH(G, K, A)

(

VK(x,A)
)

.

But since

VK(x,A) ≃ H (G, K, A) /mx,A = F (x,A)

as a modules over H (G, K, A), we obtain

VK(x,A) ≃ F (x,A)

as modules over A–algebra

F (x,A) = H (G, K, A) /mx,A.

Thus, we have the following:

EndH(G, K, A)

(

VK(x,A)
)

= EndF (x,A)

(

VK(x,A)
)

≃ EndF (x,A) (F (x,A)) = F (x,A).

This proves (ii).
(iii) follows from the characterization of absolutely irreducible modules

given by Corollary 6.3. Indeed, V(x,A) is absolutely irreducible if and only if

End(A, G) (V(x,A)) ≃ A.

By (ii), we must have

F (x,A) = A.

Using the notation from the beginning of the proof, we have

A[x]/mx,A = F (x,A) = A.

This is equivalent to x ∈ X(A) by the general theory of affine A–varieties.
This proves (iii). (v) follows from (i), (ii), and Lemma 3.2 (ii).

Finally, we prove (iv). By Theorem 5.1, there exists irreducible (B, G)–
modules V1, . . . , Vt such that the following holds:

(i) V K
i 6= 0 for all 1 ≤ i ≤ t.

(ii) V K
i are B–admissible irreducible H (G, K, B)–modules.

(iii) VB
def
= B ⊗A V ≃ V1 ⊕ · · · ⊕ Vt as (B, G)–modules.

In order to identify modules Vi, an argument from the proof of Lemma A.1
regarding tensor product of fields implies

B ⊗A F (x,A) = B ⊕ · · · ⊕ B, (dimA F (x,A)) copies.

This can be considered as a decomposition of

H (G, K, B) = B ⊗A H (G, K, A)
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into irreducible modules. This implies that

t = dimA F (x,A)

in (iii) above.
Since we have

B[X ] = B ⊗A A[X ],

and obviously

mx,AB ⊂ mx,B,

we see that evaluation at x for B i.e., B[X ] −→ F (x,B) must come from an
epimorphism

B ⊕ · · · ⊕ B −→ F (x,A).

Hence

F (x,A) = B.

This means that x ∈ X(B). In particular, V(x,B) is absolutely irre-
ducible by (iii). Moreover, each of t = dimA F (x,A) different projections
B ⊕ · · · ⊕ B −→ B give rise to the same number of different epimorphisms
of B–agebras B[X ] −→ B that factor through mx,AB. This means that they
must correspond to evaluations at mutually different

y1, . . . , yt ∈ X(Q)

which belong to V (mx,A) (see Lemma A.1 for the notation). One of them is x
as we proved above. Hence, they must be mutually different elements (includ-
ing x) in Gal(Q/B).x by Lemma A.1 (iii). Now, (iv) follows. We remark that
V (x,B),V(y2,B), . . . ,V(yt,B) are mutually non–isomorphic (B, G)–modules.
Since all x = y1, y2, . . . , yt ∈ X(B) because of the evaluation at them give B
as an image. Then, γ.yi = yi, for all γ ∈ Gal(Q/B), and i = 1, . . . , t. Now,
we apply (v).

Appendix A. A result on affine varieties

We prove a simple general lemma which is an exercise to the exposition
in ([13, IX, Section 1]).

Lemma A.1. Let k be a field of characteristic zero. We fix an algebraic
closure k of k. Assume that Z is (not necessarily irreducible) affine variety
over k. We write k[Z] for its algebra of k–regular functions, and V (S) for
Zariski closed set in Z given as a set of all common zeroes of elements of S
for any subset S ⊂ k[Z]. Then, we have the following:

(i) If z ∈ Z(k) is any point, then k[z] is a field where by definition k[z]

is k–algebra inside k generated by all f(z) where f ∈ k[Z]. Therefore,
the kernel of the evaluation homomorphism k[Z] −→ k[z] is a maximal
ideal, say m. We have z ∈ V (m).
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(ii) Conversely, let m ⊂ k[Z] be a maximal ideal. Then, V (m), has a finite
number of points. For each z ∈ V (m), k–algebra k[z] ⊂ k is a finite
extension of k. The evaluation at z gives k[Z]/m ≃ k[z] over k.

(iii) Let m ⊂ k[Z] be a maximal ideal. Then, V (m) is defined over k. More-
over, V (m) is a single Gal(k/k)–orbit. The set of k–points V (m)(k)
of V (m) is not empty if and only if m is the kernel of (a unique) eval-
uation at z ∈ Z(k). If this is so, then V (m) = {z}.

(iv) Z(k) is a disjoint union of all V (m), where m ranges over all maximal
ideals of k[Z].

Proof. We start with the following observation. The algebra k[Z] is

finitely generated k–algebra, say f1, . . . , ft are generators. Let z ∈ Z(k).
Then, fi(z) ∈ k, and consequently k[fi(z)] is a finite (field) extension of k for
all i. Hence, k[z] is by definition equal to k[f1(z), f2(z), . . . , ft(z)]. It is a field
and finite extension of k by elementary field theory. This implies (i).

Let us prove (ii). We consider the ideal I ⊂ k[Z] defined by I = m · k[Z].
Then, obviously,

V (I) = V (m).

Now, by ([13, IX, Section 1, Theorem 1.5]), we have

V (m) 6= ∅.

Hence, I is proper ideal. Also, for z ∈ V (m), k[Z]/m ≃ k[z] is a finite
extension of k. Let us put

F = k[Z]/m.

Then, since k ⊂ F is finite and separable extension (because k has character-
istic zero), there exists α ∈ F such that

F = k(α).

Let P ∈ k[T ] be a minimal polynomial of α, where T is a variable. Then, let

α1, α2, . . . , αu, u = deg (P ),

be all zeroes of P in k. They are all distinct. The reader may easily check
that

(A.1) k ⊗k F ≃ k ⊕ · · · ⊕ k (a copy of k for each αi.)

Indeed, we have the following elementary and well–known computation:

k ⊗k F ≃ k ⊗k (k[T ]/k[T ]P )

≃ k[T ]/k[T ]P

= k[T ]/k[T ](T − α1)(T − α2) · · · (T − αu)

≃ ⊕u
i=1 k[T ]/k[T ](T − αi)

≃ ⊕u
i=1 k.
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We observe that (A.1) implies

k[Z]/I ≃ k ⊗k k[Z]/k ⊗k m ≃ k ⊗k (k[Z]/m) ≃ ⊕u
i=1 k.

This shows that I is a radical ideal since the right–hand side has no nilpotent
elements. Hence, k[Z]/I is algebra of regular functions on V (m). Now, the
rest of (ii) is clear. Next, (iv) is obvious from (i) and (iii).

Now, we prove (iii). It is well–known that V
def
= V (m) is defined over k.

Indeed, this also follows from above considerations. We have shown k[V ] =

k[Z]/I. If we let, k[V ] = k[Z]/m. Then, above isomorphism can be restated
k[V ] ≃ k ⊗k k[V ], and it gives the k–structure on V .

To complete the proof of (iii), we observe that V (m) is a single Gal(k/k)–
orbit. Indeed, let z ∈ V = V (m). Then, for γ ∈ Gal(k/k), we have γ.z ∈ V (m)
since by the definition of the Galois action on Z:

f(γ.z) = γ−1(f(z)) = γ(0) = 0.

Conversely, if z and z′ are in V . Then, the fields k[z] and k[z′] are isomorphic

to k[V ] over k. Thus, there exists γ ∈ Gal(k/k) such that γ(k[z]) = k[z′].
Equivalently, k[γ.z′] = k[z]. This means that

f(γ.z′) = f(z), for all f ∈ k[Z].

Hence, we have

f(γ.z′) = f(z), for all f ∈ k[Z].

This means that

γ.z′ = z.

The rest of (iii) is clear. Finally, (iv) follows from (i) and (iii).
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