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ABSTRACT. A rational Diophantine triple is a set of three nonzero
rational a,b,c with the property that ab + 1, ac + 1, bc + 1 are perfect
squares. We say that the elliptic curve y? = (az + 1)(bx + 1)(cz + 1) is
induced by the triple {a, b, c}. In this paper, we describe a new method for
construction of elliptic curves over Q with reasonably high rank based on a
parametrization of rational Diophantine triples. In particular, we construct
an elliptic curve induced by a rational Diophantine triple with rank equal
to 12, and an infinite family of such curves with rank > 7, which are both
the current records for that kind of curves.

1. INTRODUCTION

A set {a1,az,...,an} of m distinct nonzero rationals is called a rational
Diophantine m-tuple if a;a; + 1 is a perfect square for all 1 < i < j <
m. The first rational Diophantine quadruple {%, %, 177, %} was found by
Diophantus, while the first Diophantine quadruple in integers {1, 3,8, 120} was
found by Fermat. In 1969, Baker and Davenport ([2]) proved that Fermat’s
set cannot be extended to a Diophantine quintuple in integers. It was proved
in [6] that there does not exist a Diophantine sextuple in integers and there are
only finitely many Diophantine quintuples in integers. Recently, He, Togbé
and Ziegler proved that there are no Diophantine quintuples in integers ([21]).
FEuler proved that there are infinitely many rational Diophantine quintuples.
In particular, he extended Fermat’s quadruple by the fifth positive rational

number L0 In 2019, Stoll ([28]) proved that extension of Fermat’s set
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to a rational quintuple with the same property is unique. The first example
11 35 155 512 1235 180873

of a rational Diophantine sextuple, the set {m, To55 270 5 I8 16
was found by Gibbs ([20]), while Dujella, Kazalicki, Miki¢ and Szikszai ([11])
recently proved that there are infinitely many rational Diophantine sextuples
(see also [10, 12, 13]). For an overview of results on Diophantine m-tuples
and its generalizations see [8].

Let {a,b,c} be a rational Diophantine triple. Then there exist nonnega-
tive rationals r,s,t such that ab+1 =712, ac+1 =s2 and be+1 =t2. In
order to extend the triple {a, b, ¢} to a quadruple, we have to solve the system

of equations

(1.1) ar+1=0, br+1=0cx+1=0
We assign the following elliptic curve to the system (1.1):
(1.2) E: y? = (ax + 1) (bz + 1)(cx + 1).

We say that the elliptic curve F is induced by the rational Diophantine triple
{a,b,c}.

Elliptic curves induced by rational Diophantine triples were used for the
first time in the construction of elliptic curves with relatively large rank in [5]
(let us mention that in [22] all S-integral points on some elliptic curves asso-
ciated with the quintuple %, %, %, 20,1140} were computed, which was a
motivation for considering connections between elliptic curves and Diophan-
tine m-tuples). By using subtriples of certain rational Diophantine quintu-
ples, elliptic curves with rank 7 over Q and rank 4 over Q(¢) were constructed
in [5]. That result was improved in [7] where several examples of curves
with rank 9 were found by considering subtriples of the following general-
ization of Fermat’s quadruple: {k — 1,k + 1,4k, 16k — 4k}. These results
were further improved in our joint paper with Julidn Aguirre ([1]), where
we constructed an elliptic curve with rank 11 over Q (induced by the triple

95025 22047420 2ASOTSNSS V) g pank 5 over Q(f). The construction
was based on subtriples of quadruples of the form {a,a(k + 1)? — 2k, a(2k +
1)2 — 8k — 4,ak? — 2k — 2}. We used similar method in [16] and constructed
several new elliptic curves with rank 11 over Q and rank 6 over Q(¢) (see also
[17)).

Note that in all mentioned results the elliptic curves have torsion group
7.)27 x 7./27Z. The application of elliptic curves induced by rational Dio-
phantine triples in construction of high rank curves appears to be even more
fruitful in the case of larger torsion groups. Such curves were used in [15, 17]

for finding elliptic curves with the largest known rank over Q (rank 9; induced
: 301273 556614 535707232 181800 127673 996869751703
by the triples { - £55577 . 3515737 300125805 ) 224 {— 137673 Tsis00 2072406375000 1)

and Q(t) (rank 4) with torsion group Z/2Z x Z/4Z. This construction uses
triples of the form {a, —%, ¢} which induce elliptic curves with points of order
4. Tt is shown in [16] that the elliptic curve with largest known rank over Q
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(rank 6; originally found by Elkies in 2006) with torsion group Z/27Z x Z/67Z
i induced by the triple {32588 20721120 Liotsoyral

Furthermore, it was shown in [7] that every elliptic curve with torsion
group Z/2Z x 7Z/8Z is induced by a Diophantine triple (see also [3, 14]).
In particular, the triple %, —%, — 15‘;51‘2%9 induces the curve with torsion
group Z/27 x 7,/87 and rank 3 over Q, found by Connell and Dujella in 2000,
what is the largest known rank for curves with that torsion group.

Although in the case of torsion group Z/2Z x Z/2Z, the record ranks
over Q (rank 15) and Q(¢) (rank 7) were discovered by Elkies ([18, 19]) with
different methods, we believe that it is still interesting question to investigate
how large can be the rank of elliptic curves induced by rational Diophantine
triples. In this paper, we construct an elliptic curve induced by a rational
Diophantine triples with rank equal to 12, and an infinite family of such
curves with rank > 7, which both improve previous results of the type.

2. CONSTRUCTION OF AN ELLIPTIC CURVE WITH RANK 12

By the coordinate transformation z +— -, y — 2= applied to the curve
FE, we obtain the equivalent curve

(2.1) E": y? = (x + ab)(x + ac)(x + be).
The curve E’ has three 2-rational points A = [-bc,0], B = [—ac, 0], C =
[—ab, 0], and other two rational points P = [0,abc] and S = [1,rst], where

ab+1 =12 ac+1=s> bc+1 =12 We may expect that in general the
points P and S will be independent points of infinite order, so that the rank
of E' will be at least 2.

To increase the rank, we will use the parametrization of rational Diophan-
tine triples due to Lasi¢ ([23]) (see also [13]):

2t1 (1 4 t1ta (1 + tat3))
(=1 + tytatz) (1 + tytats)’
2to(1 + tats(1 4 tstq))
(
(

(=1 + tytatz) (1 + tytats)’
2t3(1 + taty (1 + tita))
(=14 tytats)(1 4 titats)

We have noted that the rank jumps if ¢3(t5 — t2) is a perfect square (and,
cyclicly, if ¢1(t; — t3) is a perfect square or if t2(to — t1) is a perfect square).
Indeed, if we insert

A(t3ts — t3 + to)(t3t3ta + 1 + tat1)(tats + tatdts + 1)
ts(—1+ titats)?(1 + tatats)?

r=—
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b(c—b)
tats

y? = 64(1 + tst))*(titats — to — tots + t3)> (tats + totity + 1)°(1 + tats)®
X (tgtity 4+ 1+ taty)2(ts — to)t3 2 (=1 4 titats) (1 + tytatz) S,

(note that x + ab =

) into the equation (2.1), we obtain

which leads to the condition that t3(t3 — t2) is a perfect square.
Thus, if we find a triple (¢1, t2,t3) of rationals such that

(2.2) t3(t3 —-tg), tl(tl —-tg), tg(tg —-tl)

are all perfect squares, we may expect that our curve will have rank > 5 (since
we started with rank > 2).

One way to satisfy conditions (2.2) is through so called almost perfect
cuboids. Indeed, if we put

2 2 2 2 2 2
t3 2837 tl :_Sl, t2 282, 83_82 284,
then we have
2 2 2 2 2 2 2
(2.3) si+sy=10 s5+s;=0 s7+s53+s;= 0

Thus we get an almost perfect cuboid (only one diagonal is not an integer).
In [29], one can find a parametric solution of (2.3):

s1=2(m* +m+1)(m? — 1)%(m? + 1+ 4m),
53 = 4(m* +m+1)2m + 1)(m? — 1)(2m + m?),
s = (2m+ 1)(2m +m?)(3m? + 2m + 1)(m? + 2m + 3),
which gives
ty = —4(m? +m+1)2(m? — D)*(m? + 1+ 4m)?,
ty = 16(m* + m + 1)2(2m + 1)2(m? — 1)*(2m + m?)?,
t3 = m?(2m + 1)2(m + 2)%(5m? + 8m + 5)*(m? + 1)2.

We now present another approach which yields a two-parametric solution,
more appropriate for numerical experiments for finding specializations with
higher rank. We satisfy the first two conditions by putting

tg(tg — t2) = (tg + u)2, tl(tl — tg) = (tl + 1})2

and we get
u(2ts + u) v(2t +v)
tp= B Ty o ST
tg ty
By inserting this into the third condition ta(t2 —t1) = 0O, we get
(Suv? — 2uv)t3 4 (—8uv + 15uv? + u? + Suv®)t?

24
24) + (—4udv? + 2vtu 4+ 1600t + 4'u? = 0.
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The equation (2.4) can be viewed as an elliptic curve over Q(u,v), with an
obvious point P = [0,2u?v?]. By taking the point 2P, we obtain

b v2(—v + 16u)
b Su(—4v +u)’

which gives

v (—v + 16u)(16v? — 64u? — v* + 16uv® — 4v%u + viu?)
w4 0)(d =20+ 02) (v —2)(v2 + 20+ 4)(2u — v)(2u + v)(—4v + u)’
16u(—4v + u)v(4v — 64u + 16uv? — 4u?v — v5 + 4u?0v3)
24+v)(4—2v+v2)(v—2)(v2+2v+4)(2u — v)(2u + v)(—v + 16u)’
~ 4(256uv — 64u? — 160" + 64u*v? + 00 — 160°u) (2u — v)(2u + v)
‘= w(2+v)(4 —2v+v2)(v—2)(v2 4+ 20+ 4)(—v + 16u)(—4v +u)

a =

This gives the elliptic curve with rank > 5 over Q(u,v). Indeed, if we write
the curve in the form y? = z® + Ax? 4+ Bz, where

A =0(2560"% — 320" 407 +1402880"u* + 7418880  u* — 40960 Ou — 11673600°u?
— 212582400°u° — 7936v"*u + 6648320 *u® 4 114401280°%u® + 321920 v”
— 27858240 u* — 323804160 u® 4287477760v° u® +6463488v° u” +71860224u" v*
— 2205696u°v° + 15360 u — 241920 u? — 225280 u® + 5913600 u*
— 3244800u° v — 1284833280 u® — 129792000°%u” + 7816v'°u” — 36160v"*u?
—8616v"*u" + 1009920 u® — 1280y — 20237760 ' u® + 40'%u — 4490 T
+ 78240 %4 — 31368v"°u* 4 28600320 u” 4+ 701760 u® + 1122960 3u®
+ 94617600" u® — 27858240 u® — 3321600 " u” +128188416v° u° —37027840v" u”
— 14417920°%0” + 26593280°%u” 4 463680 u® — 6193152u'%0® + 5150726 00"
— 2918400 v"° 4168182400 1’ —29425664vu"° +32014336u"° v° +140288v" u'°
—2097152u" v + 1572864u" v* — 507904u' v® — 16384u" v® + 65536 v°
+ 65536u'*v — 131072u'%v® 4 1048576u'"),

B = 4(8vu’® — 8u® 4 16vu — v’u + v° 4 20°)(8vu’ 4 8u”® — 16vu — v°u — v° + 20%)
X (—16v° 4 64u* + v — 16v°u) (4v — 64u + 16v°u — dvu® — v° + 40°u?)
x (2vu® — 16u” + 2vu + 8v*u — 40® — v*)(16vu — 4u* — v* + 40°u?)

160° — 64u” — v* 4 160°u — 40°u 4 v'u?)

x(
x (2uu’ 4 16u” — 20u + 8v*u + 40 — v*)(—v + 16u)* (—4v + u)*u’v®,
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then five independent points of infinite order are

P = [—4(4v — 64u + 160°u — 4vu® — v° + 40°u?) (—4v + u)*(—v + 16u)®
x (160° — 64u” — v* + 160w — 40°u + v*u®)u’v®,
8(64v°u” —64u> — 160" u+256vu+v° —160") (4v—64u+ 160> u—4vu” —0° +40°u?)
x (160° — 64u” — 0" + 160°u — 40°u + v"u?) (2u — v)? (2u + v)* (—4v + u)?
X (—v + 16u)*u’v?),
R = [4(16vu — 4u® — v* + 40%u?) (160° — 64u® — v* + 16v°u — 40°u + v*u?)
x (8vu® — 8u® + 16vu — v’u + v* + 20%)(8vu® + 8u” — 16vu — v°u — v* + 20%)
X (—v + 16u)(—4v + u)vu,
4(8vu® — 8u® + 16vu — vu + v° 4 20°) (160% — 640> — v* + 160°u — 40°u + v'u?)
x (8vu® + 8u® 4 32vu — 16v°u — 40° — v*)(16vu — 4u® — v* + 40*u?)
x (8vu® +8u® — 16vu — v’u — v* +20%) (8vu® — 8u” — 32vu — 160 u+40° — v*)
X (2u + v)(2u — v)v* (—v + 16u)(—4v 4 uw)u],
Ty = [16(16vu — 4u”® — v* + 40*u?) (20u® — 160> + 2vu + 8v°u — 4v° — v?)
x (200 +16u® — 2vu48v u44v> — v*)(4v — 64u+160>u — dvu” — v° +40°u?)
X (—v 4 16u)(—4v + u)u,
8(16vu — 4u”® — v + 40*u?) (2uu® — 160 + 2vu + 8v°u — 4v° — v%)
x (2uu® 4 16u” — 20u + 8v°u + 4v° — v*)(—v + 16u — 40°u + vu®)
x (v® = 160°u + 256vu — 64u® — 160" + 64v°u”) (8u® — vu + 20°)
X (4v — 64u + 160°u — 4vu® — v° + 40°u?) (—v + 16u) (—4v + w)u),
Ty = [—4(8vu® — 8u® + 16vu — v>u + v* + 20°)(—160° + 64u” + v* — 160°u)
x (16vu — 4u® — v* 4 40°u”) (8vu® + 8u® — 16vu — v’u — v° + 20°)
x (160° — 64u” — 0" + 160°u — 40°u + v"u?) (—4v 4 w)u /v,
4(8vu® — 8u® + 16vu — v u + v° + 20°) (8vu® + 8u® — 16vu — vu — v* + 20°)
x (16vu — 4u® — v* 4+ 40°u®) (160> + 64u° + v — 160°w) (2u + v) (2u — v)
x (8u® — 16vu — v*)(=16v" + 64v°u® + v° — 160°u + 256vu — 64u”)
x (160° — 64u” — v* + 160°u — 4v°u 4+ v*u®) (—4v + w)u /v,
Ts = [(4v — 64u + 16v°u — dvu® — v° + 40°u®) (—160° + 64u” + v* — 160°w)
x (160° — 64u” — v* + 160°u — 40°u + v"u?) (2u® + 8vu — v*)? (—v + 16u),
2(—16v° + 64u> 4 v* — 16v°w) (8vu® — 8u® — 32vu — 16v°u + 40° — v?)
x (8vu® + 8u’ 4 32vu — 16v°u — 40° — v*)(—v + 16u — 4v*u + vu®)
x (160° — 64u” — v* + 160°u — 40°u + v"u?) (2u® + 8vu — v*)
X (4v — 64u + 160°u — 4vu” — v° + 40°u?) (2u — v)(2u + v) (—v + 16u)].
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Here the point P corresponds to [0,abc] on y? = (z + ab)(x + ac)(x + be),
the point R satisfies 2R = S, where S corresponds to [1,7st] on y? = (z +
ab)(x + ac)(z + be), the point Ty corresponds to the condition t3(t5 —t3) = 0,
the point T corresponds to the condition ¢1(¢; — t3) = 0, while the point
T5 corresponds to the condition ta(te — t1) = 0. Since the specializa-
tion map in a homomorphism, it suffices to find a specialization (ug,vo)
for which the points P, R, Ty, T and T3 are independent points of infi-
nite order on y? = 2% + Az? + Bx. We checked that this is the case for
(up,v9) = (2,1), since the points [170605,39532697], [302665, —66247363],
[795565, —637321303], [—447095, —24260803], [8673115/4, —25165674989/8]
are independent on y? = 3 + 2136175859722 — 28803989016278714304x.

Now we search for specializations (u,v) with higher rank, in particular
with rank 11 and 12. We use a sieving methods similar to those used, e.g., in
[1, 16]. We searched for curves with relatively large Mestre-Nagao sum

—ap +2

T ogp,
L

N
S(N,E)=>"

p=2

where a, = a,(E) = p+1—#E(F,), since it is experimentally known ([24, 25])
that we may expect that high rank curves have large S(N, F), and large Selmer
rank (as implemented in mwrank with option -s). In search for rank 12 curves
we also use the condition that the root-number is equal to 1 (conjecturally this
implies that rank is even). We searched also in some restricted subfamilies,
including e.g. u = v. We implemented the sieving algorithm in Pari (]26]).
For the curves which pass our searching conditions, we calculate the rank by
Cremona’s program mwrank ([4]).
We find curves with rank 11 for the following parameters:

(u7 U) =

115 145 29 (136 68 16 4\ (473 43 89 89
(05)- (532) (%) (5omn) (s 1) (3 )
62 93\ (71 142\ (224 7 1032 172 1501 158
(55%) (o ) (72) (o %) (7 57)
1358 194 2072 148\ (454 227\ (77 77\ (163 163
(3o )+ (i1 107) (i ) (i 1) (1)

The details (minimal Weierstrass equation, torsion points and independent

points of infinite order) are given in [9]. Let us mention that the curve corre-
: 62 93y :
sponding to (u,v) = (=33, 13), i-e.

21409906185 31580198976 10309975195
{a,b,c} = )

74591676404° 18647919101 18647919101
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with the minimal Weierstrass equation

y? +ay = 23 — 2% — 21252276640652798739707819217x
+ 938627524108684110053910801619511357084941,
has the minimal discriminant among all known curves with rank 11 and torsion
group Z/27 x Z./27.
Finally, we found a curve with rank 12 for (u,v) = (=32, 22), i.c.
{a,b,c} = { 6125241375 ’ 5535371271425 7_273138178560}
11907531272 14277129995128° 153430695649

with the minimal Weierstrass equation

y? +zy+y =2 — 22 — 14444917075285913568560891864604911957112689508802
+ 559921583779625421248683584939561762456224290170437461555851482041439747

the torsion points
0O, [910954389920845836020349, —455477194960422918010175],
[—5448727291190824028230629 /4, 5448727291190824028230625/8],
[451227432876860171037309, —225613716438430085518655],

and 12 independent points of infinite order

Fﬁ::[158850932500649609134809 578334775816714524616276221704042845],

= [351104017200784386392209, 309897966944945116194624198332593845],

= [—427722660290928813983135, —1048576645526111528109185629948786727],
= [954500781939375762742909, 225326008863345220543071618783370945],

= [423679598259676591990909, 154829810959547852593332987635966145],

= [1535808449095818094207905, 1401421444080498380369785533616999513],

= [444801887422056021535383, 73569216148613399817347986859758945],
(-
(-
[
[
(-

1206006015871044278678751, —740210245609217615143269452335454375],
192562292438693523617091, —911556889640548767064630159456313855],
fﬂ047 10508879668527356682921249, 33851800053181168926568362825476385625],
Py = [951514410733369555670349, 216676520921276805299703311439049825],
Py =

7355680099955426717481581/81,
— 605705671933225602690651446390633849125/729].

Let us also mention a minor, somewhat related result: for ¢t; =

. 815848 1512524 . _ 32060
Le. a = J55517, 0 = 5100170 € = 201118

y? = 2% + 2% — 1939363608964699467721 762
+ 29453641253718130506136229522416740

with rank 10, which is the curve with smallest known conductor among curves
with rank 10 and torsion group Z/27Z x Z/2Z. 1t is obtained by brute-force

Ea t2
we get the elliptic curve

=3
T ap
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search (not in parametric families) within triples ¢1, ta, t3 with small numer-
ators and denominators.

3. INFINITE FAMILIES OF ELLIPTIC CURVES WITH RANK > 7

The construction of the two-parametric family of curves with rank > 5
from the previous section is related with the construction from our joint paper
with Julidn Aguirre ([1]). In [1], we constructed a two-parametric family of
curves with rank > 4 over Q(m,n), and by choosing n = 7/3 we obtained

a family with rank > 5 over Q(m). It can be checked that by taking m =
20(4u*—1)

~ Butara) We obtain the same family as the family obtained from our new
two-parametric family by specializing v = —1.

It is shown in [16] that inserting n = 7/3 already in the family from [1]
with rank > 3 over Q(a,n), gives a simple family with rank > 4 over Q(a),
which is very suitable for constructing subfamilies with higher rank. That
family is

y? = 2® + A(a)z? + B(a)x,
where
A(a) = —2(—51200 4 109440a + 38880a” + 55404a” + 6561a*),
B(a) = 243a*(20 + 3a)(—4 + 9a)(16 4 9a)(80 + 9a)(320 + 81a?),
and the z-coordinates of four independent points of infinite order are
r1 = 81a*(—4 + 9a)(80 + 9a),

29 = 27a(20 + 3a)(—4 + 9a)(80 + 9a),
(3.1) 1 5
23 = T (—4+9a)(80 + 9a)(160 + 1710)?,

x4 = 3(20 + 3a)(—4 + 9a)(320 + 81a?).

There are several substitutions which give subfamilies with rank > 6:

2(—27 + 13w?)(—13 + 27w?)

9(9 + 178w? + 9wi) 7

64(831744 — 40128ws + 4288w3 — 44w3 + w3)
 9(—1520 4 88wy + w2)(—2736 — 264wy + 5w?)’

10732176 + 628992w3 + 19192w3 + 576w3 + Jwj
- 36ws (27 + w3) (364 + Jws) ’

5(—10 + 6wy + w?) (=18 — 18wy + bw?F)
T 9(12— 2wy + w2)(3 — wa + w?)

5(584820 + 135432ws — 18288w2 + 396ws + 5w})
- 9(684 — 66ws + w2)(171 — 33ws + w?)

a = —

3
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The first four substitutions were already given in [16], while the fifth substi-
tution is new.

In order to find infinite families with rank > 7, we try to find intersections
of these five families with rank > 6. We compare their j-invariants by factor-
izing their difference and seeking for the factors which correspond to curves
with genus 1.

If we compare the second and third substitution, we find two suitable
factors, which give the following conditions:

wiw? + 7T2wiws + 88wyw? + 1820w3 — 1520w3
— 96096wy — 65664ws — 995904 = 0,

Swiw; + 216w3ws — 264waw; + 3276w3 — 2736w}
+ 288288wy — 196992ws3 — 4979520 = 0.

(3.2)
(3.3)

Both conditions lead to
(3.4)  5dws + 2736w + 66592w3 + 2987712w3 + 64393056 = 0.
This quartic is birationally equivalent to the elliptic curve

y? = 2 + 12 — 28174550z + 45644288448

with rank equal to 3, hence the elliptic curve, and also the quartic, have
infinitely many rational solutions. Many of them produce curves with rank

_ _ 202 182 14
=7, e.g. wy = —234,-30,18,26,42,94, — 202 182 14

Consider the four points given by (3.1) and additional two points corre-
sponding to the second and third substitutions. The second substitution gives
the curve

(3.5) y? = 2% + agaz? + beaz,
where

agz = T9573ws° 4 2281840ws° — 791687936ws” — 34844285696ws"
+ 3065917324288w3> + 556971294060544w3" — 64165839736733696ws"
+ 3360211454234263552w5 — 130403990149389221888w5
+ 3064512846261648359424w; — 53369552205989831245824wS5
+ 422490869190468915167232w5 + 2120995723090424777146368w5

— 21983951517250398896259072w; — 455536370311599498486349824w3
+ 1197427029434259336824094720w2 + 38082411231292796255084740608,
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bez = —5184(ws — 44ws + 4288w3 — 40128ws + 831744)>
x (ws + 352ws — 50720w5 + 321024ws + 831744)

X (3ws 4 352wh + 15328w3 — 642048ws + 5822208)

X (Tws — 704ws + 15328w3 + 321024ws + 2495232)

x (Twy — 176ws + 11680w3 — 160512ws + 5822208)

X (Tws 4 352wh — 61664w3 + 321024ws + 5822208)

(

X 59w2 + 334411/2 — 572128102 + 3049728w2 + 49072896),
and six independent points of infinite order with z-coordinates:

T91 = —576(ws — 44ws + 4288w5 — 40128wy + 831744)*
x (Tws — 176ws + 11680w3 — 160512ws + 5822208)
x (Twy + 352w5 — 61664w3 + 321024ws + 5822208),
T99 = 36(ws — 44ws + 4288ws — 40128ws + 831744)
x (Tws — 176ws + 11680w3 — 160512ws + 5822208)
X (Tws + 352w3 — 61664w3; + 321024ws + 5822208)
x (59ws + 3344ws — 572128w3 + 3049728ws + 49072896),
T93 = —16/49(Tws — 176ws + 11680ws — 160512ws + 5822208)
X (Tws + 352w3 — 61664w3 + 321024ws + 5822208)
x (13ws — 2552w + 330784w3 — 2327424ws + 10812672)2,
Tos = —27/4(3ws + 352wh + 15328ws — 642048ws + 5822208)
X (Tws — 704w + 15328w3 + 321024ws + 2495232)
x (Tws — 176ws + 11680w3 — 160512ws + 5822208)
x (59ws + 3344ws — 572128w3 + 3049728ws + 49072896),
To5 = —108(w3 — 912)% (w3 + 352ws — 50720w5 + 321024ws + 831744)
x (Tws + 352ws — 61664ws + 321024w; + 5822208)
(59w;l + 3344w} — 572128w3 + 3049728ws + 49072896),
26 = 324(ws — 912)% (w3 + 352ws — 50720w5 + 321024ws + 831744)
X (Tws — 176w3 + 11680w3 — 160512ws, + 5322208)
x (Twsy + 352ws — 61664w3; + 321024ws + 5822208).

The third condition gives the curve

(3.6) y? = 23 + agzz? + bgar,

247
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where
ags = —13122w3° — 7348320w;° — 1570137696ws* — 206172584064w;>
— 19541430237312w3” — 1402008391816704ws" — 77606011598363136w3°
— 3410103604914358272w5 — 123219415654113963008wS
— 3723833136566479233024w] — 92542375014630498607104wS
— 1825654232153731017572352w; — 27787335201034030779236352w

— 320143070559304939026382848w5 — 2662401630093588063697895424w35
— 13606503227295711027839631360w3 — 26532681293226636504287281152,

bes = 81 (w3 + 72ws + 8504w; + 550368ws + 10732176)

3wj + 144w3 + 3160w3 4 157248ws + 3577392)

3wy + 1152wj + 71144w3 + 1257984ws + 3577392)
w; + 504w3 + 8504w3 + 78624ws + 1192464)

w3 + 576w3 + 19192w; + 628992ws + 10732176)°
ws + 1152wj + 58040w3 + 1257984ws + 10732176)
Qws + 2736ws + 164872w3 + 2987712ws + 10732176),

X

X

X

X

X

X

o~ o~ o~~~ —~

and six independent points of infinite order with xz-coordinates:
x31 = 9(3ws + 144w} + 3160w3 + 157248ws + 3577392)
X (3wj 4 1152w} + 71144w3 + 1257984ws + 3577392)
X (9ws + 576ws + 19192w3 + 628992w; + 10732176)2,
232 = 9(3ws + 144w} + 3160w3 + 157248ws + 3577392)
X (3ws 4 1152w} + 71144w3 + 1257984w; + 3577392)
X (9ws + 576ws + 19192w3 + 628992ws + 10732176)
X (9w + 2736w} + 164872w3 + 2987712ws + 10732176),
x33 = 1/49(3w3 + 144w} + 3160w3 + 157248ws3 + 3577392)
X (3ws + 1152w} + 71144w3 + 1257984ws + 3577392)
x (171ws + 16704w3 4 753128w3 + 18240768wsz + 203911344)>,
x34 = 27(w3 + T2w5 + 8504w3 + 550368wsz + 10732176)
x (3ws + 144ws + 3160w; + 157248ws + 3577392)
x (9w + 504w; + 8504w; + 78624ws + 1192464)
X (ws 4 2736w + 164872w3 + 2987712ws + 10732176),
x35 = 27(w3 — 1092)* (3ws 4 1152w3 + 71144w; + 1257984ws + 3577392)
x (9ws + 1152w} + 58040w3 + 1257984ws + 10732176)
X (ws 4 2736w + 164872w; + 2987712ws + 10732176),
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x36 = 81(wj + bdws + 1092)% (3w3 + 144w} + 3160w3 + 157248ws + 3577392)
X (3wj 4 1152w} + 71144w3 + 1257984w; + 3577392)
x (9w + 1152w} + 58040w3 + 1257984ws + 10732176).

We also give y-coordinates of the points corresponding to x2; on (3.5)
and x3; on (3.6):

Y21 = B760(Tws + 352ws — 61664w; + 321024ws + 5322208)
x (Tws — 176ws + 11680w3 — 160512ws + 5822208)
X (w3 4 88ws — 1520)° (5ws — 264w, — 2736)°
X (wh — 44ws + 4288w3 — 40128ws + 831744)%,
Y31 = 92160w; (3ws + 1152w5 + 71144w3 + 1257984ws + 3577392)
X (ws + 576ws + 19192w3 + 628992ws + 10732176)°
X (3ws + 144ws + 3160w; + 157248ws + 3577392) (9ws + 364)° (w3 + 27)°.
By factorizing the expressions a2,bes — adsbe2 and alyy3; — adsy3, we
see that for pairs (ws,ws) satisfying the conditions (3.2) or (3.3) it holds
bgg/Cng = bgg/CL%Q and (a63/a62)3 = (ygl/ygl)z. Hence, for such pairs (U)Q, wg)
the curves (3.5) and (3.6) are isomorphic, where the isomorphism is given by
¢($,y) = (%.’II, % )
In the same way we check that for such pairs (ws,ws) it holds 231 /ae3

T21 /a2, T32/a63 = T2/ a2, L33/ 063 = T23/a62, T34/ 063 = T4/ 62, T35/ 063 =
Z95/ag2, while x36/ag3 # xa26/as2. Therefore, we have seven points on (3.6)
with z-coordinates

(3.7) T31, T32, T33, T34, T35, T36, T26063/062,
where the last point comes from ¢(xo6,y26). By taking the specialization

(w2, w3) = (—Z2,26) we obtain the curve

y® = z° — 163531808801344950045916528640000z>
+ 66807063160116546812764936551890697313508033614651651522560000002

and we checked that seven corresponding points with z-coordinates

38540677847903454008558223360000, 178922409809838644555667210240000,

72051389475320867247399895040000, 66579605091474988619076835737600,

13362426543070313045072805888000, 126710845595682509808491456102400
and 2179385680764224839490312601600

are independent points of infinite order on this curve. By Silverman’s special-

ization theorem ([27, Theorem III.11.4]), we conclude that seven points (3.7)

are independent points on (3.6) for infinitely many rational values of ws sat-
isfying the quartic equation (3.4) and the corresponding values wo satisfying
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(3.2) or (3.3). Thus we proved that there are indeed infinitely many elliptic
curves induced by rational Diophantine triples with rank > 7.

Analogous result can be obtained by considering the second and fifth
substitution for the parameter a. Here the conditions are

Qwiws — dwaw? — 198w3 + 528wz + 1368w, — 8208w; = 0,
Nwiw? — 17T1w3ws — T6waw?s + 25992ws + 155952ws — 3430944 = 0,
and they lead to the quartic
wi — 1188w3 + 43920w2 — 406296ws + 116964 = 0,
which is equivalent to the elliptic curve
y? = 2% — 2% — 1240562 — 10126800

with rank equal to 1, so we again have infinitely many rational solutions.
These solutions give seven points on the curve (3.5). By taking the special-
ization (wz,ws) = (%232, 8392) we can check that these seven points are indeed
independent, and by Silverman’s specialization theorem we conclude that we
obtained another infinite family of curves with rank > 7.
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