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PERMUTATION ORBIFOLDS OF sl2 VERTEX OPERATOR

ALGEBRAS

Antun Milas and Michael Penn

SUNY-Albany and Randolph College, USA

Abstract. We analyze two types of permutation orbifolds: (i) S2-
orbifolds of the universal level k vertex operator algebra V k(sl2) and of
its simple quotient Lk(sl2), and (ii) the S3-orbifold of the level one simple
vertex operator algebra L1(sl2). We determine their structures and discuss
related W -algebras.

1. Introduction

Permutation orbifolds, and orbifolds in general, are important sources
of new examples of vertex operator algebras. The state of the art result is
that any finite solvable orbifold of a rational and C2-cofinite vertex algebra is
also rational and C2-cofinite ([11], see also [15]). This way we get examples
of rational vertex algebra from S2, S3 and S4 permutation orbifolds, whose
rationality is sometimes difficult to prove using the standard methods.

Permutations orbifolds were extensively studied in the physics literature
on conformal field theory. We mention an important early work by Bantay
([5]) with focus on the structure of characters of representations of the permu-
tation orbifold algebra. They also appear in various contexts in string theory
([9]).

The structure of permutation orbifold vertex algebras and their repre-
sentations have already been investigated by several authors. For n = 2,
Abe proved that any S2-permutation orbifold is C2-cofinite provided that the
underlying vertex algebra is C2-cofinite ([2]). Dong, Xu and Yu obtained
description of low rank cyclic orbifolds in the case of lattice vertex algebras
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([16, 17]). Barron and Vander Werf studied twisted modules of cyclic per-
mutation orbifolds of fermionic vertex superalgebras ([6]) based on an earlier
work for vertex algebras ([7], see also [8]). Adamović, Lam, Pedić and Yu con-
sidered modules for certain cyclic orbifolds beyond the category of ordinary
modules by considering Whittaker modules ([1]).

They are also sources of interesting W -algebras. In a recent work of
the authors, jointly with Shao and with Wauchope ([26, 27]), the authors
found several interesting examples of W -algebras coming from S3-orbifolds of
the free fermion, symplectic fermion, and Heisenberg vertex algebras. Very
recently, with Sadowski, we also determined the structure of S2, Z3 and S3

permutation orbifolds of the Virasoro vertex algebra both for generic and non-
generic central charges ([25]). The second author, with Graybill, Linshaw and
Quintero, described all cyclic group orbifolds of the rank two Heisenberg alge-
bra and as an application were able to decompose an arbitrary finite abelian
group orbifold of any Heisenberg algebra as modules for these cyclic group
orbifolds ([19]). Next, the second author, with Quintero, described all dihe-
dral group orbifolds for the rank two Heisenberg algebra, thus completing the
problem to describe all finite group orbifolds of this vertex algebra ([29]). Our
PhD students Li and Wauchope described the structure of S2-permutation
orbifolds of the Heisenberg-Virasoro, N = 1, and N = 2 superconformal
vertex algebras in [21].

Let us outline the content of the paper and the main results. We consider
two types of permutation orbifolds: (i) the S2-orbifold of the universal vertex
algebras V k(sl2) and of its simple vertex algebras Lk(sl2), for all levels k 6= −2,
and (ii) S3-orbifold of L1(sl2). In Section 2, we first describe the structure

of
(
V k(sl2)⊗ V k(sl2)

)S2

for all k. This vertex algebra is of type (13, 26, 33)

for k 6= 8 and (13, 26, 33, 43) if k = 8 (see Theorem 2.1). In Section 3, we

show that (Lk(sl2)⊗ Lk(sl2))
S2 has essentially the same structure except for

k = 1, k = − 4
3 . We also discuss the k = 2 case in more detail as it’s

connected to an interesting W -algebra of type (2, 4, 6) . Then in Section 4
we consider the S3-permutation orbifold, denoted by V (3)S3 , of the simple

vertex algebra associated to the level one basic module for ŝl2. The main
result here is Theorem 4.3, giving the decomposition of V (3)S3 as a module
for the Z2-orbifold algebra of the Zamolodchikov’s algebra of central charge 6

5 .
In Section 5, we prove that this W -algebra, denoted by W 6

5

(2, 3)σ, is of type

(2, 6, 8, 10). Although we did not find a minimal generating set for V (3)S3 , we
expect it is of type (13, 2, 33) and we present enough evidence to support the
claim. In the appendix we give several explicit formulas of primary vectors
used in the paper.
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2. Permutation orbifolds (V k(sl2)⊗ V k(sl2))
S2

Consider two commuting copies of the universal vertex operator algebra

associated to the affine Lie algebra ŝl2 at level k 6= −2, generated by the vec-
tors h1, e1, f1 and h2, e2, f2 respectively. Here we use the standard Sugawara
conformal vector ωi so the central charge is 3k

k+2 . The associated nontrivial
OPEs are given by

(2.1)

hi(z)ei(w) ∼
2ei(w)

z − w
,

hi(z)fi(w) ∼
−2fi(w)

z − w
,

hi(z)hi(w) ∼
2k

(z − w)2
,

ei(z)fi(w) ∼
k

(z − w)2
+
hi(w)

z − w
.

The total Virasoro vector will be denoted by ω = ω1 + ω2.
There is an obvious S2

∼= Z2 action on this algebra where the generator
permutes the commuting copies of V k(sl2). We can diagonalize this action by
the following change of basis among the generators.

(2.2)

h = h1 + h2, α = h1 − h2,

e = e1 + e2, x = e1 − e2,

f = f2 + f2, y = f1 − f2.

Now e, f, h generate a diagonal sub-VOA isomorphic to V 2k(sl2) and the
generator of S2 acts via

(2.3) α 7→ −α, x 7→ −x, y 7→ −y.

Next, using Lemma 3.1 of [28] (see also [3]) we may take an initial strong

generating set for the orbifold
(
V k(sl2)⊗ V k(sl2)

)S2

to be

{h(−1)1, e(−1)1, f(−1)1, α(m1)α(m2)1, α(m3)x(m4)1, α(m5)y(m6)1,

x(m7)y(m8)1, x(m9)x(m10)1, y(m11)y(m12)1|mi ≤ −1, 1 ≤ i ≤ 12}.

Through standard methods, involving the translation operator, we can imme-
diately reduce this set to
(2.4)

{h, e, f}∪
{α(2m1 − 1)α(−1)1, x(2m2 − 1)x(−1)1, y(1m3 − 1)y(−1)1|mi ≤ −1}∪
{α(n1 − 1)x(−1)1, α(n2 − 1)y(−1)1, x(n3 − 1)y(−1)1, |ni ≤ −1}.
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For related orbifolds see [3]. We introduce the following notation for these
generating vectors

(2.5)

wα
m = α(−m− 1)α(−1)1, wα,x

m = α(−m− 1)x(−1)1,

wx
m = x(−m− 1)x(−1)1, wα,y

m = α(−m− 1)y(−1)1,

wy
m = y(−m− 1)y(−1)1, wx,y

m = x(−m− 1)y(−1)1.

Then the main result of this section is the following Theorem.

Theorem 2.1. For k 6= 8, the orbifold
(
V k(sl2)⊗ V k(sl2)

)S2

is of type

(13, 26, 33) and minimally strongly generated by three weight one vectors h, e,
and f , which generate a sub-VOA which is a copy of V 2k(sl2), six weight two
vectors

(2.6) wα
0 , w

x
0 , w

y
0 , w

α,x
0 , wα,y

0 , wx,y
0

and three weight three vectors

(2.7) wα,x
1 , wα,y

1 , wx,y
1 .

Further, the orbifold
(
V 8(sl2)⊗ V 8(sl2)

)S2

is strongly generated by the above
vectors with the addition of

(2.8) wα,x
2 , wα,y

2 , wx,y
2

and so it is of type (13, 26, 33, 43).

Proof. Throughout our argument we will perform calculations involving
the vertex operators as opposed to working directly with the vectors and abuse
notation by (for instance) writing ◦

◦
αα◦

◦
instead of ◦

◦
α(z)α(z)◦

◦
. Furthermore,

we set

(2.9)

Wα
m = m!Y (wα

m, z) =
◦

◦
(∂mα)α◦

◦
, Wα,x

m = m!Y (wα,x, z) = ◦

◦
(∂mα)x◦

◦
,

W x
m = m!Y (wx

m, z) =
◦

◦
(∂mx)x◦

◦
, Wα,y

m = m!Y (wα,y, z) = ◦

◦
(∂mα)y◦

◦
,

W y
m = m!Y (wy

m, z) =
◦

◦
(∂my)y◦

◦
, W x,y

m = m!Y (wx,y, z) = ◦

◦
(∂mx)y◦

◦
.

We will construct explicit relations at all weights in order to write elements
from the set (2.4) in terms of lower weight vectors, thus providing an inductive
path to write every element of the orbifold in terms of the vectors h, e, f as
well as those listed in (2.6) and (2.7).

We begin by focusing on reducing the need for the higher weight genera-
tors W x,y

m . We begin with

(2.10)

2(k − 8)W x,y
2 =◦

◦
W x,y

0 W x,y
0

◦

◦
− ◦

◦
W x

0 W
y
0

◦

◦
− 2(k + 4)∂W x,y

1

+ (k + 1)∂2W x,y
0 − 6◦

◦
h,W x,y

1
◦

◦
+ ◦

◦
h∂W x,y

0
◦

◦

− ◦

◦
(∂h)W x,y

0
◦

◦
− 1

2
◦

◦
(∂2h)h◦

◦
− k

3
∂3h,
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which for k 6= 8 allows us to write wx,y
2 in terms of lower weight vectors in the

orbifold. Next, we outline our strategy for constructing decoupling relations.
By direct calculation we have

(2.11)

◦

◦
W x,y

2mW x,y
0

◦

◦
− ◦

◦
W x

2mW
y
0

◦

◦

=
(−2k + 4)m2 + (−7k + 14)m− 3k + 9

(m+ 1)(2m+ 1)
W x,y

2m+2

+
2km+ k + 1

(2m+ 1)(m+ 1)
◦

◦
x∂2m+2y◦

◦
− 4m+ 4

2m+ 1
◦

◦
(∂2m+1x)(∂y)◦

◦

− 6m+ 5

2m+ 1
◦

◦
hW x,y

2m+1
◦

◦
+

1

2m+ 1
◦

◦
hx(∂2m+1y)◦

◦

− 2

2m+ 1
◦

◦
(∂x)(∂2m+1y)◦

◦
− ◦

◦
(∂h)W x,y

2m
◦

◦

− k

(2m+ 3)(m+ 1)
∂2m+3h.

Next, we can use the combinatorial identity (which follows from the in-
verse of the Pascal matrix)

(2.12)

◦

◦
(∂m1x)(∂m2y)◦

◦

=

m2∑

j=0

(−1)j+m2

(
m2

j

)
∂jW x,y

m1+m2−j

= (−1)m2W x,y
m1+m2

+

m2∑

j=1

(−1)j+m2

(
m2

j

)
∂jW x,y

m1+m2−j

to rewrite all of the terms in (2.11) as combinations of elements from our
generating set (2.7) while controlling the coefficient W x,y

2m+2. This leads to
(2.13)

(m+ 2)(2km− 8m+ k − 8)

(2m+ 1)(m+ 1)
W x,y

2m+2 = ◦

◦
W x

2mW
y
0

◦

◦
− ◦

◦
W x,y

2mW x,y
0

◦

◦
+Ψx,y

1 ,

where Ψx,y
1 is a normally ordered polynomial of fields (and their derivatives)

with lower weight. In this case, the exact structure Ψx,y
1 can be inferred from

(2.11) and (2.12). Through a similar construction we have

(2.14)

4(m+ 2)(3k − 2)

6m+ 3
W x,y

2m+2

= ◦

◦
W x,y

2m−1W
x,y
1

◦

◦
− ◦

◦
∂(W x

2m−1)W
y
0

◦

◦
+ ◦

◦
W x

2mW
y
0

◦

◦
+Ψx,y

2 .

Now solving the system of equations

(m+ 2)(2km− 8m+ k − 8)

(2m+ 1)(m+ 1)
= 0 and

4(m+ 2)(3k − 2)

6m+ 3
= 0

we see that solutions occur at m = −2 and (m, k) =
(
− 11

10 ,
2
3

)
, but since we

have m ∈ N we see that in all cases W x,y
2m+2 can be written in terms of lower
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weight vectors. We also have the following odd analogues of (2.13) and (2.14)

(2.15)

2km− 8m− 3k − 16

2m+ 3
W x,y

2m+3 = ◦

◦
W x

2m+1W
y
0

◦

◦
−◦

◦
W x,y

2m+1W
x,y
0

◦

◦
+Ψx,y

3 ,

(24k − 16)m3 + (60k − 24)m2 + (42k + 40)m+ 9k − 48

3(2m+ 3)(2m+ 1)(m+ 1)
W x,y

2m+3

= ◦

◦
W x,y

2mW x,y
1

◦

◦
− ◦

◦
∂(W x

2m)W y
0

◦

◦
+ ◦

◦
W x

2m+1W
y
0

◦

◦
+Ψx,y

4 .

The simultaneous zeros of the coefficients of W x,y
2m+3 in (2.15) are

(m, k) ∈
{(

−5

2
,
1

2

)
, (0,−2),

(
− 9

10
,−11

6

)
,

(
0,−16

3

)}
,

none of which are problematic (sincem ∈ Z≥0) except form = 0 and k = − 16
3 ,

which we can eliminate with the following

(2.16)
W x,y

3 =− 3

4k
(◦
◦
Wα,x

1 Wα,y
0

◦

◦
− ◦

◦
Wα

1 W
x,y
0

◦

◦
) +

3(3k − 4)

8k
∂Wα

2

− 3(k − 2)

16k
∂2Wα

0 − 3

k
∂W x,y

2 +
3

2k
∂2W x,y

1 − 1

2k
∂3W x,y

0 + ψ,

where ψ is a normally ordered polynomial in lower weight vectors.
Next, we focus on the generatorsWα

m. The lowest weight relation involv-
ing these vectors is

(2.17)

(k − 8)Wα
2 + 2(k − 8)W x,y

2

= ◦

◦
Wα

0 W
x
0

◦

◦
− ◦

◦
Wα,x

0 Wα,x
0

◦

◦
− 2∂2Wα

0 − 12∂W x,y
1

+ 4∂2W x,y
0 + 6◦

◦
eWα,y

1
◦

◦
− 6◦

◦
fWα,x

1
◦

◦
+ 2◦

◦
f(∂Wα,x

0 )◦
◦

− 1

2
◦

◦
h(∂Wα

0 )
◦

◦
+ 2◦

◦
(∂e)Wα,y

0
◦

◦
− 2◦

◦
(∂2e)f ◦

◦
− 2

3
∂3h,

which for k 6= 8, together with (2.10), can be used to write Wα
2 in terms of

lower weight vectors. Next, for all m ≥ 1 we have

(2.18)

2k(10m2 + 21m+ 13)

3(2m+ 1)(m+ 1)
Wα

2m+2

= ◦

◦
(∂Wα

2m−1)W
α
0

◦

◦
− ◦

◦
(∂Wα

2m)Wα
0

◦

◦
− ◦

◦
Wα

2m−1W
α
1

◦

◦
+Ψα

1 ,

(2k − 8)m+ k − 8

2m+ 1
Wα

2m+2 −
16

2m+ 1
W x,y

2m+2

= ◦

◦
Wα,x

2m Wα,y
0

◦

◦
− ◦

◦
Wα

mW
x,y◦

◦
+Ψα

2 ,

where Ψα
1 and Ψα

2 are normally ordered polynomials in lower weight gener-
ators. For all k 6= 0 the first equation in (2.18) can be used to write the
generators Wα

n in terms of lower weight vectors. Further, if k = 0 a combi-
nation of the second equation in (2.18), (2.13), and (2.14) will have the same
result.
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Next, we focus on generators of the for Wα,x
m . The lowest weight relation

involving these vectors is

(2.19)

(k − 8)Wα,x
2 =◦

◦
W x,y

0 Wα,x
0

◦

◦
− ◦

◦
W x

0W
α,y
0

◦

◦
+ 2(k − 5)∂Wα,x

1

− (k − 5)∂2Wα,x
0 + 6◦

◦
eW x,y

1
◦

◦
− 2◦

◦
e(∂W x,y

0 )◦
◦

+ ◦

◦
f(∂W x

0 )
◦

◦
+ 3◦

◦
αWα,x

1
◦

◦
− 3◦

◦
h(∂Wα,x

0 )◦
◦

+ 2◦

◦
(∂e)W x,y

0
◦

◦
+ 2◦

◦
(∂f)W x

0
◦

◦
− 1◦

◦
(∂h)Wα,x

0
◦

◦

+ 3◦

◦
h(∂2e)◦

◦
+ 2◦

◦
(∂h)(∂e)◦

◦
+ ◦

◦
(∂2h)e◦

◦
+

2

3
(k − 6)∂3e,

which can be used to writeWα,x
2 in terms of lower weight generators for k 6= 8.

Next, for m ≥ 1, we have

(2.20)

◦

◦
W x

2mW
α,y
0

◦

◦
− ◦

◦
W x,y

2mWα,x
0

◦

◦
=

(2k − 8)m+ k − 8

(m+ 1)(2m+ 1)
Wα,x

2m+2 +Ψα,x
1 ,

◦

◦
Wα,x

2m−1W
α
1

◦

◦
− ◦

◦
(∂W x,y

2m−2)W
α,x
0

◦

◦
+ ◦

◦
W x,y

2m−1W
α,x
0

◦

◦

=
−2((2k − 8)m− 5k − 8)

(2m+ 1)
Wα,x

2m+2 +Ψα,x
2 ,

and

(2.21)

◦

◦
W x

2m−1W
α,y
0

◦

◦
− ◦

◦
W x,y

2m−1W
α,x
0

◦

◦
=

2k

2m+ 1
Wα,x

2m+1 +Ψα,x
3 ,

◦

◦
Wα

2m−1W
α,x
0

◦

◦
− ◦

◦
Wα,x

2m−1W
α
0

◦

◦

=
2((2k − 8)m− 5k − 8)

2m+ 1
Wα,x

2m+1 +Ψα,x
4 ,

which allow us to write Wα,x
n for n ≥ 3 in terms of lower weight generators. .

Next we move onto the generators W x
n starting with the lowest weight

relation

(2.22)

◦

◦
Wα,x

0 Wα,x
0

◦

◦
− ◦

◦
Wα

0 W
x
0

◦

◦

= 2(k − 8)W x
2 + 2∂2W x

0 + 2◦

◦
e(∂Wα,x

0 )◦
◦

− 12◦

◦
eWα,x

1
◦

◦
− 2◦

◦
(∂e)Wα,x

0
◦

◦
− 2◦

◦
(∂2e)e◦

◦
,

which for k 6= 8 can be used to write W x
2 in terms of lower weight generators.

Furthermore, the relations
(2.23)

◦

◦
Wα,x

2m Wα,x
0

◦

◦
− ◦

◦
Wα

mW
x
0

◦

◦
=

2((2k − 8)m+ k − 8)

(m+ 1)(2m+ 1)
W x

2m+2 +Ψx
1 ,

◦

◦
W x,y

m W x
0

◦

◦
− ◦

◦
W x

2mW
x,y
0

◦

◦
=

(2k − 8)m2 + (k − 14)m− 4

(m+ 1)(2m+ 1)
W x

2m+2 + Ψx
2 ,

where Ψx
1 and Ψx

2 are normally order polynomials in lower weight terms. It is
easy to check that the only simultaneous zero for the coefficients of W x

2m+2 in



284 A. MILAS AND M. PENN

(2.23) occurs atm = − 2
3 and k = −8, but sincem ∈ N this is not problematic.

Thus for all n ≥ 2, we can write W x
2n in terms of lower weight generators.

In parallel to (2.19)-(2.23) we have relations which allow us to writeWα,y
n

and W y
2n in terms of lower weight generators for n ≥ 2 if k 6= 8. These along

with all of the relations (2.10)-(2.23) allow us to write any element from the
generating set in terms of those described by (2.6)-(2.8).

It is easy to see that this set of generators is minimal by explicit compu-
tation.

We can choose generators of the orbifold such that they are primary
vectors for all k. Moreover, for k 6= 1

2 and k 6= − 2
3 these primaries can be

chosen so that they are also highest weight vectors for ŝl2. Their explicit
formulas are given in the appendix.

Remark 2.2. In the sequel, for k generic, we will compute the Zhu’s
algebra and irreducible modules of this orbifold.

3. Permutation orbifolds (Lk(sl2)⊗ Lk(sl2))
S2

We now move to describe some simplification that can take place inside
the simple quotient at various levels. We denote by Lk(sl2) the simple quotient
of V k(sl2) and consider (Lk(sl2)⊗ Lk(sl2))

S2 .
We make a few elementary observations here. Let V be a vertex alge-

bra with ideal I and G a finite group of automorphisms preserving I then
(V/I)G ∼= V G/IG. This implies that we only have analyze those vertex alge-
bras for which Lk(sl2) 6= V k(sl2). These are precisely admissible levels and
the critical level k = −2 which we do not consider. If the universal vertex
algebra has no generators above conformal weight 4 from Theorem 2.1 we
immediately have the following result.

Corollary 3.1. Let k be such that no singular vector in V k(sl2) occurs
in degree ≤ 4, then the S2-permutation orbifold of Lk(sl2)⊗ Lk(sl2) is of the
type described in Theorem 2.1.

Next we discuss several cases in more detail where null vectors do occur
in degree ≤ 4.

3.1. L1(sl2). Although this level well-understood we present explicit com-
putation. At this level it is well-known that ei(−1)21 are singular vectors for
i = 1, 2. Now if we consider the following calculations involving these singular
vectors

e1(−1)21+ e2(−1)21 =
1

2
(e(−1)21+ wx

01),

f(0)(e1(−1)21+ e2(−1)2) = −wα,x
0 − h(−1)e(−1)1+ 2e(−2)1,

y(−1)(e1(−1)21− e2(−1)2) = −wα,x
1 + e(−1)wx,y

0 − h(−2)e(−1)1
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+ 2e(−3)1,

f(0)2(e1(−1)21+ e2(−1)2) = −2wx,y
0 + α(−1)21− 2e(−1)f(−1)1

+ h(−1)21+ 2h(−2)1,

e(0)x(−1)(f1(−1)21− f2(−1)21) = −2wx,y
1 + f(−1)wα,x

0 + h(−1)wx,y
0

− 2e(−2)f(−1)1+ 2h(−3)1

and similar equations involving wα,y
0 , wα,y

1 , and wy
0 . All of these together

allow us to write wx
0 , w

α,x
0 , wα,x

1 , wx,y
0 , wx,y

1 ,wα,y
0 , wα,y

1 , and wy
0 in terms

of h, f, e and wα
0 making the simple orbifold (L1(sl2) ⊗ L1(sl2))

S2 of type
(1, 1, 1, 2). If we take the weight 2 generator to be

(3.1) ω =
1

48
(2wα

0 + 8wx,y
0 − 4e(−1)f(−1)1− h(−1)21− 2h(−2)1)

it is easy to check that this is a conformal vector of central charge 1/2 that
commutes with h, e, f , so we have

(3.2) (L1(sl2)⊗ L1(sl2))
S2 ∼= L2(sl2)⊗ LVir(1/2, 0).

This is of course well-known and it follows easily from the coset decomposition

of sl(2)1×sl(2)1
sl(2)2

.

3.2. L− 1

2

(sl2). Since V − 1

2 (sl2) has the first singular vector in degree 4,

by the theorem, this is again of type (13, 26, 33).
We give another description of this orbifold. Recall the βγ-realization of

L− 1

2

(sl2) as

V +
βγ

∼= L− 1

2

(sl2),

where the superscript indicates the fixed point algebra under the automor-
phism + induced by (β, γ) → (−β,−γ). Therefore

(L− 1

2

(sl2)⊗ L− 1

2

(sl2))
S2 ∼=

(
V +
βγ ⊗ V +

βγ

)S2 ∼= (Vβγ ⊗ Vβγ)
D4

where D4 is the dihedral group of 8 elements acting on the tensor product.
As a consequence, we determined the type of this non-abelian orbifold.

3.3. L2(sl2). We first determine the type and then we provide another
description of this orbifold.

We only have to analyze degree 3 generators - all generators of de-
gree 2 must be accounted for. Compared to (V 2(sl2) ⊗ V 2(sl2))

S2 inside
V := (L2(sl2)⊗L2(sl2))

S2 the only new relations come from the singular vec-
tor e1(−1)31 + e2(−1)31. Acting with f(0) = f1(0) + f2(0) on it, we create
a 7-dimensional subspace which is zero in V . Easy inspection with charac-
ters implies that ch[V ] = 1 + 3q + 15q2 + 42q3 + O(q4). However, sl2 and
degree 2 generators can contribute at most with a 39-dimensional degree 3
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subspace, therefore 3-dimensional subspace is missing and those are precisely
contributed with weight 3 generators. Therefore the type is again (13, 26, 33).

It is interesting to analyze this orbifold from a different perspective using
cosets. We first need several results regarding the superconformal algebra
LN=1(1, 0) algebra and its fixed point algebra under the parity automorphism.
Denote by V N=1(c, 0) the universal N = 1 superconformal vertex algebra.
Next result is known in the physics literature ([10]).

Proposition 3.2. The even part V N=1(c, 0)even of the universal N =
1 superconformal algebra V N=1(c, 0) is a W -algebra of type (2, 4, 6). This
algebra is not freely generated. For c = 1, the corresponding simple quotient
is rational.

Proof. We only sketch the proof - full details will appear in [21, 24]. We
first show that for a generating set we can choose L(−2)1, G−n− 1

2

G− 3

2

1, n ≥
2. Using standard methods we can reduce this further to L(−2)1, G− 5

2

G− 3

2

1,

G− 9

2

G− 3

2

1. Out of the weight 4 and 6 generators we can form two primary

fields. Here we give explicit formulas for c = 1 needed later

w = G−5/2G−3/21− 17

27
L(−2)21− 2

9
L(−4)1,

z = 6G−9/2G−3/21− 66

17
G−7/2G−5/21− 52

17
L(−2)G−5/2G−3/21

− 8

17
L(−2)31− 92

51
L(−3)21+

284

51
L(−4)L(−2)1+

960

153
L(−6)1.

Comparing the character ch[V N=1(c, 0)even](τ) = (−q3/2,q)∞+(q3/2,q)∞
2(q;q)∞

with the ”free” character we see that the orbifold has a first relation among
ω, w and z in degree 10. Rationality of the simple quotient follows from a
general result for rational vertex superalgebras.

From now on, we useW c(2, 4, 6) to denote the even part of V N=1(c, 0) and
its simple quotient by Wc(2, 4, 6). The group of automorphisms of W c(2, 4, 6)
is mostly trivial.

Lemma 3.3. For c 6= 1, Aut(W c(2, 4, 6)) is trivial.

Proof. This can be seen from the structural constants in the vertex
algebra (coefficients of the OPE) with respect to the weight 4 and 6 generators.
Using OPE we compute

C4
4,4 =

(6(−82 + 47c+ 10c2))

(22 + 5c)
,

C6
4,4 =

2(−1 + c)(50 + c)

(3(24 + c))
,

C4
4,6 =

(96(−1 + c)(11 + c)(22 + 5c)(11 + 14c))

((50 + c)(−1 + 2c)(68 + 7c))
,
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C6
4,6 =

(5(−1 + 2c)(20 + 3c)(68 + 7c))

((24 + c)(22 + 5c))
,

C6
6,6 =

80(−1 + c)(724096 + 574876c+ 183931c2 + 19106c3 + 616c4))

((24 + c)(50 + c)(−1 + 2c)(68 + 7c))
,

where the subscript indicate the weights of the relevant primaries. Any auto-
morphisms ofW c(2, 4, 6) is uniquely determined with its action of the genera-
tors. Easy analysis shows that this action takes form (ω,w, z) → (ω,±w,±z).
Using the formulas above it is clear that the only possible automorphism is
(ω,w, z) → (ω,w,−z) and this can only occur for c = 1.

From now on we only consider Wc(2, 4, 6) with the central charge c = 1.
Using the character formula for the vertex superalgebra LN=1(1, 0), we see
that the first singular vector in V N=1(1, 0) occurs at degree 8, therefore the
even part of LN=1(1, 0), W1(2, 4, 6), is also of type (2, 4, 6).

Recall that F = L(2Λ0) ⊕ L(2Λ1) has a vertex superalgebra structure
with the even part L(2Λ0). Then Goddard-Kent-Olive ([20]) obtained a de-
composition

F ⊗ L(2Λ0) ∼= L(4Λ0)⊗ LN=1(1, 0)⊕ L(2Λ0 + 2Λ0)

⊗ LN=1

(
1,

1

6

)
⊕ L(4Λ0)⊗ LN=1(1, 1).

Since we are interested in the even part we immediately obtain conformal
embedding

L(4Λ0)⊗W1(2, 4, 6) →֒ L(2Λ0)⊗ L(2Λ0).

Furthermore, taking the S2-orbifold fixes L(4Λ0) and therefore the auto-
morphism must act non-trivially on W1(2, 4, 6). Since the only non-trivial
automorphism, σ, of this algebra can be described in Lemma 3.3, we con-
clude that (L(2Λ0)⊗L(2Λ0))

S2 is an extension of the rational vertex algebra
L(4Λ0)⊗W1(2, 4, 6)

σ. From Lemma 3.3 we have the following statement.

Corollary 3.4. Aut(W1(2, 4, 6)) = Z2.

Remark 3.5. It seems that the automorphism σ does not lift to an au-
tomorphism of W 1(2, 4, 6).

There is another description of W1(2, 4, 6) using lattice orbifolds. Dong
and Jiang characterized rational vertex algebras with c = 1 under suitable
conditions. Their main result in [13] gives the following result.

Proposition 3.6. We have W1(2, 4, 6) ∼= V +√
12Z

. Consequently,

W1(2, 4, 6)
σ ∼=

(
V +√

12Z

)σ

,

where + automorphism is induced by α → −α in the lattice. Therefore

(L2(sl2)⊗ L2(sl2))
S2 is an extension of L4(sl2)⊗

(
V +√

12Z

)σ

.
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3.4. L− 4

3

(sl2). As in Section 1.1., straightforward computation with the

singular vector of degree 3,

(3.3)
vi = 4ei(−1)2fi(−1)1+ hi(−1)2ei(−1)1− 16

3
hi(−1)ei(−2)1

− 2

3
hi(−2)ei(−1)1+

80

9
e(−3)1,

for i = 1, 2 in each copy of V− 4

3

(sl2) and generators shows that all weight 3

vectors can be eliminated. For instance, we have the following
(3.4)

α(0)(v1 − v2) =
20

3
wα,x

1 − 10

3
wα,x

0 (−2)1+
1

2
e(−1)wα

0 + 2e(−1)2f(−1)1

+ 4e(−1)wx,y
0 + 2f(−1)wx

0 + h(−1)wα,x
0 +

1

2
h(−1)2e(−1)1

− 2

3
h(−2)e(−1)1− 16

3
h(−1)e(−2)1+

106

9
e(−3)1,

which shows that wα,x
1 can be written in terms of lower weight generators

and an element of the maximal ideal. Since no weight 2 generators can be
eliminated we get the following result.

Proposition 3.7. (L− 4

3

(sl2)⊗ L− 4

3

(sl2))
S2 is of type (13, 26).

3.5. L3(sl2). Here we have a singular vector of weight 4. Since the level
is not eight this orbifold is of type (13, 26, 33). Explicit decomposition of the
coset W -algebra seems fairly complicated - we leave this for future investiga-
tion.

4. The permutation orbifold (L1(sl2)⊗ L1(sl2)⊗ L1(sl2))
S3

4.1. Notation and characters. In this section we discuss the structure of
the simplest non-abelian permutation orbifold coming from sl2. Let S3 denote
the symmetric group on 3 letters. To simplify notation we let

V (3) := L1(sl2)⊗ L1(sl2)⊗ L1(sl2).

As in section two we denote by ei(z), fi(z) and hi(z), i = 1, 2, 3 standard gen-
erators of V (3). The well-known formula for the S3-invariant VOA character
gives

ch[V (3)S3 ](τ) =
1

6
(ch[V ](τ))3 +

1

2
ch[V ](2τ) · ch[V ](τ) +

1

3
ch[V ](3τ),

where

ch[L1(sl2)] =

∑
n∈Z

qn
2

η(q)
,
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where η(q) = q1/24
∏

i≥1(1 − qi) from the lattice construction. Clearly,

L3(sl2) ⊂ V (3)S3 . By the Weyl-Kac character formula

ch[L3(sl2)] =

∑

m∈Z

(
5(m+

1

10
)q5(m+ 1

10
)2 − 5(m− 1

10
)q5(m− 1

10
)2
)

η(τ)3

= q−3/40(1 + 3q+ 9q2+ 22q3+ 42q4+ 81q5+ 151q6+ 264q7+· · ·).

4.2. Full character. Since h(0) = h1(0)+ h2(0) + h3(0) is fixed under S3,
it also defines the charge on V (3)S3 . So we can also consider

ch[V (3)](x, τ) := trV (3)x
H(0)qL(0)

and

ch[V (3)S3 ](x, τ) := trV (3)S3x
H(0)qL(0).

We can now improve the above formula by adding the charge variable

Proposition 4.1.

ch[V (3)S3 ](x, τ) =
1

6
(ch[V ](x, τ))3+

1

2
ch[V ](x2, 2τ) · ch[V ](x, τ)

+
1

3
ch[V ](x3, 3τ).

4.3. Decomposition of V (3). Using the well-known GKO coset construc-
tion of minimal models ([20]) we immediately get

Proposition 4.2. As an L3(sl2)× V ir-module

V (3) = L(3Λ0)⊗
(
L(

1

2
, 0)⊗ L(

7

10
, 0)⊕ L(

1

2
,
1

2
)⊗ L(

7

10
,
3

2
)

)

⊕ L(Λ0 + 2Λ1)⊗
(
L(

1

2
,
1

2
)⊗ L(

7

10
,
1

10
)⊕ L(

1

2
, 0)⊗ L(

7

10
,
3

5
)

)
.

For a generalization to any positive level see the recent paper [23].

4.4. Construction ofW 6

5

(2, 3). In this part we recall a lattice construction

of the simple (rational) Zamolodchikov’s vertex algebra W (2, 3) of central
charge c = 6

5 . We follow closely Dong et al. ([14]).

Let L =
√
2A2 be a rescaled sl(3) root lattice of type A2 and VL its

vertex algebra constructed as in [14]. This algebra contains three orthogonal
conformal vectors ω1, ω2 and ω3 of central charge 1

2 ,
7
10 and 4

5 and thus the

lattice vertex algebra contains the triple product L(12 , 0)⊗ L( 7
10 , 0)⊗ L(45 , 0)

conformally embedded in it. An explicit decomposition of VL with respect to
this vertex subalgebra was obtained by Lam and Yamada ([18]).

Next we consider the subalgebra

M0
k := {v ∈ VL : L 4

5

(0)v = 0},
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where L 4

5

(0) is the degree zero operator of the conformal vector of central

charge 4
5 inside L(45 , 0). Then [14] gives

(4.1) M0
k
∼= L(

1

2
, 0)⊗ L(

7

10
, 0)⊕ L(

1

2
,
1

2
)⊗ L(

7

10
,
3

2
).

This vertex algebra has three primary vectors of degree 2 explicitly described
in [14]. Moreover, [14, Theorem 2.1] Aut(M0

k )
∼= S3 = 〈σ, τ〉, where σ and τ

are explicitly constructed 2- and 3-cycles, respectively, acting on those three
primary vectors of degree 2. In particular, we have ([14])

(M0
k )

Z3 ∼=W 6

5

(2, 3),

where the right-hand side denotes the simple Zamolodchikov W -algebra
W(sl3, fprinc) at c =

6
5 . Then the full fixed point vertex subalgebra is

(M0
k )

S3 ∼=W 6

5

(2, 3)σ,

where the right hand side denotes the fixed point subalgebra under the au-
tomorphism induced by J → −J , where J denotes the weight 3 primary
generator (this is the only non-trivial automorphism of the W (2, 3) algebra).

Appearance of the vertex algebra M0
k := L(12 , 0) ⊗ L( 7

10 , 0) ⊕ L(12 ,
1
2 ) ⊗

L( 7
10 ,

3
2 ) in Proposition 4.2 and in (4.1) is of course no accident as we briefly

explain below.
We first realize V√2A2

inside the triple tensor product V (3). Let Q =⊕3
i=1 Zαi, where 〈αi, αj〉 = 2δi,j . and L′ = Z(α1 − α2) ⊕ Z(α2 − α3). Then

L′ ∼=
√
2A2. and 〈L′, α1 + α2 + α3︸ ︷︷ ︸

:=γ

〉 = 0. Therefore V (3) decomposes as

VZγ⊗V√2A2
-module. Let S3 = 〈(123), (12)〉 ⊂ Aut(V (3)) acting by permuting

tensor factors. Action of (123) on β0 := −β1 − β2, β1 := α1 − α2 and β2 :=
α2 − α3 is given by

β1 → β2 → β0 → β1.

Action of (12) is given by

β1 → −β1;β2 → −β0;β0 → −β2.

This S3 action induces an action on M0
k which coincides with the S3 action

on M0
k defined in [14] via three primary vectors w(α). To see L(3Λ0) from

this point of view, we can use decomposition

L(3Λ0) = VZγ ⊗K(sl2, 3)⊕ VZγ−γ/3 ⊗M1 ⊕ VZγ−2γ/3 ⊗M2

where K(sl2, 3) = L(45 , 0)⊕ L(45 , 3) is the parafermionic algebras and Mi are
certain irreducible modules thereof.

The above discussion gives almost all arguments needed to prove the
following statement.
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Theorem 4.3. As an L3(sl2)×W 6

5

(2, 3)σ-module:

V (3)S3 = L(3Λ0)⊗W 6

5

(2, 3)σ ⊕ L(Λ0 + 2Λ1)⊗Mσ,

where Mσ (resp. M) is an irreducible W 6

5

(2, 3)σ-module (resp. W 6

5

(2, 3)-

module) of lowest conformal weight 13
5 .

Proof. We already argued that W 6

5

(2, 3)σ appears as the coset subal-

gebra. The automorphism σ of order two acts on the two summands in the
decomposition and fixes L(Λ0 +2Λ1), acting non-trivially on the M . Explicit
computation shows that in V (3)S3 there is a 3-dimensional space of weight
3 primary vectors annihilated by t · sl2[t]. These vectors are given explicitly
in the Appendix. Since the lowest conformal weight of L(Λ0 + 2Λ1) is 2

5 ,

the lowest conformal weight of Mσ is 13
5 . Irreducibility of Mσ follows from

Quantum Galois theory as discussed in [14, Section 4.1].

5. The structure of W 6

5

(2, 3)σ

In this part we describe the orbifold W 6

5

(2, 3)σ in more detail. We prove

the following result.

Theorem 5.1. The rational vertex algebra W 6

5

(2, 3)σ is a W -algebra of

type (2, 6, 8, 10).

We denote generators of W 6

5

(2, 3) by ω and J of degree 3. As usual we

use L(n) to denote the modes of ω and for convenience we let

J(n) := Jn−2,

so that degJ(n) = n.
In [14] an explicit formula for the character of W 6

5

(2, 3) was given. In

particular, this gives

ch[W 6

5

(2, 3)](τ) = 1 + q2 + 2q3 + 3q4 + 4q5 + 8q6 + 10q7 + 17q8 + 24q9

+ 36q10 + 50q11 + 75q12 + 100q13 +O(q14).

Since W 6

5

(2, 3) is unitary as a Virasoro algebra module, it decomposes

(uniquely) as a direct sum of L(65 , 0)-modules. We need

Lemma 5.2. Each module L(65 , h), h ∈ N is generic. Consequently,

q1/20ch[L(6/5, 0)] =
1− q

(q; q)∞
,

q1/20ch[L(6/5, h)] =
qh

(q; q)∞
, h ∈ N.
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Using the lemma we get decomposition up to degree 12

W 6

5

(2, 3) = L(6/5, 0)⊕ L(6/5, 3)⊕ L(6/5, 6)⊕ L(6/5, 8)⊕ L(6/5, 9)

⊕ L(6/5, 10)⊕ 2L(6/5, 11)⊕ 2L(6/5, 12)⊕ · · · .

In [4], the universal W -algebra W c(2, 3) and its orbifold W c(2, 3)Z2 was
thoroughly studied. In particular, their main result for c = 6

5 gives the fol-
lowing statement.

Proposition 5.3. W
6

5 (2, 3)Z2 is of type (2, 6, 8, 10, 12).

We have to examine what is the structure in the simple case.
Using OPE we can compute Virasoro primaries in the universal algebra

W
6

5 (2, 3) of degree 6, 8, 10 and 12 (see Appendix). There are three primaries
of degree 12 also given in the appendix. If we set

U3
12 = 7346581U1

12 − 425509U2
12

we see that J(n)U2
12 = 0 for all n ≥ 0, in other words it is a singular vector

for the universal algebra W
6

5 (2, 3) in agreement with the character formula
obtained earlier.

It is clear that only primary vectors of degree 6, 8, 10, and two of the three
primary vectors of degree 12 are preserved under the automorphism induced
by J → −J .

Therefore, as a Virasoro algebra, the fixed point subalgebra W
6

5 (2.3)Z2

of the universal W -algebra is isomorphic to

L(6/5, 0)⊕ L(6/5, 6)⊕ L(6/5, 8)⊕ L(6/5, 10)⊕ 2L(6/5, 12)⊕ · · · .

In particular,

(5.1)
ch[W 6

5

(2, 3)Z2 ](τ) = 1 + q2 + q3 + 2q4 + 2q5 + 5q6 + 5q7

+ 10q8 + 12q9 + 20q10 + 25q11 + 40q12 +O(q13).

We can now prove

Theorem 5.4. W 6

5

(2, 3)Z2 is of type (2, 6, 8, 10) and the corresponding

generators in the Appendix form a minimal set of generators.

Proof. As already discussed, from the Virasoro decomposition, the pri-
maries of weight (2, 6, 8, 10) must be inside the algebra. It is not too difficult
to show using explicit generators (2, 6, 8, 10) in the appendix that there are
no algebraic relations among them up to and including conformal weight 12.
Therefore these generators must be among a minimal set of generators. Sup-
pose that the weight 12 generator is also a part of the minimal generating set.
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Then the character of the orbifold O(q13) would be

1

(q2; q)∞(q6; q)∞(q8; q)∞(q10; q)∞(1 − q12)

= 1 + q2 + q3 + 2q4 + 2q5 + 5q6 + 5q7 + 10q8 + 12q9

+ 20q10 + 25q11 + 41q12 +O(q13).

On the other hand, by formula (5.1), the dimension of the corresponding
graded subspace is 40. However

1

(q2; q)∞(q6; q)∞(q8; q)∞(q10; q)∞

= 1 + q2 + q3 + 2q4 + 2q5 + 5q6 + 5q7

+ 10q8 + 12q9 + 20q10 + 25q11 + 40q12 +O(q13),

and thus we have an algebra of type (2, 6, 8, 10).

Corollary 5.5. The vertex algebra orbifold V (3)S3 is generated by the
diagonal sl2, generators of weight Ui, i ∈ {2, 6, 8, 10} and three primary vec-
tors Wi, 1 ≤ i ≤ 3 of weight 3 given in Appendix.

We have computational evidence that a stronger result holds.

Conjecture 5.6. The orbifold V (3)S3 is of type (13, 2, 33).

In theory it should be straightforward to verify that (2, 6, 8, 10) generators
can be eliminated if we include the weight 3 primaries. However, the subspace
V (3)S3

10 of conformal weight 10 is more than 100, 000-dimensional and we were
unable to perform this kind of computation.

We finish with another conjecture still much beyond reach.

Conjecture 5.7. The orbifold (V k(sl2)⊗V k(sl2)⊗V k(sl2))
S3 is gener-

ically of type (13, 26, 313, 414, 56).

6. Future work

We plan to extend ideas from this paper to study vertex algebra asso-
ciated to odd lattice vertex algebra VL, where L = Zα, 〈α, α〉 = 3. The
corresponding S3-permutation orbifold is an infinite extension of the N = 2
superconformal vertex algebra of central charge 3.

Appendix A.

A.1. Primary generators of (V k(sl2)⊗ V k(sl2))
S2 .

wxy0 = (x(−1)y(−1)− 1

2
a(−1)2 +

1

2k − 1
e(−1)f(−1)− 1

2(2k − 1)
h(−1)2

− k

2k − 1
h(−2))1,
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wax0 = (a(−1)x(−1) +
1

2k − 1
h(−1)e(−1)− 2k

2k − 1
e(−2))1,

wxx0 = x(−1)21+
1

2k − 1
e(−1)21,

way0 = (a(−1)y(−1) +
1

2k − 1
h(−1)f(−1) +

2k

2k − 1
f(−2))1,

wyy0 = y(−1)21+
1

2k − 1
f(−1)21,

wxy1 = (4(3 + k)x(−2)y(−1) + e(−1)α(−1)y(−1) +
4(2 + k)

2 + 3k
e(−1)f(−2)

+ f(−1)α(−1)x(−1)− 1

k
h(−1)α(−1)2 − 2(2 + k)

k
h(−1)x(−1)y(−1)

+
4(2 + k)

k(2 + 3k)
h(−1)e(−1)f(−1)− 2 + k

k(2 + 3k)
h(−1)3

− 4(2 + k)

2 + 3k
e(−2)f(−1) +

3(2 + k)

2 + 3k
h(−2)h(−1)

− 2(3 + k)(x(−1)y(−1))−2 +
2(k2 + 5k + 2)

2 + 3k
h(−3))1,

wax1 = (−4(3 + k)α(−2)x(−1) + (2 + k)e(−1)α(−1)α(−1)

+ 2(4 + k)e(−1)x(−1)y(−1)− 8(2 + k)

2 + 3k
e(−1)2f(−1)− 2kf(−1)x(−1)2

− kh(−1)α(−1)x(−1)− 2(2 + k)

2 + 3k
h(−1)2α(−1)

+
2(8 + 2k + k2)

2 + 3k
h(−1)e(−2)− 2k(2 + k)

2 + 3k
h(−2)e(−1)

+ 2(3k + k2)(α(−1)x(−1))−2 −
4(4− 2k + 2k2 + k3)

2 + 3k
e(−3))1,

way1 = (2k(3 + k)a(−2)y(−1)− ke(−1)y(−1)2 − 4(2 + k)

2 + 3k
e(−1)f(−1)2

+
k + 2

2
f(−1)α(−1)2 + (4 + k)kf(−1)x(−1)y(−1)

− k

2
h(−1)α(−1)y(−1)− 2 + k

2 + 3k
h(−1)2f(−1)

− 8 + 2k + k2

2 + 3k
h(−1)f(−2)− 2(−4 + 2k + k2)

2 + 3k
h(−2)f(−1)

− (3k + k2)(α(−1)y(−1))−2 −
2(4 + 8k + 5k2 + k3)

2 + 3k
f(−3))1.

A.2. Generators of W 6

5

(2, 3)σ.

U6 = (56154J(−3)2 − 25120L(−2)3 + 33144L(−4)L(−2)
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− 32565L(−3)2 + 42432L(−6))1,

U8 = (585900J(−3)2L(−2) + 641235J(−4)2 − 1601460J(−5)J(−3)

− 34600L(−2)4 − 490560L(−4)L(−2)2 − 34050L(−3)2L(−2)

− 782280L(−6)L(−2)− 21834L(−4)2 + 260700L(−8)

− 785970L(−5)L(−3))1,

U10 = (9181667250J(−3)2L(−2)2 + 43808964500J(−4)2L(−2)

− 75774769000J(−5)J(−3)L(−2)+ 26130259050J(−3)2L(−4)

− 26366049500J(−4)J(−3)L(−3)+ 52763594940J(−5)2

− 129634199520J(−6)J(−4)+ 162197568680J(−7)J(−3)

+ 97980000L(−2)5 − 13597613000L(−4)L(−2)3

+ 1572749375L(−3)2L(−2)2 − 51958104000L(−6)L(−2)2

− 21154627200L(−4)2L(−2)− 147488715940L(−8)L(−2)

− 28534352000L(−5)L(−3)L(−2)− 45938374980L(−5)2

− 943649625L(−4)L(−3)2+ 37861248852L(−10)

− 63112979280L(−6)L(−4)− 122225317890L(−7)L(−3))1.

A.3. Weight 12 primaries in W
6

5 (2, 3).

U1
12 = (− 614701126078130938560J(−3)2L(−2)3

+ 684779143460211534000J(−4)2L(−2)2

+ 3918187305085215113280J(−5)J(−3)L(−2)2

− 4396191650253197477760J(−5)2L(−2)

+ 235387741188222085680J(−6)J(−4)L(−2)

− 7499275000234308177600J(−7)J(−3)L(−2)

+ 5515534695729272552352J(−3)2L(−4)L(−2)

− 6145010146928171826720J(−4)J(−3)L(−3)L(−2)

+ 2588723244855138468420J(−3)2L(−3)2

− 8322589801748433335040J(−3)2L(−6)

+ 10511227468442837375232J(−4)J(−3)L(−5)

− 3625776663088141002000J(−4)2L(−4)

− 6961122963880684781952J(−5)J(−3)L(−4)

+ 4929939475120655126880J(−5)J(−4)L(−3)

+ 4773532687076653363080J(−6)J(−3)L(−3)
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− 171648412285445115468J(−3)4

− 1066521117142941065550J(−6)2

+ 12493191821706784715520J(−7)J(−5)

− 5797068994347779833440J(−8)J(−4)

+ 12603643268347174428672J(−9)J(−3)

+ 228266678826758310400L(−2)6

− 3882692082393713276160L(−4)L(−2)4

+ 1581754716008505972000L(−3)2L(−2)3

+ 2108170613606957312640L(−6)L(−2)3

+ 8832499573007649131616L(−4)2L(−2)2

− 2549342475388773078720L(−8)L(−2)2

− 9121774545025047556320L(−5)L(−3)L(−2)2

+ 11219262349279977066432L(−5)2L(−2)

+ 800472455794442907120L(−4)L(−3)2L(−2)

+ 1980851526476237525376L(−6)L(−4)L(−2)

− 2545988958876918647040L(−7)L(−3)L(−2)

− 2064428686210240327875L(−3)4

+ 1062934268596930370784L(−4)3

− 6375466678009788958464L(−6)2

+ 14241366043443771963840L(−6)L(−3)2

+ 11089951838933314485504L(−12)

+ 18738841210216937700672L(−7)L(−5)

+ 13050662062784044674144L(−8)L(−4)

+ 25601205514837174085760L(−9)L(−3)

− 4960605588937809643872L(−5)L(−4)L(−3))1,

U2
12 = (− 6828349711130669400000J(−3)2L(−2)3

− 1238547790386007290000J(−4)2L(−2)2

+ 45950606112292591752000J(−5)J(−3)L(−2)2

− 68760390254879388240000J(−5)2L(−2)

+ 61774703447770919214000J(−6)J(−4)L(−2)

− 157582755702018297336000J(−7)J(−3)L(−2)

+ 25845401839701600324000J(−3)2L(−4)L(−2)
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− 45970343625266001396000J(−4)J(−3)L(−3)L(−2)

+ 17150495020967241454500J(−3)2L(−3)2

− 112585948687895047142400J(−3)2L(−6)

+ 103719931902734081020800J(−4)J(−3)L(−5)

− 49538936349187241922000J(−4)2L(−4)

− 32879370398293035926400J(−5)J(−3)L(−4)

+ 55617336570413176524000J(−5)J(−4)L(−3)

− 15724822132957972419000J(−6)J(−3)L(−3)

+ 2066348660411177908500J(−3)4

− 68337061116518390946750J(−6)2

+ 194210340267657714336000J(−7)J(−5)

− 174609762245001030511200J(−8)J(−4)

+ 319573429759307780851200J(−9)J(−3)

+ 1996830239589150016000L(−2)6

− 32030236654028931129600L(−4)L(−2)4

+ 13664120461886734116000L(−3)2L(−2)3

+ 31951825910715875049600L(−6)L(−2)3

+ 86154635161531154941920L(−4)2L(−2)2

− 16357441677964273176000L(−8)L(−2)2

− 81026268027122746792800L(−5)L(−3)L(−2)2

+ 94445889707986794273600L(−5)2L(−2)

+ 16524357389133792418800L(−4)L(−3)2L(−2)

+ 110899518389333144855040L(−10)L(−2)

+ 32182038117960751198080L(−6)L(−4)L(−2)

− 46970103204767122886400L(−7)L(−3)L(−2)

− 18975106237118184304875L(−3)4

+ 16663072197844154040672L(−4)3

+ 11349399657436172709120L(−6)2

+ 117477372846233820052800L(−6)L(−3)2

+ 321212788014830758616640L(−7)L(−5)

+ 216646683370054699309920L(−8)L(−4)

+ 355551946988511916535040L(−9)L(−3)
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− 56382393734329762412640L(−5)L(−4)L(−3))1,

U3
12 = (103488000J(−4)L(−2)4− 1028193600J(−6)L(−2)3

− 155232000J(−3)L(−3)L(−2)3+ 3932047200J(−8)L(−2)2

− 209808000J(−3)L(−5)L(−2)2− 734098400J(−4)L(−4)L(−2)2

+ 1435459200J(−5)L(−3)L(−2)2+ 452957400J(−4)J(−3)2L(−2)

− 1178968300J(−4)L(−3)2L(−2)− 16819505200J(−10)L(−2)

+ 1434952320J(−3)L(−7)L(−2)− 2661520320J(−4)L(−6)L(−2)

+ 656575040J(−5)L(−5)L(−2)+ 488209320J(−6)L(−4)L(−2)

− 1870539600J(−7)L(−3)L(−2)+ 1415859600J(−3)L(−4)L(−3)L(−2)

+ 1086589650J(−3)L(−3)3− 1042286400J(−4)L(−4)2

+ 1165918275J(−6)L(−3)2− 3147857592J(−3)L(−9)

− 1152711040J(−4)L(−8)− 2033897640J(−5)L(−7)

+ 2154938040J(−6)L(−6)− 2099934280J(−7)L(−5)

− 2636649720J(−8)L(−4)+ 1042286400J(−3)L(−5)L(−4)

− 679436100J(−3)3L(−3)− 5683985880J(−9)L(−3)

+ 1122375840J(−3)L(−6)L(−3)− 2246870080J(−4)L(−5)L(−3)

+ 241014000J(−5)L(−4)L(−3)+ 1093808240J(−4)3

+ 2060956170J(−6)J(−3)2+ 75411426960J(−12)

− 3200898960J(−5)J(−4)J(−3))1.

A.4. Weight three generators of V (3)S3 .

w1 = h1(−1)e1(−1)f1(−1)− 2h1(−1)e1(−1)f3(−1) + 2h1(−1)e3(−1)f1(−1)

+ 2h1(−1)e3(−1)f3(−1)− h1(−1)h1(−1)h1(−1) + h1(−1)h1(−1)h3(−1)

+ h1(−1)h3(−1)h3(−1)− 2h3(−1)e1(−1)f1(−1) + 2h3(−1)e1(−1)f3(−1)

+ 2h3(−1)e3(−1)f1(−1) + 2h3f1(−1)e3(−1)f3(−1)− h3(−1)h3(−1)h3(−1)

w2 = −4e1(−1)e1(−1)f1(−1)− 4e1(−1)e2(−1)f3(−1)− 4e1(−1)e3(−1)f1(−1)

+ 8e1(−1)e3(−1)f3(−1)− 4e2(−1)e3(−1)f1(−1) + 2e3(−1)e3(−1)f3(−1)

− 5h1(−1)h1(−1)e1(−1) + h1(−1)h1(−1)e2(−1) + 4h1(−1)h1(−1)e3(−1)

+ 2h1(−1)h3(−1)e1(−1)− 2h1(−1)h3(−1)e2(−1)− 4h1(−1)h3(−1)e3(−1)

− 5h3(−1)h3(−1)e1(−1) + h3(−1)h3(−1)e2(−1) + 4h3(−1)h3(−1)e3(−1)

w3 = 4e1(−1)f1(−1)f3(−1)− 4e1(−1)f2(−1)f3(−1)− 4e3(−1)f1(−1)f2(−1)

− 8e3(−1)f1(−1)f3(−1)− h1(−1)h1(−1)f1(−1) + h1(−1)h1(−1)f2(−1)
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+ 2h1(−1)h3(−1)f1(−1)− 2h1(−1)h3(−1)f2(−1)− 4h1(−1)h3(−1)f3(−1)

+ 3h3(−1)h3(−1)f1(−1) + h3(−1)h3(−1)f2(−1) + 2h3(−1)h3(−1)f3(−1)

+ 4h1(−2)f1(−1)− 2h3(−2)f3(−1).

Then the primary vectors in the orbifold are orbit sums

Wi =
∑

σ∈S3

σ(wi)1, 1 ≤ i ≤ 3,

where σ acts by permuting indices.
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[1] D. Adamović, C.H. Lam, V. Pedić and N. Yu, On irreducibility of modules of

Whittaker type for cyclic orbifold vertex algebras, J. Algebra 539 (2019), 1–23.
[2] T. Abe, C2-cofiniteness of 2-cyclic permutation orbifold models, Comm. Math.

Phys. 317 (2013), 425–445.
[3] M. Al-Ali, The Z2-orbifold of the universal affine vertex algebra, J. Pure Appl.

Algebra 223 (2019), 5430–5443.
[4] M. Al-Ali and A. Linshaw, The Z2-orbifold of the W3-algebra, Comm. Math. Phys.

35 (2017), 1129–1150.
[5] P. Bantay, Characters and modular properties of permutation orbifolds, Phys. Lett.

B 419, 175–178.
[6] K. Barron and N. Vander Werf, Permutation-twisted modules for even order cycles

acting on tensor product vertex operator superalgebras, Internat. J. Math. 25 (2014),
1450018, 35 pp.

[7] K. Barron, C. Dong and G. Mason, Twisted sectors for tensor product vertex op-

erator algebras associated to permutation groups, Comm. Math. Phys. 227 (2002),

349–384.
[8] K. Barron, Y.-Z. Huang and J. Lepowsky, An equivalence of two constructions

of permutation-twisted modules for lattice vertex operator algebras, J. Pure Appl.
Algebra 210 (2007), 797–826.

[9] A. Belin, C. Keller and A. Maloney, String universality for permutation orbifolds,
Phys. Rev. D 91 (2015), 106005, 11 pp.

[10] P. Bouwknegt, Extended conformal algebras from Kac-Moody algebras, In: Infinite-
dimensional Lie algebras and groups, World Scientific, Teaneck, 1989, 527–555.

[11] S. Carnahan, and M. Miyamoto, Regularity of fixed-point vertex operator subalge-

bras, arXiv preprint arXiv:1603.05645 (2016).
[12] C. Dong and G. Mason, On quantum Galois theory, Duke Math. J. 86 (1997),

305–321.
[13] C. Dong and C. Jiang, A characterization of vertex operator algebra V

+
L
, in: Con-

formal field theory, automorphic forms and related topics, Springer, Heidelberg,
2014, 55–74.

[14] C. Dong, C-H. Lam, K. Tanabe, H. Yamada and K. Yokoyama. Z3-symmetry and

W3 algebra in lattice vertex operator algebras, Pacific J. Math. 215 (2004), 245–296.
[15] C. Dong, L. Ren and F. Xu, On orbifold theory, Adv. Math. 321 (2017), 1–30.
[16] C. Dong, F. Xu and N. Yu, The 3-permutation orbifold of a lattice vertex operator

algebra, J. Pure Appl. Algebra 222 (2018), 1316–1336.



300 A. MILAS AND M. PENN

[17] C. Dong, F. Xu and N. Yu, 2-permutations of lattice vertex operator algebras: higher

rank, J. Algebra 476 (2017), 1–25.
[18] C.-H. Lam and H. Yamada, Decomposition of the lattice vertex operator algebra

V√
2Al

, J. Algebra 272 (2004), 614–624.

[19] D. Graybill, A. Linshaw, M. Penn and J. Quintero,Strong finite generation of the

̥n orbifolds of the rank 2 Heisenberg system, in preparation.
[20] P. Goddard, A. Kent and D. Olive, Unitary representations of the Virasoro and

super-Virasoro algebras, Comm. Math. Phys. 103 (1986), 105–119.
[21] H. Li, A. Milas and J. Wauchope, S2-orbifolds of N = 1 and N = 2 superconformal

vertex algebras and W -algebras, to appear in Communications in Algebra.
[22] A. Linshaw, Invariant subalgebras of affine vertex algebras, Adv. Math. 234 (2013),

61–84.

[23] C. Jiang and Z. Lin, The commutant of Lsl(2)(n, 0) in the vertex operator algebra

Lsl(2)(1, 0)
⊗n, Adv. Math. 301 (2016), 227–257.

[24] H. Li, Equivariant oriented cohomology and associated schemes of vertex superal-

gebras, PhD thesis (UAlbany), in progress.
[25] A. Milas, M. Penn and C. Sadowski, Permutation orbifolds of the Virasoro vertex

algebra and W-algebras, to appear in Journal of Algebra; arXiv:2005.08398.
[26] A. Milas, M. Penn and H. Shao, Permutation orbifolds of the Heisenberg vertex

algebra H(3), J. Math. Phys. 60 (2019), 021703, 17 pp.
[27] A. Milas, M. Penn and J. Wauchope, Permutation orbifolds of rank three fermionic

vertex superalgebras, in: D. Adamović, P. Papi (eds.), Affine, Vertex and W-
algebras, Springer, Cham, 2019, 183–202.

[28] A. Linshaw, A Hilbert theorem for vertex algebras, Transform. Groups 15 (2010),
427–448.

[29] M. Penn and J. Quiento, Finite group orbifolds of Heisenberg vertex algebras, in
preparation.

[30] J. Wauchope, Permutation orbifolds of fermionic vertex algebras, PhD thesis, UAl-
bany, 2020.

A. Milas
Department of Mathematics and Statistics
SUNY-Albany
Albany NY 12222
USA
E-mail : amilas@albany.edu

M. Penn
Mathematics Department
Randolph College
Lynchburg VA 24503
USA
E-mail : mpenn@randolphcollege.edu

Received : 8.4.2020.


