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DIRICHLET PRODUCT AND THE MULTIPLE DIRICHLET

SERIES OVER FUNCTION FIELDS

Yoshinori Hamahata

Okayama University of Science, Japan

Abstract. We define the Dirichlet product for multiple arithmetic
functions over function fields and consider the ring of the multiple Dirichlet
series over function fields. We apply our results to absolutely convergent
multiple Dirichlet series and obtain some zero-free regions for them.

1. Introduction

A function f : N → C is called an arithmetic function. For arithmetic
functions f and g, the Dirichlet product f ∗ g is defined as

(f ∗ g)(n) =
∑

d|n

f(d)g
(n

d

)

.

Using this product, we can obtain many results in number theory (see Apostol
[3]). For an arithmetic function f : N → C, the Dirichlet series L(s; f) is
defined as

L(s; f) :=

∞
∑

n=1

f(n)

ns
,

which includes the Riemann zeta function ζ(s) =
∑∞

n=1 n
−s and the Dirich-

let L-function L(s, χ) =
∑∞

n=1 χ(n)n
−s for the Dirichlet character χ. To

know the location of the zeros of L(s; f), its zero-free region is often studied.
For example, the Riemann zeta function ζ(s) is absolutely convergent when
Re(s) > 1, and has no zeros in this region. The multiple Dirichlet series,
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which is a multiple variable generalization of the Dirichlet series, is defined as
∞
∑

n1=1

· · ·
∞
∑

nk=1

f(n1, . . . , nk)

ns1
1 · · ·nsk

k

,

where f : Nk → C is a multiple arithmetic function. As examples of
such multiple Dirichlet series, we have the Euler–Zagier multiple zeta func-
tion ζEZ,k(s1, . . . , sk), the multiple zeta star function ζ⋆k (s1, . . . , sk), and the
Mordell–Tornheim multiple zeta function ζMT,k(s1, . . . , sk):

ζEZ,k(s1, . . . , sk) =
∑

0<n1<···<nk

1

ns1
1 · · ·nsk

k

,

ζ⋆k(s1, . . . , sk) =
∑

0<n1≤···≤nk

1

ns1
1 · · ·nsk

k

,

ζMT,k(s1, . . . , sk; sk+1) =

∞
∑

n1=1

· · ·
∞
∑

nk=1

1

ns1
1 · · ·nsk

k (n1 + · · ·+ nk)sk+1
.

It is known that ζEZ,k(s1, . . . , sk) and ζ
⋆
k (s1, . . . , sk) are absolutely convergent

in

Re(si + · · ·+ sk) > k − i+ 1 (i = 1, . . . , k),

and that ζMT,k(s1, . . . , sk; sk+1) is absolutely convergent in

Re(si) > 1 (i = 1, . . . , k), Re(sk+1) > 0.

For details, we refer the reader to Matsumoto, [7, 8]. To study the multiple
Dirichlet series, Onozuka in [9] investigated the Dirichlet product on the set
of multiple arithmetic functions. As an application, he provided a result
regarding a zero-free region for the multiple Dirichlet series.

The set D[[s1, . . . , sk]] of all multiple formal Dirichlet series becomes a
ring using ordinary addition and product operations. Onozuka in [9] proved
that D[[s1, . . . , sk]] is a unique factorization domain.

There is an analogy between number fields and function fields in one vari-
able over the finite field Fq. The theory of complex-valued zeta functions
exists in function fields, as in [10, 12]. To study the Dirichlet series over
function fields, we first introduce the Dirichlet product of multiple arithmetic
functions over function fields. We subsequently consider the ring of the mul-
tiple formal Dirichlet series. We apply our results to absolutely convergent
multiple Dirichlet series to obtain some of their zero-free regions.

The remainder of this paper is organized as follows. In Section 2, we
define the Dirichlet product of the multiple arithmetic functions over function
fields. Using this, we show that the set of all multiple arithmetic functions
becomes a unique factorization domain. We subsequently define multiple
formal Dirichlet series over function fields and show that these series form a
unique factorization domain. In Section 3, using the results from the previous
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sections, we investigate the zero-free regions for absolutely convergent multiple
Dirichlet series.

Notation. N0 is the set of non-negative integers, R>0 is the set of
positive real numbers and f(a) ≪ g(a) means |f(a)|= O(g(a)).

2. Multiple arithmetic functions

In this section, we introduce multiple arithmetic functions over function
fields and investigate their Dirichlet products. For the Dirichlet product in
the classical case, we refer the reader to [1, 2, 3, 4, 5, 9, 11, 13].

Henceforth, let Fq be the finite field with q elements, where q is a power
of the prime number p. Let A = Fq[T ] and let A+ be the set of all monic
polynomials in A. Let k be a positive integer. We use bold letters to express
the elements of Ak

+. For example, we denote (a1, . . . , ak), (1, . . . , 1) ∈ Ak
+

as a,1, respectively. For a = (a1, . . . , ak),b = (b1, . . . , bk) ∈ Ak
+, we write

a+ b = (a1 + b1, . . . , ak + bk), a · b = (a1b1, . . . , akbk).

2.1. An ordering of Ak
+. We set

Pk := {(1, . . . , 1, P
j
, 1, . . . , 1) ∈ Ak

+ | P is irreducible, 1 ≤ j ≤ k}.

An element P ∈ Pk is called a multiple prime. In particular, an element
P ∈ Pk is called a prime when k = 1. Because Pk is countable, there exists
a bijection c : N → Pk. For j ∈ N, let Pj = c(j). We see easily that any
element M ∈ Ak

+ can be written as the product of finite multiple primes.
Let

|a|=
{

qdeg a if a 6= 0,
0 if a = 0,

for a ∈ A.
Let N

(∞)
0 be the set of all sequences of the non-negative integers with

finite supports. Namely,

N
(∞)
0 = {(α1, . . . , αn, . . .) | αi ∈ N0, αi = 0 for almost all i}.

Thus, there exists a bijection ψ : Ak
+ → N

(∞)
0 defined as

ψ

(

∞
∏

i=1

P
αi

i

)

= (α1, . . . , αn, . . .).

When Pi = (1, . . . , 1, P, 1, . . . , 1), let ci = log|P |. We define

L : N
(∞)
0 → R, (α1, . . . , αn, . . .) 7→

∞
∑

i=1

ciαi.
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Using L, we define an ordering of Ak
+ as follows: Take a = (a1, . . . , ak),b =

(b1, . . . , bk) ∈ Ak
+ such that

a =

∞
∏

i=1

P
αi

i 6= b =

∞
∏

i=1

P
βi

i .

When

(L ◦ ψ)(a) = log|a1 · · ·ak|< (L ◦ ψ)(b) = log|b1 · · · bk|,
let a <L b. When (L ◦ ψ)(a) = (L ◦ ψ)(b), let a <L b if α1 = β1, . . . , αi−1 =
βi−1, and αi < βi for some i. We write minL for the minimum with respect
to L.

2.2. The multiple Dirichlet product. We call f : Ak
+ → C a multiple (k-

tuple) arithmetic function. Let

Ωk = {f | f : Ak
+ → C}

be the set of multiple arithmetic functions. For f, g ∈ Ωk, the sum f + g is
defined as (f + g)(a) = f(a) + g(b).

Definition 2.1. For f, g ∈ Ωk, the multiple Dirichlet product f ∗ g is
defined as

(f ∗ g)(a) =
∑

b·c=a

b,c∈Ak

+

f(b)g(c).

This product is called the Dirichlet product when k = 1.

To discuss the algebraic structure of Ωk, we define the norm N : Ωk → N0

as

N(f) =

{

0 if f = 0,
min
a∈Ak

+

{|a1|· · · |ak| | f(a) 6= 0} if f 6= 0

for f ∈ Ωk. The following result holds for the norm:

Proposition 2.2. (i) For f ∈ Ωk, N(f) = 1 if and only if f(1) 6= 0.
(ii) For f, g ∈ Ωk, N(f ∗ g) = N(f)N(g).

Proof. (i) is easy. (ii) If f = 0 or g = 0, then f ∗ g = 0. Hence, the
equality is valid. Assume that f 6= 0 and g 6= 0. We take a ∈ A+ such that
|a1|· · · |ak|< N(f)N(g). If a = b · c for b, c ∈ Ak

+, then |b1|· · · |bk|< N(f) or
|c1|· · · |ck|< N(g). Hence, (f ∗ g)(a) = 0. Let

L = (L1, . . . , Lk) = min
L

{b ∈ Ak
+ | f(b) 6= 0},

M = (M1, . . . ,Mk) = min
L

{c ∈ Ak
+ | g(c) 6= 0}.
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Thus, N(f) = |L1|· · · |Lk|, N(g) = |M1|· · · |Mk|. We take b, c ∈ Ak
+ such that

b · c = M · L. If b <L L, then f(b) = 0. If b >L L, then c <L M, hence
g(c) = 0. Therefore, we have

(f ∗ g)(L ·M) =
∑

b·c=L·M

f(b)g(c) = f(L)g(M) 6= 0,

which yields N(f ∗ g) = |L1|· · · |Lk||M1|· · · |Mk|= N(f)N(g).

2.3. The ring of arithmetic functions. Using + and ∗ defined above, Ωk

becomes a ring as follows:

Proposition 2.3. (i) Ωk is an integral domain with the identity func-
tion I : Ωk → C, which is defined as

I(a) =

{

1 if a = 1,
0 if a 6= 1.

(ii) The group of units of Ωk is

Uk := {f ∈ Ωk | f(1) 6= 0}.

Proof. (i) We see easily that Ωk is a commutative ring with identity
I. We take f, g ∈ Ωk with f 6= 0, g 6= 0. According to Proposition 2.2,
N(f ∗ g) 6= 0, which yields f ∗ g 6= 0. Hence, Ωk is an integral domain.

(ii) For f ∈ Uk, we define f−1 ∈ Ωk as

(2.1) f−1(a) =



















1

f(1)
if a = 1,

− 1

f(1)

∑

b·c=a
c6=a

f(b)f−1(c) if a 6= 1.

Then, it holds that f ∗ f−1 = I. Hence, f is a unit of Ωk. Conversely, if f is
a unit of Ωk, then there exists g ∈ Ωk such that f ∗ g = I. We have N(f) = 1
because N(f)N(g) = N(f ∗ g) = 1. Hence, f ∈ Uk by Proposition 2.2.

The ring Ωk has the following properties.

Theorem 2.4. (i) Ωk is a unique factorization domain.
(ii) Ωk is a local ring.
(iii) Ωk is not a Noetherian ring.

Proof. (i) For each j ∈ N, the map αj : A
k
+ → N0 is defined as

M = P
α1(M)
1 P

α2(M)
2 · · · .

It is easy to see that αj(a · b) = αj(a) + αj(b) for a,b ∈ Ak
+. Let

x1, x2, . . . , xn, . . . be distinct indeterminates, and letCω := C{x1, x2, . . . , xn, . . .}
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be the ring of the formal power series in x1, x2, . . . , xn, . . .. We define a map
R : Ωk → Cω as

R(f) =
∑

M∈Ak

+

f(M)x
α1(M)
1 x

α2(M)
2 · · · .

We first prove that R is a ring isomorphism. It is easy to see that R(I) = 1.
Let f, g ∈ Ωk. It is easy see that R(f + g) = R(f) +R(g). We have

R(f ∗ g) =
∑

M∈Ak

+

∑

a·b=M

f(a)g(b)x
α1(M)
1 x

α2(M)
2 · · ·

=





∑

a∈Ak

+

f(a)x
α1(a)
1 x

α2(a)
2 · · ·









∑

b∈Ak

+

g(b)x
α1(b)
1 x

α2(b)
2 · · ·





= R(f)R(g).

Next, we see easily that R is injective. Finally, for E ∈ Cω, we can find
fE ∈ Ωk such that R(fE) = E. Hence, R is surjective. According to [4], Cω

is a unique factorization domain. This finishes the proof of (i).
(ii) Let m = {f ∈ Ωk | f(1) = 0}. We see easily that m is an ideal of

Ωk. Hence, Ωk is a local ring with maximal ideal m because Ωk \ Uk = m.
(iii) In the ring Cω, the chain of ideals

(x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, x2, . . . , xn) ⊂ · · ·
does not become stationary. Hence, Ωk is not Noetherian.

Because Ωk
∼= Cω, we have the following result.

Corollary 2.5. Ωk is isomorphic to Ωl for all positive integers k and l.

2.4. The ring of the multiple formal Dirichlet series. Let

D[[s1, . . . , sk]] :=







∑

a∈Ak

+

f(a)

|a1|s1 · · · |ak|sk
| f ∈ Ωk







,

whose elements are called the multiple formal Dirichlet series. For f, g ∈ Ωk,
we understand that

∑

a∈Ak

+

f(a)|a1|−s1 · · · |ak|−sk=
∑

a∈Ak

+

g(a)|a1|−s1 · · · |ak|−sk

if and only if f = g. For F ∈ D[[s1, . . . , sk]], we use f to denote the arithmetic
function defined as

F (s1, . . . , sk) = F (s1, . . . , sk; f) :=
∑

a∈Ak

+

f(a)

|a1|s1 · · · |ak|sk
.
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Example 2.6. F (s; f) =
∑

a∈A+
f(a)|a|−s is simply called the Dirichlet

series associated to f for f ∈ Ω1 when k = 1. In particular,

ζA(s) :=
∑

a∈A+

1

|a|s

is called the zeta function for A. This function is absolutely convergent when
Re(s) > 1, and can be written as

ζA(s) =
1

1− q1−s
=

∏

P∈A+

irreducible

(

1− 1

|P |s
)−1

.

LetM ∈ A with degM > 0. ADirichlet character moduloM is a function
χ : A→ C such that

(i) χ(a+ bM) = χ(a) for a, b ∈ A.
(ii) χ(ab) = χ(a)χ(b) for a, b ∈ A.
(iii) χ(a) 6= 0 if and only if gcd(a,M) = 1.

The Dirichlet L-function for χ is defined as

L(s, χ) :=
∑

a∈A+

χ(a)

|a|s ,

which is absolutely convergent when Re(s) > 1, and can be written as

L(s, χ) =
∏

P∈A+

irreducible

(

1− χ(P )

|P |s
)−1

.

For the further details, we refer the reader to Rosen, [10].

Example 2.7. (i) For the arithmetic function u⋆ ∈ Ωk defined as

u⋆(a) =

{

1 if |a1|≤ · · · ≤ |ak|,
0 otherwise,

the multiple zeta star function is defined as

ζ⋆k(s1, . . . , sk) := F (s1, . . . , sk;u
⋆) =

∑

|a1|≤···≤|ak|

1

|a1|s1 · · · |ak|sk
.

(ii) For the arithmetic function uEZ ∈ Ωk defined as

uEZ(a) =

{

1 if |a1|< · · · < |ak|,
0 otherwise,

the Euler–Zagier multiple zeta function is defined as

ζEZ,k(s1, . . . , sk) := F (s1, . . . , sk;uEZ) =
∑

|a1|<···<|ak|

1

|a1|s1 · · · |ak|sk
.
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(iii) The Mordell–Tornheim multiple zeta function is defined as

ζMT,k(s1, . . . , sk; sk+1) := F (s1, . . . , sk+1;uMT )

=
∑

a∈Ak

+

1

|a1|s1 · · · |ak|sk(|a1|+ · · ·+ |ak|)sk+1
.

The ring D[[s1, . . . , sk]] becomes a ring with the addition and product
operations, defined as

∑

a∈Ak

+

f(a)

|a1|s1 · · · |ak|sk
+
∑

a∈Ak

+

g(a)

|a1|s1 · · · |ak|sk
=
∑

a∈Ak

+

(f + g)(a)

|a1|s1 · · · |ak|sk
,(2.2)





∑

a∈Ak

+

f(a)

|a1|s1 · · · |ak|sk









∑

a∈Ak

+

g(a)

|a1|s1 · · · |ak|sk



 =
∑

a∈Ak

+

(f ∗ g)(a)
|a1|s1 · · · |ak|sk

.

The correspondence f 7→∑

a∈Ak

+

f(a)|a1|−s1 · · · |sk|−sk induces a ring isomor-

phism Ωk
∼= D[[s1, . . . , sk]]. According to Theorem 2.4 and Corollary 2.5, we

have the two following results.

Theorem 2.8. (i) D[[s1, . . . , sk]] is a unique factorization domain.
(ii) D[[s1, . . . , sk]] is a local ring.
(iii) D[[s1, . . . , sk]] is not a Noetherian ring.

Corollary 2.9. D[[s1, . . . , sk]] is isomorphic to D[[s1, . . . , sl]] for all pos-
itive integers k and l.

3. Application

In this section, we consider the zero-free regions for absolutely convergent
multiple Dirichlet series over function fields.

3.1. Regions of absolute convergence. For the zeta functions in Example
2.7, we have the following regions of absolute convergence.

Lemma 3.1. (i) ζ⋆k (s1, . . . , sk) is absolutely convergent in the region

(3.1) Re(si + · · ·+ sk) > k − i+ 1 (i = 1, . . . , k).

Moreover, ζ⋆k(s1, . . . , sk) can be written as

ζ⋆k (s1, . . . , sk) =
1

(

1− qk−(s1+···+sk)
) (

1− qk−1−(s2+···+sk)
)

· · · (1− q1−sk)
.

(ii) ζEZ,k(s1, . . . , sk) is absolutely convergent in the region (3.1). More-
over, ζEZ,k(s1, . . . , sk) can be written as
(3.2)

ζEZ,k(s1, . . . , sk) =
q(1−s2)+2(1−s3)+···+(k−1)(1−sk)

(

1− qk−(s1+···+sk)
) (

1− qk−1−(s2+···+sk)
)

· · · (1− q1−sk)
.
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(iii) ζMT,k(s1, . . . , sk) is absolutely convergent in the region

(3.3) Re(si) > 1 (i = 1, . . . , k), Re(sk+1) > 0.

Proof. (i) See Masri, [6, Theorem 1.1]. (ii) See Thakur, [12, 5.10].
(iii) The following holds in the region (3.3):

∑

a∈Ak

+

∣

∣

∣

∣

1

|a1|s1 · · · |ak|sk(|a1|+ · · ·+ |ak|)sk+1

∣

∣

∣

∣

< ζA(Re(s1)) · · · ζA(Re(sk)),

which yields the proof of (iii).

From this lemma, we can see easily the following.

Corollary 3.2. (i) For the Dirichlet characters χ1, . . . , χk, we define
the multiple L-star function as

L⋆
k(s1, . . . , sk;χ1, . . . , χk) :=

∑

|a1|≤···≤|ak|

χ1(a1) · · ·χk(ak)

|a1|s1 · · · |ak|sk
.

Then, this L-function is absolutely convergent in the region (3.1).
(ii) For the Dirichlet characters χ1, . . . , χk, we define the Euler–Zagier

multiple L-function as

LEZ,k(s1, . . . , sk;χ1, . . . , χk) :=
∑

|a1|<···<|ak|

χ1(a1) · · ·χk(ak)

|a1|s1 · · · |ak|sk
.

Then, this L-function is absolutely convergent in the region (3.1).

3.2. Zero-free regions. To consider the multiple Dirichlet series analogous
to the multiple zeta functions in the example above, we introduce the subsets
of Ωk as follows:

Ω⋆
k := {f ∈ Ωk | f(a) = 0 for a which does not satisfy |a1|≤ · · · ≤ |ak|},

ΩEZ,k := {f ∈ Ωk | f(a) = 0 for a which does not satisfy |a1|< · · · < |ak|},
ΩMT,k := {f ∈ Ωk | f(a) = 0 for a which satisfies |ak|< |a1|+ · · ·+ |ak−1|}.

Using + and ∗, these subsets become subrings of Ωk as follows.

Proposition 3.3. (i) Ω⋆
k is a subring of Ωk.

(ii) ΩEZ,k is a subring of Ωk such that ΩEZ,k ∩ Uk = φ.
(iii) ΩMT,k is a subring of Ωk such that ΩMT,k ∩ Uk = φ.

Proof. It is easy to see that Ω∗
k, ΩEZ,k, and ΩMT,k are additive sub-

groups of Ωk.
(i) Let f, g ∈ Ω⋆

k. We take a ∈ Ak
+ which does not satisfy |a1|≤ · · · ≤

|ak|. If b · c = a for b, c ∈ Ak
+, then |b1|≤ · · · ≤ |bk| or |c1|≤ · · · ≤ |ck|

does not hold. Hence, (f ∗ g)(a) = ∑
b·c=a

f(b)g(c) = 0, which implies that
f ∗ g ∈ Ω⋆

k. Because of I ∈ Ω⋆
k ∩ Uk, Ω

⋆
k ∩ Uk 6= φ.
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(ii) The former is proved as was the case for (i). We have f(1) = 0 for
any f ∈ ΩEZ,k. This implies ΩEZ,k ∩ Uk = φ.

(iii) Let f, g ∈ ΩMT,k, and let a,b, c ∈ Ak
+ such that b · c = a. If

|bk|≥ |b1|+ · · ·+ |bk−1| and |ck|≥ |c1|+ · · ·+ |ck−1|, then
(|a1|+ · · ·+ |ak−1|)2 ≤ (|b1||c1|+ · · ·+ |bk−1||ck−1|)2

≤ (|b1|2+ · · ·+ |bk−1|2)(|c1|2+ · · ·+ |ck−1|2)
≤ (|b1|+ · · ·+ |bk−1|)2(|c1|+ · · ·+ |ck−1|)2

≤ |bk|2|ck|2= |ak|2,
which yields |ak|≥ |a1|+ · · ·+ |ak−1|. Hence, if |ak|< |a1|+ · · ·+ |ak−1|, then

|bk|< |b1|+ · · ·+ |bk−1| or |ck|< |c1|+ · · ·+ |ck−1|.
Hence, (f ∗ g)(a) = ∑

b·c=a
f(b)g(c) = 0, which implies f ∗ g ∈ ΩMT,k. We

have f(1) = 0 for any f ∈ ΩMT,k. This implies ΩMT,k ∩ Uk = φ.

According to Proposition 3.3, we have the following equalities:




∑

|a1|≤···≤|ak|

f(a)

|a1|s1 · · · |ak|sk









∑

|a1|≤···≤|ak|

g(a)

|a1|s1 · · · |ak|sk





=
∑

|a1|≤···≤|ak|

(f ∗ g)(a)
|a1|s1 · · · |ak|sk

(f, g ∈ Ω⋆
k),





∑

|a1|<···<|ak|

f(a)

|a1|s1 · · · |ak|sk









∑

|a1|<···<|ak|

g(a)

|a1|s1 · · · |ak|sk





=
∑

|a1|<···<|ak|

(f ∗ g)(a)
|a1|s1 · · · |ak|sk

(f, g ∈ ΩEZ,k),





∑

|ak|≥|a1|+···+|ak|

f(a)

|a1|s1 · · · |ak|sk









∑

|ak|≥|a1|+···+|ak|

g(a)

|a1|s1 · · · |ak|sk





=
∑

|ak|≥|a1|+···+|ak|

(f ∗ g)(a)
|a1|s1 · · · |ak|sk

(f, g ∈ ΩMT,k).

Moreover, for f ∈ Ω⋆
k ∩ Uk,





∑

|a1|≤···≤|ak|

f(a)

|a1|s1 · · · |ak|sk





−1

=
∑

|a1|≤···≤|ak|

f−1(a)

|a1|s1 · · · |ak|sk
.

Corollary 3.4. Assume that F (s1, . . . , sk; f) and F (s1, . . . , sk; f
−1) are

absolutely convergent on R ⊂ Ck for f ∈ Uk. Then, F (s1, . . . , sk; f) has no
zeros on R.
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Proof. Using (2.2), for (s1, . . . , sk) ∈ R,

F (s1, . . . , sk; f)F (s1, . . . , sk; f
−1) = F (s1, . . . , sk; I) = 1.

We need the following lemma to prove Theorem 3.6.

Lemma 3.5. (i)
∑

d|a|d|α≤ ζA(α)|a|α for all α > 1.

(ii) For every f ∈ Uk, there exist C > 0 and r1, . . . , rk ∈ R such that

|f(a)|≤ C|a1|r1 · · · |ak|rk

for all a ∈ Ak
+ \ {1}. For such f , choose αj > 1 + rj (j = 1, . . . , k) such that

ζA(α1 − r1) · · · ζA(αk − rk) ≤ 1 +
|f(1)|
C

.

Then, for all a ∈ Ak
+,

|f−1(a)|≤ |a1|α1 · · · |ak|αk

|f(1)| .

Proof. (i) We have

∑

d|a

|d|α= |a|α
∑

d|a

∣

∣

∣

∣

d

a

∣

∣

∣

∣

α

= |a|α
∑

d|a

1

|d|α ≤ ζA(α)|a|α.

(ii) We prove the result by induction on d = deg a1 + · · · + deg ak. If
d = 0, then a = 1, which yields |f−1(1)|= |f(1)|−1. Let d > 0 and we assume
that the theorem holds for c ∈ Ak

+ with deg c1+ · · ·+deg ck < d. Then, using
(i), we have

|f−1(a)| ≤ 1

|f(1)|
∑

b·c=a
c6=a

|f(b)|·|f−1(c)|

≤ C

|f(1)|2
∑

b·c=a
c6=a

|b1|r1 |c1|α1 · · · |bk|rk |ck|αk

=
C

|f(1)|2
∑

c|a
c6=a

∣

∣

∣

∣

a1
c1

∣

∣

∣

∣

r1

|c1|α1 · · ·
∣

∣

∣

∣

ak
ck

∣

∣

∣

∣

rk

|ck|αk

=
C

|f(1)|2



|a1|r1 · · · |ak|rk




∑

c1|a1

|c1|α1−r1



 · · ·





∑

ck|ak

|ck|αk−rk





− |a1|α1 · · · |ak|αk

]



264 Y. HAMAHATA

≤ C

|f(1)|2 (ζA(α1 − r1)|a1|α1 · · · ζA(αk − rk)|ak|αk−|a1|α1 · · · |ak|αk)

≤ |a1|α1 · · · |ak|αk

|f(1)| .

Theorem 3.6. Given the same notations and assumptions as those used
in Lemma 3.5, F (s1, . . . , sk; f) and F (s1, . . . , sk; f

−1) have no zeros on

(3.4) {(s1, . . . , sk) ∈ C
k | Re(sj) > 1 + αj (j = 1, . . . , k)}.

Moreover, it holds that

F (s1, . . . , sk; f)
−1 = F (s1, . . . , sk; f

−1)

in this region.

Proof. The multiple Dirichlet series F (s1, . . . , sk; f) is absolutely con-
vergent on Re(sj) > 1 + rj (j = 1, . . . , k) because f(a) ≪ |a1|r1 · · · |ak|rk .
Using Lemma 3.5, F (s1, . . . , sk; f

−1) is absolutely convergent on the region
(3.4) because |f−1(a)|≪ |a1|α1 · · · |ak|αk . The latter part is easy.

Using Lemma 3.1 and Theorem 3.6, we have the following improved zero-
free region for f ∈ Ω⋆

k ∩ Uk.

Theorem 3.7. Take f ∈ Ω⋆
k ∩Uk satisfying the condition in Lemma 3.5.

Then, F (s1, . . . , sk; f) and F (s1, . . . , sk; f
−1) do not have zeros on

{(s1, . . . , sk) ∈ C
k | Re(si+· · ·+sk) > k−i+1+αi+· · ·+αk (i = 1, . . . , k)}.

Proof. Using Lemma 3.1 (i), F (s1, . . . , sk; f) is absolutely convergent in
Re(si + · · · + sk) > k − i + 1 + ri + · · · + rk (i = 1, . . . , k) because |f(a)|≪
|a1|r1 · · · |ak|rk . In the same way, using Lemma 3.1 (i), F (s1, . . . , sk; f

−1) is
absolutely convergent in Re(si+· · ·+sk) > k−i+1+αi+· · ·+αk (i = 1, . . . , k)
because |f−1(a)|≪ |a1|α1 · · · |ak|αk , which completes the proof.

Example 3.8. The multiple Dirichlet series ζ⋆k(s1, . . . , sk), L
⋆
k(s1, . . . , sk),

ζEZ,k(s1, . . . , sk;χ1, . . . , χk)+1, and LEZ,k(s1, . . . , sk;χ1, . . . , χk)+1 belong to
Ω⋆

k∩Uk. In Lemma 3.5 (ii), we can take r1 = · · · = rk = 0, and C = |f(1)|= 1.
Using Theorems 3.6 and 3.7, we see that these series do not have zeros in the
region
(3.5)
{(s1, . . . , sk) ∈ C

k | Re(si+· · ·+sk) > k−i+1+αi+· · ·+αk (j = 1, . . . , k)},
for αi > 1 (i = 1, . . . , k) such that ζA(α1) · · · ζA(αk) ≤ 2.

Remark 3.9. It is possible that the zero-free region in Theorem 3.7 is not
the best region. For example, we consider ζ⋆2 (s1, s2). When, q ≥

√
2/(

√
2−1),

ζA(2)
2 ≤ 2. Then, using (3.5), ζ⋆2 (s1, s2) has no zeros in

Re(s1 + s2) > 6, Re(s2) > 3.
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However, using Lemma 3.1, ζ⋆2 (s1, s2) is absolutely convergent in

Re(s1 + s2) > 2, Re(s2) > 1,

and has no zeros in this region.
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