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Abstract. We prove that the minimally displaced set of a relatively
irreducible automorphism of a free splitting, situated in a deformation
space, is uniformly locally finite. The minimally displaced set coincides
with the train track points for an irreducible automorphism. We develop
the theory in a general setting of deformation spaces of free products,
having in mind the study of the action of reducible automorphisms of a
free group on the simplicial bordification of Outer Space. For instance,
a reducible automorphism will have invariant free factors, act on the cor-
responding stratum of the bordification, and in that deformation space it
may be irreducible (sometimes this is referred as relative irreducibility).

1. Introduction

Overview. In this paper we study deformation spaces of marked metric
graphs of groups.

Since its first appearance on the scene ([8]), the celebrated Culler-
Vogtmann Outer Space became a classical subject of research. It turned
out to be a very useful tool for understanding properties of automorphisms of
free groups (see for instance [4, 14, 15, 16, 20, 26, 27]). A typical object in the
Outer Space of Fn is a marked graph with fundamental group of rank n, and
locally Euclidean coordinates are defined by turning graphs into metric graph
by an assignment of positive edge-lengths. Outer Space is not compact and
there are basically two ways of going to infinity: making the marking diverge
or collapsing a collection of sub-graphs of a given element X of Outer Space.
The second operation has a local flavour and it is similar to the operation of
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pinching a curve of a surface. Attaching these “collapsed” points, leads one
to define the simplicial bordification of the deformation space. If one starts
with Culler-Vogtmann space, the result is the free splitting complex, which is
related to the free factor complex (see for instance [3, 5, 6, 18, 19, 21, 25]).

Collapsing comes naturally into play when one is analysing a reducible
automorphism of Fn induced by simplicial map f : X → X which exhibits an
invariant collection of sub-graphs of X .

Once collapsed, X is turned into a graph of groups corresponding to a
free splitting of Fn. On the other hand, the collapsed part is not neces-
sarily connected. This phenomenon has led researchers to investigate more
general deformations spaces. Namely deformation spaces of (not necessarily
connected) graph of groups, possibly with marked points or “hairs” (see for
instance [17, 11, 12, 13, 28, 7]).

One of the main tools used to study the action of automorphisms on defor-
mation spaces is the theory of Stalling folds ([30]) and the so-called Lispchitz
metric ([9, 10, 28]). In particular, given an automorphism φ, one can study
the displacement function λφ defined as λφ(X) = Λ(X,φX) (here Λ denotes
the maximal stretching factor from X to φX , whose logarithm is the asym-
metric Lipschitz metric). Of particular interest is the set Min(φ) of minimally
displaced points. When φ is irreducible, this coincides with the set of points
supporting train-track maps ([12]) and its structure is particularly useful for
example in building algorithm for decision problems. It is used in [13] for
a metric approach to the conjugacy problem for irreducible automorphism
of free groups (solved originally in [26]) and the reducibility problem of free
groups (solved originally in [23, 24]).

Main results of the paper. If one is interested in effective procedures,
one of the main problems is that general deformation spaces have a simplicial
structure that is not locally finite. So if one starts from a simplex and wishes to
enumerate neighbouring simplices, there is no chance to make this procedure
effective.

In this paper we prove that the minset Min(φ) for irreducible automor-
phisms of exponential growth is locally finite; namely given a simplex inter-
secting Min(φ), one can give a finite of its neighbours so that any simplex not
in that list, does not intersect Min(φ). This is the content of our Theorem 6.4.
Moreover, it is also uniformly locally finite, Corollary 6.10.

Theorem (Theorems 6.4 and 6.10). Let G be a group equipped with a
free splitting, G. Let φ be an automorphism of G which preserves the splitting
and is irreducible with λ(φ) > 1. Then Min(φ) - also seen as the points which
support train track maps for φ - is uniformly locally finite both as a subset of
the deformation space O(G) and its volume 1 subspace, O1(G).

Remark 1.1. We note that the number λ(φ) in the Theorem above is
the (minimal) displacement of φ relative to the splitting G.



THE MIN-SET IS LOCALLY FINITE 303

For instance, if one takes a relative train track representative for an au-
tomorphism of Fn, then one gets a free splitting of G = Fn by taking the
largest invariant subgraph (the union of all the strata except the top one).
The resulting automorphism is irreducible in the corresponding relative space,
and the number λ(φ) is the Perron-Frobenius eigenvalue of the top stratum.

The application we have in mind for this kind of result is an effective
study of the minset for a reducible automorphism.

In general this minset is empty, but starting with a reducible automor-
phism φ of a free group, one can collapse an invariant free factor to obtain
a new deformation space on which the automorphism acts. If φ is relatively
irreducible in that space, then its minset is locally finite. Otherwise, one can
keep collapsing free factors until it is relatively irreducible.

It is easy to see that the minset for a reducible automorphism is not
locally finite in general, however for any automorphism and any simplex with
a given displacement, there are only finitely many possible simple folds which
produce simplices of strictly smaller displacement - Corollary 4.15.

The idea behind Theorem 6.4 is the following. For a minimally displaced
point X , it is known that folding an illegal turn of an optimal map f : X → X
representing φ produces a path in Min(φ), called folding path. (See for in-
stance [11, 12]). But it is also clear that there are legal turns that can be
folded without exiting Min(φ), for instance, this may happen at illegal turns
for φ−1. The strategy is to understand which legal turns can be folded, and
we are able to produce a finite list such that if a turn τ is not in that list,
then by folding τ one exits the minimally displaced set. In our terminol-
ogy, folding a critical turn could allow one to remain in the minset, whereas
folding a regular turn forces one to leave it. One then understands arbitrary
neighbouring simplices, by looking at which of them can be reached by a (uni-
formly bounded) number of critical folds - these are the only ones that may
be minimally displaced. However, one complication is that it is possible that
a critical fold could increase the displacement, and a subsequent critical fold
decrease it so that one re-enters the minimally displaced set. Nevertheless,
our result produces a finite list containing all neighbouring simplices that are
minimally displaced.

Remark 1.2. We have written the paper for deformation spaces of free
splittings of G, namely connected graph of groups with trivial edge-groups.
However, every result of the paper remains true for deformations spaces of
non-connected graph of groups, as developed for instance in [12, 13]. This
is because connectedness plays no role in our proofs (in those papers, non-
connectedness was crucial since the main argument was an inductive one).
Nonetheless, we decided to stick to the connected case for the benefit of the
reader.
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Structure of the paper. We have decided to write the paper in a reverse
order; we start immediately with the core of the paper, postponing the section
of general definitions to the end. This is because the definitions and terminol-
ogy we use are quite standard, and the reader used to the subject can start
reading directly.

2. Preliminaries

We recall some notation here and, we refer to Section 7 for more details.

Convention 2.1. Deformations spaces - here, of free splittings, even
though the concept exists more generally - can be viewed either as spaces of
trees, or graphs. We adopt here the graphs-viewpoint, but one can easily pass
from one viewpoint to the other by taking universal covers and G-quotients
(see below for more details).

Throughout the whole paper, G will denote a fixed free splitting of the
group G. That is, we write G = G1 ∗ . . . ∗Gk ∗ Fn, but this need not be the
Grushko decomposition of G. In fact, in the examples we have in mind, G is a
free group, and the free factors Gi correspond to a collection of invariant free
factors under some automorphism of G. O(G) will denote the deformation
space of a free splitting of a group G.

The typical objectX ∈ O(G) is therefore a marked metric graph of groups,
with trivial edge groups, and whose valence one or two vertices have non-
trivial vertex group (one can also think of X as a G-tree with trivial edge
stabilisers, where the vertex stabilisers are precisely the conjugates of the Gi.
Elements of G which fix some vertex are called elliptic, and the others are
hyperbolic). Note that every X ∈ O(G) has the same elliptic elements (and
this characterises the points in the space). For a vertex v ∈ X we denote Gv

its vertex group. If Gv is trivial, then v is said to be free.
These spaces - O(G) - naturally occur in the bordification of classical

Culler-Vogtmann Outer Space, on collapsing invariant subgraphs.
We denote by Aut(G) the group of automorphisms of G which preserve

the splitting; that is, each Gi in the splitting is sent to a conjugate of another
(possibly the same) Gj . That is, Aut(G) the group of automorphisms of G
which preserve the elliptic elements. Similarly, Out(G) = Aut(G)/Inn(G).

2.1. Graph of Groups and G-trees. We recall some basic notions of Bass-
Serre theory. The main references for this section are [1] and [29]. Given a
graph Γ, we denote by V (Γ) the set of vertices of Γ and by E(Γ) the set of
(oriented) edges of Γ. If e is an (oriented) edge, we denote by ι(e), the initial
vertex of e and by τ(e), the terminal vertex of e.

Definition 2.2 (Graph of Groups). A graph of groups X consists of a
connected graph Γ together with groups Gv for every vertex v ∈ V (Γ) and edge
groups Ge = Gē, and monomorphisms αe : Ge → Gτ(e) for every (oriented)
edge e ∈ E(Γ).
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In this paper, we work with free products of groups, which by Bass-Serre
theory, arise as the fundamental groups of graph of groups with trivial edge
groups. For the remainder of the section, we suppose that all the graph of
groups have trivial edge groups. In this case, we can see a graph of groups
X , as a pair which consists of a graph Γ and a collection of groups Gv, one
for each v vertex of Γ; we simply write X = (Γ, {Gv}v∈V (Γ)). We refer to Γ,
as the topological space (or the graph) associated to X .

Let X = (Γ, {Gv}v∈V (Γ)) be a graph of groups. An edge-path P (of combi-
natorial length k) in X is a sequence of the form (g1, e1, g2, e2, . . . , gk, ek, gk+1)
where the ei’s are oriented edges of Γ such that the terminal point of each ei
is the initial point of ei+1, and each gi is a group element from the ver-
tex group based at the initial point of ei; in this case, we simply write
P = g1e1 · · · gkekgk+1. In the present work, we also use “paths” which are not
edge-paths, as their endpoints may not be vertices. The previous definition is
extended from edge-paths to paths, by allowing the first and the last segments
e1, ek of P to be partial edges (note that if ι(e1) is not a vertex, then we set
g1=1 and, similarly, if τ(ek) is not a vertex then we set gk+1 = 1). A path is
called loop, if the endpoint of its last edge coincides with the initial point of its
first edge. We say that a path P , as above, is reduced, if whenever ei = ēi+1,
i = 1, . . . , k− 1, then gi is not the trivial group element. Furthermore, we say
that a loop P = g1e1g2e2 · · · gkekgk+1 is cyclically reduced if it is reduced and
if ek = ē1 then gk+1g1 6= 1.

We can always represent the conjugacy class of a loop in the graph of
groups in the form g1e1g2e2 · · · gkek; in this case, being cyclically reduced
means that whenever ei = ēi+1, then gi is not the trivial group element, with
the subscripts taken modulo k.

We say that two paths are equivalent if one can be obtained from the other
by a sequence of insertions or deletions of inverse-pairs. We then denote by
π(X), the set of equivalence classes of edge paths.

Then π(X) has the structure of a groupoid, whose operation is the
concatenation of paths. Note that π(X) is not a group in general, for if
p, q ∈ π(X), then the concatenation p ∗ q = pq is only defined exactly when
the terminal vertex of p is the initial vertex of q. In our setting, every path p
is equal (in π(X)) to a unique reduced path (with the same endpoints), which
we denote by [p] (alternatively, we can take π(X) to be the set of reduced
edge-paths, under the operation of concatenation followed by reduction).

If a, b are two points of Γ (not necessarily vertices), we can define the set
P [a, b], of paths in X , from a to b. If a, b are vertices, then P [a, b] can be seen
as a subset of π(X). In the special, case where a = b, the set of loops based
at a, P [a, a], form a subgroup of π(X) (as any two loops based at a, can be
concatenated, inducing a loop based at a).
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Definition 2.3 (Fundamental group). Let X = (Γ, {Gv}v∈V (Γ)) be a
graph of groups. If u is a vertex of Γ, then the fundamental group π1(X,u) =
P [u, u] of Γ is the set of loops in Γ based at u (as elements of π(X)). In our
case,

π1(X,u) = (∗v∈V (Γ)Gv) ∗ π1(Γ, u).

Note that the isomorphism type of π1(X,u) does not depend on the choice
of u. If u,w are vertices of Γ, then π1(X,u), π1(X,w) are conjugate in π(X)
(and we simply write π1(X), when we ignore the base point).

We can now define the universal cover (or Bass-Serre tree) of a graph of
groups.

Definition 2.4 (Universal Cover). Let X = (Γ, {Gv}v∈V (Γ)) be a graph

of groups. If v is a vertex of Γ, then we define the tree T = (̃X, v) = X̃, as
follows:

• the set of vertices V (T ) are exactly the “cosets” pGw, w ∈ V (Γ), where
p is a reduced edge-path from w to v;

• there is an (oriented) edge from p1Gw1
to p2Gw2

, if and only if there
are elements gi ∈ Gwi

, i = 1, 2 and an edge e ∈ E(Γ), so that p2 =
p1g1eg2.

Remark 2.5. (i) As every element of G = π1(X, v) is a loop based
at v, there is natural simplicial (left) action of the fundamental group
on the universal cover T .

(ii) If w is a vertex of Γ, then there is a unique (reduced) path pw of ΓV ,
from v to w. Then the stabiliser StabT (pGw) = pGwp

−1.
(iii) The stabilisers of edges are, by construction, trivial.
(iv) One can define arbitrary points of T in exactly the same way, by al-

lowing the paths p to be general paths (not just edge-paths) from v to
w, with the convention that Gw is trivial if w is not a vertex.

Given a graph of groups with trivial edge groups, we described the action
of its fundamental group on a tree with trivial edge stabilisers (and vertex sta-
bilisers which coincide with the set of conjugacy classes of the vertex groups).

Conversely, if a group G acts on a tree with trivial edge stabilisers, we
can construct a graph of groups with fundamental group G.

Definition 2.6 (Quotient graph of groups). Let’s suppose that G acts on
a tree T with trivial edge stabilisers. Then we can define the quotient graph
of groups X, by taking the quotient graph Γ = G/T and as vertex groups the
stabilisers of some orbit of each vertex (and trivial edge groups). In this case,
π1(X) is (isomorphic to) G.

Remark 2.7. By Bass-Serre theory, we know that these two constructions
(graph of groups and the universal cover) are equivalent and we can go from
the level of the tree to the level of the graph of groups and vice versa (we
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have done some choices of fundamental domains which are inessential, as
they produce isomorphic structures, every time).

Now we restrict to graph of groups in the same relative outer space, as
in our Convention. More specifically, we assume that our graph of groups,
will be G-graph of groups (see Definition 7.3, for more details), for the fixed
splitting G of our group G.

As in our description for the G-trees (see 7), every G-graph as a point
(simplex) of O(G), is equipped with a marking.

Definition 2.8. A G-graph dual to a G-tree. Namely, it is a finite con-
nected G-graph of groups X, along with an isomorphism, ΨX : G → π1(X) -
a marking - such that:

• X has trivial edge-groups;
• the fundamental group of X as a topological space is Fn;
• the splitting given by the vertex groups is equivalent, via ΨX, to G.

That is, ΨX restricts to a bijection from the conjugacy classes of the
Gi to the vertex groups of X.

The following definition is not the definition of the morphism that is given
by Bass in [1], as he requires the map to be a graph morphism (sending edges
to edges and vertices to vertices). However, in our case, his method can be
easily adjusted for the more general maps that we define.

Definition 2.9 (Maps Between Graphs of Groups). Let X = (Γ, {Gv})
and Y = (Γ′, {Hw}) be two (marked) G-graphs.

A map F between X,Y consists of:

1. two maps fV , fE:
(a) fV : V (Γ) → Γ′ and
(b) for each edge e with ι(e) = v, τ(e) = v′, fE(e) is a path from

fV (v) to fV (v
′);

2. isomorphisms between the vertex groups: φv : Gv → HfV (v) (by abusing
the notation, we set HfV (v) = 1, if fV (v) is not a vertex).

Note that after sub-dividing some edges of the co-domain, we can suppose
that our maps are simplicial. For any two G-graphs X,Y , a map F : X → Y ,
induces a (natural) homomorphism ΦF : π(X) → π(Y ) between the set of
paths, which restricts to a homomorphism ΦF : π1(X) → π1(Y ) between
the fundamental groups (well defined up to composition with inner automor-
phisms). The maps that we define in the following definition, play the role,
at level of G-graphs, of G-equivariant maps between G-trees.

Definition 2.10. We say that a map F : X → Y is a G-map, if the
induced homomorphism ΦF is the “change of markings”, i.e. ΦFΨX = ΨY

(up to composition with inner automorphisms).
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Remark 2.11. (i) By Bass-Serre theory, it’s clear now that the no-
tion of G-maps at the level of marked G-graphs is equivalent to the
notion of G-equivariant “straight” maps at the level of G-trees - that
is, equivariant, surjective, continuous maps that are determined by
the images of vertices by extending linearly over edges. In fact, we can
move from one to the other by simply considering lifts and projections,
using Bass-Serre theory (even if the lifts and the projections are not
unique, as they depend on the choice of some fundamental domain, all
of them are equivalent).

(ii) Note that we cannot talk about continuity between graph of groups,
but we could alternatively consider the equivalent notion of graph of
spaces (we simply change the vertex groups Gi with a topological space
Γi, with π1(Γi) = Gi). In that case, the maps between two graph of
spaces would be continuous.

2.2. Basic Notation.

Notation 2.12. We will use the following standard notation.

• O1(G) the volume one subspace of O(G).
• ∆ denotes an open simplex of O(G).
• ∆X denotes the simplex with underlying graph of groups X.
• ē denotes the inverse of oriented edge e. Same notation for paths.
• γ · η denotes concatenation of paths.
• LX(γ) denotes the reduced length in X of a loop γ, if X is seen as a

G-graph.
• Folding a turn {a, b} by an amount of t means identify initial segments

of a and b of length t. This is always well-defined for small enough t.
• Given an automorphism φ ∈ Out(G), λφ : O(G) → R denotes the

displacement function λφ(X) = Λ(X,φX) (this is well defined as the
inner automorphisms act trivially). For a simplex ∆ we set λφ(∆) =
infX∈∆ λφ(X); we set λ(φ) = infX∈O(G) λφ(X).

• An O-map between elements of O(G) is a map that realises the dif-
ference of markings. A straight map between elements of O(G) is an
O-map with constant speed on edges (see the definitions section on
page 330).

Since we decided to adopt the graphs-viewpoint, some words of explana-
tion are needed about turns. A turn at a non-free vertex v of X is given by
the equivalence class of unoriented pair {g1e1, g2e2}, where e1, e2 are (germs
of) oriented edges with the same initial vertex, v; g1, g2 are elements in the
vertex-group Gv, and the equivalence relation is given by the diagonal action
of Gv. If we think X as a G-tree, a turn at a non-free vertex v, is a Gv-orbit
of an unoriented pair of edges {g1e1, g2e2} where g1, g2 ∈ Gv and e1, e2 are
oriented edges of X emanating at v. In other words, the projection of a turn
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in a tree is a turn in the quotient graph of groups, and, conversely, the lift
of a turn in the graph of groups is a turn in the universal cover. In any
case, we denote the turn given by the class of {a, b} simply [a, b] (note that
[a, b] = [b, a] = [ga, gb]).

For the convenience of the reader, in this section we give the definitions
for both points of view, by thinking X both as G-graph of groups and as
G-tree. More specifically, everything in this section is written, the graphs-
viewpoint and we translate into the language of trees, if needed. In the rest
of the paper, we use these two notions interchangeably, as everything can be
easily translated between these two point of views.

Definition 2.13. Let X ∈ O(G). A turn [x, x] is said trivial. A turn
τ = [a, gb] at a vertex v of X is called degenerate, if a = b (resp., if a, b are
in the same Gv-orbit); it is called non-degenerate otherwise. If e is an edge
starting and ending at v (resp., if both endpoints of e are in the same G-orbit,
as v), it determines a non-degenerate turn at v.

Definition 2.14. Given a straight map f : X → Y , at the graph level,
we say that f maps the turn [a, gb] to the turn [c, hd], if the initial paths of
(combinatorial) length 1 in the graph of groups (resp., if the initial edge or
germ of edge), of f(a) and f(gb) are c and hd (in some order).

We will sometimes abuse notation and say that f maps the turn [a, gb]
to the turn [f(a), f(gb)], even though we really mean this to be the initial
sub-paths of combinatorial length 1 of the (in general) paths given.

We say that [a, gb] is f -legal, if f maps [a, gb] to a non-trivial turn. If f
maps either of a or b to a vertex, then we say the turn is illegal.

If, moreover, X = Y , then we say that [a, gb] is 〈∼fk〉-legal if fk maps
[a, gb] to a non-trivial turn for all integers k ≥ 1.

Lemma 2.15. Let X ∈ O(G) and τ = [a, gb] be a non-degenerate turn at a
vertex v. Then (equivariantly) folding a and gb gives a new element in O(G).

Proof. The proof is straightforward and left to the reader.

Remark 2.16. Note that if e is an edge emanating from v, a non-free
vertex of X ∈ O(G), and if g ∈ Gv is such that < g > 6= Gv, then by folding
a degenerate turn [e, ge] we obtain a tree with non-trivial edge groups(resp.,
stabilisers). Namely, the new edge e emanating from v has edge group < g >
(resp., stabiliser).

Therefore, in practice, a non-degenerate turn is the same as a “foldable”
turn.

Remark 2.17. Suppose that X ∈ O(G) and f : X → X is a straight O-
map. By this we mean that there are two G markings on X (resp., G-actions),
and f is G-map (resp., G-equivariant) with respect to the two different mark-
ings (resp., actions) (both of which lie in the same deformation space, and
hence have the same elliptic elements).
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We will describe the change of action in more detail (at graph level, we
have a very similar description, by changing the marking, instead of changing
the action). Let’s give these names; we will denote the first action by · and
the second action by ⋆. Then we will always have that there is an element,
φ ∈ Aut(G) such that,

f(g · x) = g ⋆ f(x) = φ(g) · f(x).

Then, on iterating f , we get,

f r(g · x) = φr(g) · f r(x).

Note that if e is an edge emanating from a vertex v, then for every G-map
f (resp., G-equivariant map), the degenerate turn [e, ge] is f -legal for any
g 6= Id ∈ Gv, as long as f does not map e to a vertex.

Lemma 2.18. Let X,Y ∈ O(G) and f : X → Y be a straight O-map. Let
v be a vertex of X and Gv its stabiliser. Let τ = [a, gb] be a turn at v, such
that neither f(a) nor f(b) is a single vertex. If τ is f -illegal, then for any
g′ 6= g ∈ Gv the turn [a, g′b] is f -legal. If X = Y and τ is 〈∼fk〉-illegal, then
for any g′ 6= g ∈ Gv the turn [a, g′b] is 〈∼fk〉-legal.

Proof. Let’s prove the second claim first. Since τ is 〈∼fk〉-illegal, then
there is some power r ≥ 1 so that f r(a) and φr(g)f r(b) are the same germ
- we are using the automorphism φ as in Remark 2.17. It follows that
[f r(a), φr(g′)f r(b)] is degenerate and legal. Since f is an O-map, it fol-
lows that f r+l(τ) = [f r+l(a), φr+l(g′)f r+l(b)] is degenerate and legal for
any l ≥ 0. Since f -images of illegal turns are fn-illegal for any n, then
[fm(a), φm(g′)fm(b)] is legal also for m ≤ r.

First claim now follows by exactly the same argument with r = 1 and
l = 0.

Definition 2.19. Let X ∈ O(G) and let τ be a turn of X. For any loop
γ in X (resp., a path with endpoints which lie in the same G-orbit) we denote
by

#(γ, τ)

the number of times that the cyclically reduced representative of γ crosses
τ . We recall that τ is not an oriented object, so we do not take in account
crossing directions.

The following lemma is almost tautological, but important for our pur-
poses.

Lemma 2.20. Let X,Y ∈ O(G) and f : X → Y any straight map. If γ is
a f -legal path in X, then it is reduced.

Proof. If γ is not reduced, then it contains a sequence ēe, hence a turn
of the kind [x, x]. That turn cannot be f -legal.
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Definition 2.21. Let X ∈ O(G), and τ be a turn of X. We say that τ
is (non-) free if it is based at a (non-) free vertex. We say that τ is infinite
non-free if it is based at a vertex with infinite vertex group (resp., infinite
stabiliser). We say that τ is finite non-free if it is non-free and based at
a vertex with finite vertex group (resp., finite stabiliser). Given an invariant
sub-graph Y ⊆ X (resp., G-sub-forest), we say that τ is in Y if both germs of
edges of τ belong to Y .

3. Unfolding projections and local surgeries on paths

Suppose ∆ is a simplex in O(G), with underlying graph of groups X . Let
τ be a non-degenerate turn in X . We denote by ∆τ the simplex obtained by
(equivariantly) folding τ . If τ is free and trivalent then ∆τ trivially equals
∆. Otherwise, ∆ is a codimension-one face of ∆τ . In the latter case there
is a natural projection ∆τ → ∆ corresponding to the collapse of the newly
created edge. Rather, we will use the unfolding projection, which is defined
as follows.

Given Y ∈ ∆τ , we will define lengths of edges of X so that isometrically
folding τ eventually produces Y . Let e1, e2 be the edges defining τ (possibly
e1 = e2 is τ arises at an edge-loop) and let e be the extra edge added in ∆τ

after folding τ .
Firstly, every edge of X , different to e1, e2, will have the same length as

its length in Y . Then, for i = 1, 2 we set the length of ei to be LY (ei)+LY (e)
if e1 6= e2, and LY (ei) + 2LY (e) if e1 = e2. We denote the resulting metric
graph, which is an element of ∆, by unfτ (Y ) and we say that it is obtained
by unfolding τ . The map

unfτ : ∆τ → ∆

is our unfolding projection.

Lemma 3.1. The map unfτ is surjective. Moreover, Folding τ by an
amount of LY (e) produces a simplicial segment from unfτ (Y ) to Y .

Proof. The proof immediately follows from the construction.

We describe now local surgeries on paths. As above, let ∆ be a simplex
of O(G) with underlying graph X . Since we adopt the graphs-viewpoint, then
we may view G as the fundamental group of the graph of groups given by X .

If g1e1g2e2 · · · gkek is a loop in the graph of groups, then it crosses k turns
(including multiplicity); each sub-path of the form eigi+1ei+1 determines a
turn, [ēi, gi+1ei+1], where the indices are taken modulo k (the specific metric
on X is not relevant for this discussion, merely the fact that we have a way
of representing elements/conjugacy classes as loops in the underlying graph
of groups for X).

Thus a path (or loop) is reduced (cyclically reduced) if the turns it crosses
(cyclically crosses) are all non-trivial.
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With this description, we may modify any given path by replacing one of
the gi with some other element g in the same vertex group. The turns crossed
by this new path are exactly the same as the original, except for one turn
τ = [ēi−1, giei] which is replaced with [ēi−1, gei]. We denote the modified
turn and loop respectively

τg and γτ,g.

Putting everything in formulas we have the following result.

Lemma 3.2 (Turn-surgery of paths). Let ∆ be a simplex of O(G), γ =
g1e1 · · · gkek a cyclically reduced loop realised in the underlying graph of groups
and τ = [ēi−1, giei] be a turn crossed by γ. Let v be the initial vertex of ei.
Then, if τ is non-degenerate, for any g 6= gi ∈ Gv the loop γτ,g is cyclically
reduced and satisfies

#(γτ,g, τ
′) =






#(γ, τ ′) if τ ′ 6= τ, τg
#(γ, τ ′)− 1 if τ ′ = τ
#(γ, τ ′) + 1 if τ ′ = τg

.

Moreover, if τ is degenerate (hence ei−1 = ēi), than the same is true if in
addition we choose g 6= id.

Proof. Since γ is cyclically reduced and τ is not degenerate, then γτ,g
is reduced. The same holds true if τ is degenerate and g 6= id. The claim now
easily follows by counting the number of times that a turn appears along γτ,g.

We introduce also a second surgery on paths. Let γ = g1e1 · · · gkek denote
a loop as above. Let e = ei be an oriented edge crossed by γ at least twice
and let j be the next index so that ej = e. We can therefore form the loop
gjei · · · gj−1ej−1 (note that the formed loop starts with the group element gj
instead of gi, as in this case any turn which is crossed by the this new loop,
was seen as a turn crossed by γ). We refer to such procedure as edge-surgery,
and denote the resulting loop by

γe.

Note that every turn (cyclically) crossed by γe is also a turn crossed by
γ, so if γ is cyclically reduced, then γe is cyclically reduced as well. By
construction, γe crosses the oriented edge e only once. Still, it may cross ē
and other edges multiple times.

Lemma 3.3 (Edge-reduction of loops). Let ∆ be a simplex of O(G),
γ = g1e1 · · · gkek a cyclically reduced loop realised in the underlying graph
of groups. Then for every ei there is a cyclically reduced loop γ′, obtained
by recursive edge-surgeries on γ, such that first, γ′ crosses ei, and second,
γ′ crosses every oriented edge at most once (possibly γ′ = γ if γ had those
properties).
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Proof. For a loop η set n(η) the total number of repetitions (counted
with multiplicity) of oriented edges. So η crosses any oriented edge at most
once if and only if n(η) = 0. If n(γ) > 0, then there is gjej · · · giei · · · glel a
sub-path of γ containing ei and so that ej = el (indices are taken cyclically).
The loop γej contains ei and n(γej ) ≤ n(γ) − 1. We conclude by arguing
inductively as n(γ) is strictly decreasing under edge-surgeries.

There is a version of the previous lemma for turns.

Lemma 3.4. Let ∆ be a simplex of O(G), γ = g1e1 · · · gkek a cyclically
reduced loop realised in the underlying graph of groups. If τ = [e, ge′] is a non-
trivial turn, which is crossed by γ, then we can find some cyclically reduced
loop γ′, obtained by recursive edge surgeries on γ, such that first, γ′ crosses
τ and second, γ′ crosses every oriented edge at most once.

Proof. Let γ = g1e1 · · · gkek be a cyclically reduced loop, as above.
Without loss of generality, we can assume that γ is of the form γ = ge′ · · · ē
and there are no other occurrences of e′ or ē in γ, as otherwise we can preform
edge-surgeries to change γ to a cyclically reduced loop satisfying this property
and which still crosses τ (cyclically).

Now suppose that there is some oriented edge E which is crossed by γ
at least twice. In this case, if ei and ej are the first and the last occurrences
of E in γ, respectively, then we replace γ with the cyclically reduced loop
γ1 = ge′ · · · gi−1ei−1gjej · · · gkek which still crosses τ and, in addition, crosses
E once. By arguing inductively on the number of repetitions, we can find a
γ′ with the requested properties.

4. Critical and Regular turns

Firstly we explain our strategy. Given X ∈ O(G) which is minimally
displaced by an automorphism φ, we want to control the number of ways we
can fold a turn of X , without exiting Min(φ). If a straight map f : X → X
representing φ sends an edge of a maximally stretched loop γ across a turn τ ,
then by folding τ we decrease the length of f(γ). “Morally”, this is the only
way we can decrease stretching factors of loops, and if we fold a loop not in
the image of an edge, we increase the displacement. “Morally” does not mean
“literally”, and in fact one has to (focus on legal loops in tension graph, and)
analyse what happens to the images of turns. Our plan is to select a finite
number of turns that will be enough to control the displacement. These will
be our “simplex critical turns” that we introduce at the end of this section.
The upshot of this process will be that the folding of simplex regular (i.e.
non-critical) turns, strictly increases the displacement. We note that our set
of critical turns won’t be optimal, in the sense that we may a priori increase
the displacement also by folding a critical turn; for instance we include all
free turns for convenience.
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It would be interesting to have a nice characterisation of exactly those
turns whose folding do not increase the displacement. The next lemma is the
key observation we begin with.

Lemma 4.1. Let [φ] ∈ Out(G). Let ∆ be a simplex of O(G) and f be an
optimal map representing φ on a point X of ∆. Let τ be a non-degenerate
turn, and let ∆τ be the simplex obtained by folding τ . Let Xt denote the point
of ∆τ obtained from X by folding τ by an amount t.

If there is an f -legal loop γ in the tension graph of f (see Definition 7.10)
such that

(♥) #(f(γ), τ) ≤ λφ(X)#(γ, τ) (resp. with strict inequality)

then

λφ(X
t) ≥ λφ(X) (resp. with strict inequality).

Proof. For any legal loop γ in the tension graph of X , in Xt we have

λφ(X
t) = sup

g

LXt(f(g))

LXt(g)
≥

LXt(f(γ))

LXt(γ)
=

λφ(X)LX(γ)− 2t#(f(γ), τ)

LX(γ)− 2t#(γ, τ)
.

and λφ(X
t) ≥ λφ(X) is guaranteed (with strict inequality) provided that

λφ(X)LX(γ)− 2t#(f(γ), τ) ≥ λφ(X)(LX(γ)− 2t#(γ, τ))

(resp. with strict inequality), and that last inequality clearly reduces to (♥).

What we will do from now on is showing that, except for finitely many
turns, we can guarantee the existence of a loop γ satisfying the hypothesis of
Lemma 4.1.

We now make a choice of a single non-trivial element hv ∈ Gv, for each
non-trivial Gv. Some of our subsequent constructions will be dependent on
this choice, but we will never need to revise this choice so we will not need
to refer to the specific elements. We denote the collection of such chosen
elements by H :

H = {hv : v is a non-free vertex}.

Definition 4.2. For any simplex ∆ of O(G) define a set of loops, A∆ as
follows: a cyclically reduced loop g1e1 · · · gkek in the underlying graph of ∆ is
in A∆ if and only if

1. it crosses every (un-oriented) edge at most 4 times, and
2. every non-trivial gi belongs to H.

Remark. The reason for constructing A∆ is that it is finite, and gives
us a local coordinate system of loops which will be sufficient for calculating
displacements and the Lipschitz metric, locally.
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Definition 4.3. Let [φ] ∈ Out(G). For a simplex, ∆, in the underlying
graph of ∆ we say that a turn τ is candidate regular if it is infinite non-free
and #(φ(γ), τ) = 0 for all loops in A∆; a turn is candidate critical if it is
not regular (so τ is critical if either its vertex group is finite or if it appears
in φ(A∆)). We denote the set of candidate critical turns of ∆ by CC(∆) (we
remark that even if we do not refer to φ in the notation, the set CC(∆) depends
on φ).

Lemma 4.4. Let X,Y ∈ O(G) and f : X → Y a straight map. Let
∆ = ∆X . Suppose ξ is either an edge or a free turn of X, which is crossed
by an f -legal loop γ0. Then ξ is also crossed by a f -legal loop γ ∈ A∆ which
additionally crosses any oriented edge at most once. If γ0 is in the tension
graph, then so is γ.

Moreover, under the same hypotheses, if additionally X = Y and γ0 is
〈∼fk〉-legal, then γ may also be chosen to be 〈∼fk〉-legal.

Proof. Let γ0 be a legal loop crossing ξ. By Lemma 2.20 γ0 is cyclically
reduced. By Lemmas 3.3 or 3.4, as appropriate, we can reduce γ0, via edge-
surgeries, to a loop γ1, still crossing ξ, and which crosses any oriented edge
at most once. In particular, γ1 satisfies condition (1) for belonging to A∆.

Since γ1 is obtained from γ0 by edge-surgeries, the turns (cyclically)
crossed by γ1 are also crossed by γ0. Hence if γ0 is f -legal (respectively
〈∼fk〉-legal), then so is γ1.

We now perform turn surgeries on γ1 to produce a loop in A∆. Condition
(1) of Definition 4.2 is already satisfied, so we only need to concern ourselves
with condition (2), which is about the non-free turns crossed by the loop.

Suppose that γ contains a sub-path at a non-free vertex, v, ei−1giei,
crossing the corresponding non-free turn, [ēi−1, giei]. Let h ∈ H be the corre-
sponding group element of Gv. Then by Lemma 2.18, at least one of [ēi−1, ei]
and [ēi−1, hei] is f -legal (respectively 〈∼fk〉-legal).

Therefore, by making appropriate choices at each non-free turn crossed
by γ1, we can perform a sequence of turn surgeries to produce an f -legal
loop γ (respectively 〈∼fk〉-legal) which is in A∆ and still crosses ξ (since ξ is
unaffected by turn surgeries).

Moreover, γ contains only edges that were originally edges of γ0, so if γ0
is in the tension graph, so is γ.

Remark 4.5. Note that in the previous result, we prove that the path γ
crosses each oriented edge at most one, hence each un-oriented edge at most
twice, even though the requirement for being in A∆ is that it crosses each
un-oriented edge at most 4 times. The reason is that we use two such loops
in the following Lemma; we contruct the loops in Lemma 4.6 by using two
loops from Lemma 4.4.
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Lemma 4.6. Let X,Y ∈ O(G) and f : X → Y a straight map. Let
∆ = ∆X . Let τ = [a, gb] be a non-free f -legal turn so that both edges a, b are
crossed by f -legal loops. Then, there exists a f -legal loop γ which crosses τ .
If the loops for a and b are in the tension graph, then so is γ.

Moreover, we could take γ = γ′
τ,g1

, for some g1 ∈ Gv where γ′ ∈ A∆.
Finally, the same is true for 〈∼fk〉-legality in the case where X = Y .

Proof. We orient a, b so that v is the common starting point. By
Lemma 4.4 there exist legal loops γa and γb, crossing a and b respectively,
each crossing any oriented edge at most once, so that γa and γb and are in
A∆; we choose, γa, γb to start with a and b respectively. The loop γ = γagγb
crosses τ by construction, and it crosses any un-oriented edge at most 4 times.
Let ω be the non-free turn determined at the concatenation of the end γb and
the beginning γa. By construction γ is legal except possibly at ω. Hence, by
Lemma 2.18, up to possibly replacing γ with γω,hv

or γω,id we may assume
that γ is legal. By Lemma 2.20 γ is cyclically reduced.

Moreover, both γτ,id, γτ,hv
satisfy condition (2) for belonging to A∆ and

at least one of them is legal by Lemma 2.18. Clearly if both γa and γb are in
the tension graph of f , then so is γ.

Remark 4.7. If f : X → Y is a minimal optimal map, then any edge
in the tension graph is crossed by a f -legal loop in the tension graph, and so
satisfies hypothesis of Lemma 4.4, and any non-free legal turn in the tension
graph satisfies the hypothesis of Lemma 4.6, in the tension graph. This is just
by the definition of minimal optimal map (see Definition 7.15). Moreover,
we recall also that if φ is irreducible and f : X → X is an optimal map
representing φ on a minimally displaced point, then the tension graph of f is
the whole X (see Lemma 7.25).

Remark 4.8. Note that for Lemma 4.6, the hypothesis that the turns
are non-free is essential, as the lemma fails for free turns.

Let φ be the automorphism of F2 =< a, b >, which sends a to aba and b to
ba. Then the iwip automorphism φ admits a natural train track representative
- which we also call φ - on the rose R, where we identify each petal of R with
an element of the free basis {a, b}. Moreover, the turn τ = [a, b] is 〈∼φk〉-legal,

as for every positive integer k, φk(a), φk(b) start with a,b, respectively.
However, note that a legal loop cannot contain the cyclic subwords ab−1

or ba−1. Therefore the only legal loops are either positive or negative words
in a and b. In particular, the free turn τ is φ-legal, but it cannot be extended
to a φ-legal loop.

Lemma 4.9. Let [φ] ∈ Out(G) be an irreducible element, let X ∈ Min(φ)
and f : X → X a train track map representing φ. Then, every edge of X
is crossed by a 〈∼fk〉-legal loop. In particular, Lemma 4.4 holds true for any
edge of X, and Lemma 4.6 for any non-free 〈∼fk〉-legal turn.
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Proof. Any train track map is also train track with respect to 〈∼fk〉-
legality; namely, it maps 〈∼fk〉-legal paths to 〈∼fk〉-legal paths ([11, Corol-
lary 8.12]).

Since φ is irreducible and, the tension graph of f is the whole of X and
any vertex is at least two-gated with respect to 〈∼fk〉. Therefore, there exists
a 〈∼fk〉-legal loop, γ0, in X . The iterated images fn(γ0) form a sub-graph of
X which is f -invariant. By irreducibility, that sub-graph must be the whole
X . In particular any edge e is in the loop fn(γ0) for some n, and that loop is
〈∼fk〉-legal because f is a train-track map.

The following is just a list of immediate corollaries of previous lemmas.

Lemma 4.10. Let [φ] ∈ Out(G) and ∆ a simplex in O(G). Then CC(∆)
contains (at least) all turns of the following kinds:

(i) free and finite non-free turns;
(ii) f -images of finite non-free turns, where f is any straight O-map land-

ing on X;
1. turns in the f -image of an edge crossed by some f -legal loop, where

f : X → X is any straight map representing φ. In particular those
include:
(a) edges in the tension graph of f , when f : X → X is a minimal

optimal map representing φ;
(b) any edge, provided the tension graph of f is the whole X, e.g. if

φ is irreducible and f is an optimal map representing φ on the
minimally displaced point X;

(iii) turns in the f -image of a free turn crossed by some f -legal loop, where
f : X → X is any straight map representing φ.

Proof. (i) is by definition. For (ii), note that, since f is an O-map,
the f -image of a finite non-free vertex is again a finite non-free vertex. Cases
(iii) and (iv) follow immediately from Lemmas 4.4 and 4.7. In particular, case
(iii)-(a) follows from Lemma 4.4 by Remark 4.7; case (iii)-(b) from Lemma 4.4
by Remark 4.7; case (iv) from Lemma 4.4.

Proposition 4.11. Let [φ] ∈ Out(G), ∆ a simplex in O(G), and f :
X → X be a straight map representing φ at a point X ∈ ∆. Let τ1, . . . , τk
be candidate-regular turns. Then for any j = 1, . . . , k, any f -legal loop γ0
crossing τj can be modified via turn-surgeries (at infinite non-free turns) to
an f -legal loop γ so that

(i) #(γ, τj) = 1 and,

(ii)
∑k

i=1 #(γ, τi) = 1 and,

(iii)
∑k

i=1 #(f(γ), τi) ≤ 1 and,

(iv)
∑k

i=1 #(f(γ), τi) = 0 unless f maps τj to some τl.
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Moreover, if in addition γ0 is 〈∼fk〉-legal, then γ can be chosen to be 〈∼fk〉-
legal.

Proof. Without loss of generality we may assume that γ0 crosses τ1.
We modify γ0 by using turn-surgeries (Lemma 3.2) in order to get a new loop
γ that satisfies the extra properties. We will apply surgeries only on turns
at non-free vertices with infinite stabilisers, so there will be infinitely many
choices every time.

Concretely, let γ0 be represented as g1e1 · · · gnen (with cyclic indices mod-
ulo n) so that τ1 = [ē1, g2e2]. For any infinite non-free turn τ = [ēi, gi+1ei+1]
with i 6= 1, we choose an element a in the corresponding vertex group so that
τa = [ēi, aei+1] satisfies

(1) τa is not one of the τi;
(2) τa is 〈∼fk〉-legal;
(3) f(τa) is not one of the τi.

Such an element exists because τ is infinite non-free, there are finitely many
τi, and by Lemma 2.18 all but one choice for a produces a 〈∼fk〉-legal turn.
We define γ as the result of the turn-surgeries at all such infinite non-free
vertices, by using the chosen group elements.

Condition (2) assures that γ is legal, and 〈∼fk〉-legal if γ0 where so. Since
we did not touch τ1, condition (1) gives us point (i) and (ii). As for (iii), let’s
analyse the turns crossed by f(γ). They come in several types:

(a) a turn crossed by the f -image of an edge of γ,
(b) the f -image of a free turn of γ,
(c) the f -image of a finite non-free turn of γ,
(d) the f -image of an infinite non-free turn of γ.

By Lemma 4.10, the first three are all candidate critical, so none of the τi
appears in this way (note that in type (b), the free turns that appear, are
crossed by the f -legal loop γ, so the hypothesis of 4.10 (iv) is satisfied).
Crossings of kind (d) are avoided by condition (3), except possibly if f(τ1)
equals one of the τi’s. Points (iii) and (iv) follow.

Corollary 4.12. Let [φ] ∈ Out(G), ∆ a simplex in O(G), and f : X →
X be a minimal optimal map representing φ on a point X ∈ ∆.

Suppose that τ1, . . . , τk are candidate regular turns. If there is a turn τj
which is f -legal and in the tension graph of f , then there exists an f -legal
loop, γ, in the tension graph, and such that:

(i) #(γ, τj) = 1 and,

(ii)
∑k

i=1 #(γ, τi) = 1 and,

(iii)
∑k

i=1 #(f(γ), τi) ≤ 1 and,

(iv)
∑k

i=1 #(f(γ), τi) = 0 unless f maps τj to some τl.
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Proof. By Remark 4.7, Lemma 4.6 applies for the infinite non-free turn,
τj . So there is a f -legal loop γ0, in the tension graph, and crossing τj . Propo-
sition 4.11 applies. Since γ is obtained from γ0 via turn-surgeries, and since
γ0 is in the tension graph, so also γ is in the tension graph.

Corollary 4.13. Let [φ] ∈ Out(G) an irreducible element, ∆ a simplex
in O(G), and f : X → X a train-track map representing φ on a point X ∈ ∆.

Suppose that τ1, . . . , τk are candidate regular turns. If there is a turn τj
which is 〈∼fk〉-legal, then there exists a 〈∼fk〉-legal loop, γ such that:

(i) #(γ, τj) = 1 and,

(ii)
∑k

i=1 #(γ, τi) = 1 and,

(iii)
∑k

i=1 #(f(γ), τi) ≤ 1 and,

(iv)
∑k

i=1 #(f(γ), τi) = 0 unless f maps τj to some τl.

Proof. Lemma 4.9 applied for τj (which is necessarily infinite non-free,
as it is regular) guarantees the existence of a 〈∼fk〉-legal loop γ0 crossing τj .
Proposition 4.11 applies.

Corollary 4.14. Let [φ] ∈ Out(G). Let ∆ be a simplex of O(G) and
f be a minimal optimal map representing φ on a point X of ∆. Let τ be a
non-degenerate candidate regular turn, and let ∆τ be the simplex obtained by
folding τ . If Xt denotes the point of ∆τ obtained from X by folding τ by an
amount t, then

λφ(X
t) ≥ λφ(X).

Moreover, if τ is f -legal and in the tension graph, and if λ(φ) > 1, then the
inequality is strict.

Proof. By Remark 4.7 and Lemma 4.4, there exists an f -legal loop
γ ∈ A∆ in the tension graph, and any turn which is crossed by the image of
f(γ) = φ(γ) is candidate critical just by definition of candidate critical. Since
τ is regular

#(f(γ), τ) = 0,

the non-strict version of hypothesis (♥) of Lemma 4.1 is fulfilled, and first
claim follows.

If in addition τ is legal and in the tension graph, we invoke Corollary 4.12
(with k = 1) to build a legal loop γ in the tension graph so that #(γ, τ) > 0
and

#(f(γ), τ) ≤ #(γ, τ).

The non strict version of inequality (♥) follows because λφ(X) ≥ 1. Moreover,
if λ(φ) > 1, then λφ(X) ≥ λ(φ) > 1 and also the strict version is proved.
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Corollary 4.15. Let [φ] ∈ Out(G). Let τ be a non-degenerate candidate
regular turn with respect to a simplex ∆ of O(G), and ∆τ be the simplex
obtained by folding τ . Then

λφ(∆τ ) ≥ λφ(∆).

Proof. Any point Y ∈ ∆τ is obtained by folding unfτ (Y ) (Lemma 3.1).
Corollary 4.14 tells us λφ(Y ) ≥ λφ(unfτ (Y )). The claim follows taking infima.

Corollary 4.15 provides the kind of non-strict inequalities we are searching
for. We now focus on turns whose folding guarantees the strict inequality
λφ(∆τ ) > λφ(∆).

Lemma 4.16. Let [φ] ∈ Out(G). Let X ∈ O(G) and f : X → X be an
optimal map representing φ. For any X0 ∈ ∆X let f0 : X0 → X0 denote the
map f read in X0.

There is a neighbourhood U of X in ∆X such that for any X0 ∈ U there
is a minimal optimal map f0 : X0 → X0 such that

d∞(f0, f0) < ε

and, for any x, y ∈ X

|dX(f(x), f(y)) − dX0
(f0(x), f0(y)|< ε.

Proof. The function λφ(X) is continuous on X and, tautologically, the
metric of X changes continuously on X . Therefore, for any ε > 0 there is a
neighbourhood U of X in ∆X such that

• |λφ(X0)− λφ(X)|< ε,
• d∞(Str(f0), f0) < ε,
• |Lip(Str(f0))− Lip(f)|< ε.

By [12, Theorem 3.15] there exists a weakly optimal map f1 : X0 → X0

representing φ such that

d∞(f1, Str(f
0)) ≤ vol(X0)(Lip(Str(f

0))− λφ(X0))

and, by [12, Theorem 3.15 and Theorem 3.24] there exists a minimal optimal
map f0 : X0 → X0 representing φ such that

d∞(f1, f0) < 2ε.

Putting together all such inequalities, and since ε is arbitrary, we get that for
any ε > 0 there is U so that for all X0 ∈ U we have

d∞(f0, f0) < ε.

Moreover, it is clear that we can choose U in such a way that for any x, y ∈ X
we have

|dX(f(x), f(y)) − dX0
(f0(x), f0(y)|< ε.
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Lemma 4.17. Let [φ] ∈ Out(G). For any X ∈ O(G) and optimal map
f : X → X representing φ, there is a neighbourhood U of X in ∆X such that
for any X0 ∈ U there is a minimal optimal map f0 : X0 → X0 such that if τ
is a non-free turn in X which is f -legal, then τ is f0-legal.

Proof. We apply Lemma 4.16. By equivariance, if v is the non-free
vertex where τ is based, then f(v) = f0(v) is a non-free vertex. Estimates of
Lemma 4.16 now easily imply that if τ is legal in X , it remains legal for small
perturbations.

Lemma 4.18. Let [φ] ∈ Out(G), ∆ be a simplex in O(G), and X ∈ ∆ be
a point which is minimally displaced by φ. Suppose that ∆′ is a simplex with
face ∆ and that there is a point Y ∈ ∆′ which is minimally displaced by φ.
Then for any open neighborhood U of X in ∆′ there is a point Z in U which
is minimally displaced by φ.

Proof. This is an immediate application of the convexity properties of
λφ (namely, by [12, Lemma 6.2]). More specifically, for X,Y as above, the

linear segment Y X eventually enters in U , by continuity. On the other hand,
by convexity properties of λφ, any point of the segment Y X is minimally
displaced by φ, which gives us the required result.

Proposition 4.19. Let [φ] ∈ Out(G) be irreducible and with λ(φ) > 1.
Let ∆ be a simplex of O(G), and let X ∈ ∆. Let f : X → X be a minimal
optimal map representing φ. Let τ be a non-degenerate, candidate regular turn
with respect to ∆, which is also f -legal and let ∆τ be the simplex obtained by
folding τ1. Then for all Y ∈ ∆τ we have

λφ(Y ) > λ(φ).

Proof. From Corollary 4.15 we know λφ(∆τ ) ≥ λφ(∆), and if λφ(∆) >
λ(φ) the claim follows. Thus we may assume λφ(∆) = λ(φ).

For any Z ∈ ∆ denote by Zt the point of ∆τ obtained from Z by folding
τ by an amount of t (which is well defined, for any Z, for small enough t).

We will prove that there is an open neighbourhood U of X in ∆ and T > 0
(which depends only on φ andX) so that for all Z ∈ U and t < T , the point Zt,
is not minimally displaced. Then the result follows, as UT = {Zt : Z ∈ U, t <
T } is an open neighbourhood of X in ∆τ , and by Lemma 4.18, if ∆τ were
to contain a minimally displaced point, we would be able to find a minimally
displaced point in UT , leading to a contradiction. Whence λφ(Y ) > λ(φ) for
all Y ∈ ∆τ .

We prove now our claim. Since τ is candidate regular, in particular it is
non-free. By Lemma 4.17 there is a neighbourhood U of X in ∆ so that for
any point Z ∈ U , there is a minimal optimal map fZ : Z → Z, such that τ

1Note also that since τ is regular, it is in particular infinite non free, so ∆τ is different
from ∆.
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is fZ -legal. Clearly, for any such U there is T > 0 so that Zt is well defined
for all Z ∈ U and t < T . By Corollary 4.14 λφ(Z

t) ≥ λφ(Z), and if Z is not
minimally displaced, the result follows.

So, suppose that Z ∈ Min(φ). In this case, since fZ is an optimal map
representing φ, and since φ is irreducible, then the tension graph of fZ is the
whole Z (Lemma7.25), and since λ(φ) > 1, Corollary 4.14 applies in its strict
inequality version. In any case, Zt cannot be minimally displaced and our
claim follows.

Remark 4.20. If one is interested in a version of Proposition 4.19 for
reducible automorphisms, one has just to add the hypothesis that τ is stably
in the tension graph, that is to say, that τ is in the tension graph of any fZ
for Z close enough to X . This will be enough to apply Corollary 4.14 as we
did in the proof for irreducible automorphisms.

Lemma 4.21. Let [φ] ∈ Out(G) be an irreducible element with λ(φ) > 1.
Suppose that X1, X2 ∈ ∆ are two points minimally displaced by φ and let
f1, f2 be train track representative of φ on X1 and X2 respectively.

Suppose that τ is candidate regular turn. Then τ is f1-legal in X1 if and
only if it is f2-legal in X2.

Proof. Suppose for contradiction that τ is f1-legal but f2-illegal (in
particular it is non-degenerate). Let ∆τ be the simplex obtained by folding
τ . Since τ is candidate regular, we apply Proposition 4.19 (we can because
train tracks are minimal optimal map by Lemma 7.25), and we have that
λφ(Y ) > λ(φ) for any Y ∈ ∆τ . On the other hand, τ is f2-illegal, and Min(φ)
is invariant under isometrically folding illegal turns (see [11, Theorem 8.23]),
which means that there is a point Y ∈ ∆τ which is minimally displaced and
that leads us to a contradiction. Clearly we can switch the roles of X1 and
X2, and the proof is complete.

Definition 4.22 (Simplex Critical Turns). Let [φ] ∈ Out(G). For a
simplex, ∆, we say that a turn τ is simplex critical if it is either candidate
critical (see 4.3) or f -illegal for some train track representative of φ defined
on some point of ∆ (if any). A turn is called simplex regular if it is not
critical. The set of simplex critical turns is denoted by C∆. Sometimes we will
use the short notation ∆-critical to means simplex critical in ∆.

Theorem 4.23. If [φ] ∈ Out(G) is irreducible with λ(φ) > 1, then the set
C∆ is finite. In fact, it is sufficient to add to CC(∆) the illegal turns for a
single train track map (if any) to obtain the whole of C∆.

Proof. The set CC(∆) is clearly finite by construction (see Defini-
tion 4.3), and if there is no minimal displaced point in ∆, we have nothing to
prove. Otherwise, chose any train track representative of φ, f , defined on a
point of ∆. f -illegal turns are finitely many (Lemma 2.18) and Lemma 4.21
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tells us that C∆ = CC(∆) ∪ {τ : τ is an f -illegal turn} and, in particular, it is
finite.

Remark 4.24. It is worth mentioning that simplex regular turns can be
effectively detected, having a train track map f in hand. Namely, suppose
that a turn τ is

1. not a free turn nor a turn with finite vertex group; and
2. not the f -image of an edge; and
3. not the f -image of a free turn; and
4. not the f -image of a turn involving group elements in H ; and
5. not f -illegal;

then τ is simplex regular. In particular, Proposition 4.19 tells us that if we
have X ∈ Min(φ) and we want to find all neighbours of X obtained from
X by a single turn-fold, and which still are in Min(φ), then we only need to
check turns in the finite complement of the above effective list, namely turns
that are either

1. free or with finite vertex group; or
2. in the f -image of an edge; or
3. the f -image of a free turn; or
4. the f -image of a turn involving group elements in H ; or
5. f -illegal.

5. Folding and unfolding collapsed forests

Here we extend the unfolding construction of Section 3 to the general case
of two simplices, one face of the other. We remind that we always understand
that a straight map between elements of O(G) is an O-map (i.e. G-equivariant
at level of trees).

A straight map p : X → Y , defines on X a simplicial structure σp,
by pulling back that of Y . With respect to σp, the map p is tautologically
simplicial. We define the simplicial volume of p, svol(p) as the number of
edges of σp.

If in addiction p is locally isometric on edges, then it defines (some)
folding paths X = X0, . . . , Xn = Y obtained by recursively identifying pairs
of edges of σp having a common vertex and the same p-image. Together with
the Xi there are quotient maps qi : Xi−1 → Xi given by the identification,
and maps pi : X → Y defined by pi(x) = p(q−1

i (x)). (Note that p0 = p and
pn = id). We refer to any folding path obtained as above as a folding path
directed by p. We say that X = X0, . . . , Xn = Y has length n.

Lemma 5.1. Let X,Y ∈ O(G) and p : X → Y be a straight map which is
locally isometric on edges. Then any folding path directed by p has length at
most svol(p).

Proof. At any step the number of edges decreases by one.
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Lemma 5.2. Let ∆,∆′ be simplices of O(G) so that ∆ is a face of ∆′. For
any Y ∈ ∆′ there is a point, unf(Y ) ∈ ∆ and a straight map, p : unf(Y ) → Y ,
such that:

1. p is a local isometry on edges;
2. if v is a non-free vertex in Y , then p−1(v) is a single vertex;
3. svol(p) is at most 2D(∆′)2, where D(∆′) is the number of edges of ∆′.

Moreover, any folding path directed by p produces maps which still satisfy (1)
and (2).

Proof. The underlying graph X of ∆ is obtained by the collapse in Y of
a simplicial forest F = T0⊔· · ·⊔Tk each of whose tree Ti contains at most one
non-free vertex. We define unf(Y ) by isometrically unfolding each tree. More
precisely, for any Ti we choose a root-vertex wi with the requirement that wi

is the unique non-free vertex of Ti, if any. For any leaf y of the forest, say y is
a leaf of Ti, there is a unique path γy connecting y to wi in Ti. For notational
convenience we define γy to be the constant path for any other vertex of Y .

The metric on X defining the point unf(Y ) is given as follows. Any edge
e of X has a preimage in Y which is also an edge. We declare

Lunf(Y )(e) = LY (γa) + LY (e) + LY (γb)

where a, b are the endpoints of the preimage of e in Y . As an oriented edge,
e is therefore the concatenation of three sub-segments

e = A · E · B

of lengths LY (γa), LY (e), and LY (γb) respectively. The map p is now defined
by isometrically identifying A with γa, E with the copy of e in Y , and B with
γb. The union of all A-segments and B-segments form a forest which can be
viewed as an isometric unfolding of F , and out of that forest, p is basically
the identity by definition. Conditions (1) and (2) immediately follow. As for
(3), it suffices to note that for any y ∈ Y , the cardinality of p−1(y) is bounded
by the number of leaves of F , which is bounded by 2D(∆′). Therefore σp has
at most 2D(∆)D(∆′) ≤ 2D(∆′)2 edges. The last claim is easy to verify and
we leave it to the reader.

Lemma 5.3. Let X,Y ∈ O(G). Let p : X → Y be a straight map such that
if v is a non-free vertex in Y , then p−1(v) is a single vertex in X (condition
(2) in Lemma 5.2).

Let α, β be paths in X, starting at the same vertex, and so that ᾱβ is
reduced. If p(α) = p(β), then the only non-free vertex crossed by each of
them, if any, is their initial vertex (which is crossed only once).

Proof. We argue by contradiction assuming that α crosses a non-free
vertex other than its initial point (we consider multiple crossings of the same
vertex as distinct crossings). Up to possibly truncating α and β, we may
assume that the last vertex w of α is non-free, and that α crosses no other
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non-free vertex except possibly its initial point. Then our assumption on p
implies that the last vertex of β must be w. But in this case αβ̄ would define
a non trivial group-element which is collapsed by p, contradicting that X,Y
are in the same deformation space.

Proposition 5.4. Let [φ] ∈ Out(G) be an irreducible element with λ(φ) >
1. Let X,Y ∈ O(G), X 6= Y , and suppose that there is p : X → Y a straight
map such that

1. p is a local isometry on edges;
2. if v is a non-free vertex in Y , then p−1(v) is a single vertex.

If any p-illegal turn is simplex regular (Definition 4.22), then λφ(Y ) >
λ(φ).

Proof. By Lemma 2.18, the set of p-illegal turn is a finite set {τ1, . . . , τk}.
Since X 6= Y , this set is non-empty.

Denote ∆ the simplex of X . Let f : X → X be a minimal optimal map
representing φ. Note that for any element of G, seen as a loop γ in X , the
loop p(f(γ)) represents φ(p(γ)) in Y .

Firstly, we deal with the case where X /∈ Min(φ). By Remark 4.7 and
Lemma 4.4 there is an f -legal loop γ ∈ A∆ in the tension graph of f . Its
image, f(γ), crosses only candidate critical turns by definition of candidate
critical and, in particular, it doesn’t cross any of the τi’s. In other words, f(γ)
is p-legal and therefore, as p is a local isometry on every edge, LY (p(f(γ))) =
LX(f(γ)). On the other hand, again because p is a local isometry, LY (p(γ)) ≤
LX(γ) which means that

λφ(Y ) ≥
LY (p(f(γ)))

LY (p(γ))
≥

LX(f(γ))

LX(γ)
= λφ(X) > λ(φ).

Suppose now X ∈ Min(φ). In this case we may assume that f is a train
track map representing φ (in particular f is a minimal optimal map, see
Section 7). All τi are f -legal because of simplex-regularity.

Let’s first assume that there is some τj which is mapped by f to a turn
distinct from any of the τi’s. Then, by Corollary 4.12, there is an f -legal loop
γ (which is in the tension graph) such that

1.
∑k

i=1 #(γ, τi) = 1,

2.
∑k

i=1 #(f(γ), τi) = 0.

Hence, LY (p(γ)) < LX(γ) whereas, LY (p(f(γ))) = LX(f(γ)). Hence,

λφ(Y ) ≥
LY (p(f(γ)))

LY (p(γ))
>

LX(f(γ))

LX(γ)
=

λφ(X)LX(γ)

LX(γ)
= λ(φ).

Otherwise, f must leave invariant the set of τi. We will now work with the
〈∼fk〉-legal structure, in order to ensure that the image of a legal loop is again
legal. Since all τi are legal and set of τi is invariant under the action of f ,
then they also are 〈∼fk〉-legal.
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Let Σ be the set of 〈∼fk〉-legal loops γ in X that satisfy

k∑

i=1

#(γ, τi) = 1.

By Corollary 4.13, the set Σ is not empty. Let

C = sup{LX(γ)− LY (p(γ)) : γ ∈ Σ}.

The Bounded Cancellation Lemma (see for instance [22, Proposition 3.12])
and discreteness show that C is a maximum, which means that C is realised
by some loop γC . Moreover, since the τi’s are p-illegal, C > 0. We claim that
γC can be chosen so that f(γC) also belongs to Σ. This will be enough as,
since γC realises C, then LY (p(γC)) = LX(γC) − C, while LY (p(f(γC))) ≥
LX(f(γC))− C (because f(γC) ∈ Σ). But then

λφ(Y ) ≥
LY (p(f(γC)))

LY (p(γC))
≥

LX(f(γC))− C

LX(γC)− C
=

λφ(X)LX(γC)− C

LX(γC)− C
> λ(φ)

where the strict inequality follows from the fact that λφ(X) = λ(φ) > 1.
We prove now our claim. Consider any γ ∈ Σ realising the maximum

C. By Proposition 4.11 γ can be modified via turn surgeries to a 〈∼fk〉-legal
turn γ′ such that

∑
i#(f(γ′), τi) = 1. Note that such surgeries occur only at

non-free vertices.
It remains to show that the performed surgeries do not affect the p-

cancellation of the original loop γ. As τj is the unique p-illegal of γ, there
exist sub-paths α, β of γ so that p(α) = p(β), the first edge of α together with
the first edge of β form the turn τj , and LX(α) = LX(β) = C/2. That is, α
and β are the sub-paths of γ which realise the p-cancellation. By Lemma 5.3,
both α and β cross only free turns and so the performed surgeries did not
affect neither α, nor β. As the turn τj is not affected by the surgeries, as well,
it follows that the p-cancellation of γ′, is the same as the p-cancellation of γ,
that is to say

LX(γ′)− LY (p(γ
′)) = LX(γ)− LY (p(γ)) = C

as we wanted.

6. Exploring the Minset

Proposition 4.19 tells us that if we want to travel along Min(φ), we have
to perform only simplex critical turns. Given two simplices ∆,∆1, one face on
the other, we can easily go from∆ to ∆1 in few steps by simple folds. However,
even if both simplices intersect Min(φ), such folds need not necessarily to be
simplex critical. Nonetheless, it may exists a, a priori longer, folding path
between them that uses only simplex critical folds.
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Definition 6.1. Let [φ] ∈ Out(G) and ∆ be a simplex in O(G). We
denote by the simplex critical neighbourhood of ∆ of radius 1, all the
simplices of O(G) which can be obtained from ∆ via a simplex critical fold,
including ∆ itself.

We denote by the simplex critical neighbourhood of ∆ of radius n+1, the
union of all the simplex critical neighbourhoods of radius 1, of all simplices in
the simplex critical neighbourhood of ∆ of radius n.

Remark 6.2. By Theorem 4.23, if φ is irreducible with λ(φ) > 1, then
any simplex critical neighbourhood of finite radius consists of finitely many
simplices.

Definition 6.3. Let X be a point of O(G) and let’s denote by ∆ = ∆X the
corresponding simplex. The dimension of D(∆) of ∆ is the number of edges
of X. We denote by D = D(G) the dimension of O(G), i.e. the maximum
number of edges we see in elements of O(G).

In O1(G) the dimension of the simplex containing X is one less, as is the
dimension of the entire space.

Theorem 6.4. Let [φ] ∈ Out(G) be an irreducible automorphism with
λ(φ) > 1. Let ∆,∆1 be open simplices of O(G), both intersecting Min(φ), and
such that ∆ is a face of ∆1. Then, ∆1 is contained in the simplex critical
neighbourhood of ∆ of radius 2D(G)2. In particular, Min(φ) is locally finite.

We immediately deduce the same statement for O1(G).

Proof. We will show there exists a sequence of simplices, ∆0,∆1, . . . ,∆n,
with ∆0 = ∆ and ∆n = ∆1, where n ≤ 2(D(G))2, and such that each ∆i+1 is
obtained by folding a ∆i-simplex critical turn.

The underlying graph of ∆ is obtained from that of ∆1 by collapsing a
forest F each of whose tree contains at most one non-free vertex. We apply
Lemma 5.2, to get a straight map, p : unf(Y ) → Y which is locally isometric
on edges. Subdivide unf(Y ) so that the p-image of each subdivided edge
is a single edge in Y . Proposition 5.4 tells us that it must exist a p-illegal
turn that is also simplex critical. Fold this turn; this is an isometric fold
directed by p, since p is an isometry on edges, and we get a map p1 : X1 → Y
which, by Lemma 5.2, satisfies conditions (1) and (2) of Proposition 5.4, which
therefore applies. This process recursively defines a folding path from unf(Y )
to Y , directed by p. The length of such folding path is bounded by 2D(∆1)2

by Lemmas 5.1 and 5.2.
To conclude the proof, note that any simplex of O(G) adjacent to ∆ and

lying in Min(φ) either has ∆ as a face, or is a face of ∆. The first case is
dealt with above, and in the second case, we know that there are at most
2D(∆) ≤ 2D(G) faces.

The statement for O1(G) follows since the displacement function is invari-
ant under change of volume.
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We now show that Theorem 6.4 may be strengthened to show that the
minimally displaced set is uniformly locally finite. That is, there is an uniform
bound (depending only on λ(φ) and D(G)) on the number of simplices, adja-
cent to a given simplex in Min(φ) which are also in Min(φ). In what follows
we are not focused in optimal bounds.

Definition 6.5. Let ∆ be a simplex in O(G). Then we define the centre
X∆ ∈ ∆ to be the graph where all edges have the same length.

Since we are interested in the function λφ, which is scale invariant, we
may scale the metric on X∆ as we wish; we will therefore decree that all the
edges of X∆ have length 1.

Lemma 6.6. Let [φ] ∈ Out(G). For any X,Y ∈ O(G) we have

λφ(X)

λφ(Y )
≤ Λ(X,Y )Λ(Y,X).

Proof. This immediately follows from the non-symmetric triangle in-
equality:

λφ(X) = Λ(X,φX) ≤ Λ(X,Y )Λ(Y, φY )Λ(φY, φX) = Λ(X,Y )λφ(Y )Λ(Y,X).

As above, D = D(G) = dim(O(G)) is the maximum number of (orbits of)
edges we see in elements of O(G).

Lemma 6.7. Let [φ] ∈ Out(G), and ∆,∆′ be simplices in O(G) such that
∆ is a face of ∆′. Then

1

2D
λφ(X∆) ≤ λφ(X∆′) ≤ 2Dλφ(X∆).

Proof. By Lemma 6.6, it is sufficient to prove that

Λ(X∆, X∆′)Λ(X∆′ , X∆) ≤ 2D.

Since the product on the left is scale invariant (even though each factor is
not) we are free to choose the volumes for each of the points. Specifically, the
two centres have different volumes, as we set every edge to have length 1. In
particular,

Λ(X∆′ , X∆) ≤ 1,

as loops become shorter when we collapse a forest (since the length in each
case is a count of the number of edges).

To complete the argument, we consider the map p : unf(X∆′) → X∆′

given by Lemma 5.2, and we read it as a map from X∆ → X∆′ . It is easy to
see that the image of an edge under this map cannot cross the same edge more
than twice (usually no more than once, but twice may happen if ∆ has some
edge-loop). It follows that LX

∆′
(p(γ)) ≤ 2DLX(γ). Hence Λ(X∆, X∆′) ≤ 2D.
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The maximum number of vertices we see in elements of O(G) is bounded
by 2D. Denote by M = M(G) the maximal cardinality of finite vertex groups.
Set K = K(G) = D +M + 1.

Lemma 6.8. Let [φ] ∈ Out(G), ∆ be a simplex of O(G), and C∆ be the
corresponding set of simplex critical turns. Then

|C∆|≤ (10K)!λφ(X∆)

Proof. Since all the edges of X∆ have length 1, the number of turns
crossed by a loop is then equal to its length in X∆. Hence, the number of
turns crossed by an element of A∆ is bounded above by

λφ(X∆)4D|A∆|,

where the term 4D appears as the maximum length of a loop in A∆, as read
in X∆ (see Definition 4.2). Note that the length in X∆ is simply the number
of edges.

To estimate |A∆|, we count the number of sequences of edges, where each
edge appears at most 4 times - ignoring the incidence relations to simplify
matters. The number of sequences of n objects of length k, is n! /(n−k)!≤ n!,
and so the number of sequences of n objects of length at most n is bounded
by (n+1)!. For building a loop in A∆ we have D edges, each of which appear
at most 4 times and, taking in account the group elements, the total number
of objects we can use to write an element of A∆ is 8D. Hence

|A∆|≤ (8D + 1)!

This only bounds the number of turns crossed by elements of A∆. In order to
bound the simplex critical turns, we need to add all turns based at vertices
with finite vertex group, and all the illegal turns for a putative train track
map. The former is bounded by the number of possible pairs of germs of edges
multiplied by the cardinality of finite vertex group, hence by M(G)D2. The
latter, because of Lemma 2.18, is bounded by the number of pairs of edges;
hence by D2. In total we have

λφ(X∆)4D(8D + 1)!+(M + 1)D2 ≤ λφ(X∆)4K(8K)! +K3

and the result follows.

Lemma 6.9. Let [φ] ∈ O(G) be an irreducible element, and suppose that
∆ is an open simplex of O(G) which contains a point of Min(φ). Then,

λφ(X∆) ≤ 9 dimO(G)λ(φ)3D+2 .

Proof. Let Xmin denote a point of ∆ which is minimally displaced by φ.
We will use the fact that Xmin is ǫ-thick, as in [2, Proposition 10] (it is proved
there in CVn, but the proof is the same in this context, see also [11, Section
8]). That is, since φ is irreducible, there is a lower bound on LX(γ)/vol(X)
that depends only on λ(φ) (and not on X ∈ O(G) nor on the non-elliptic
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element γ). Concretely, this lower bound can be taken to be the reciprocal of
C(φ) = 3 dim(O(G))λ(φ)3 dim(O(G))+1. If we normalise Xmin to have volume
1 then Λ(X∆, Xmin) ≤ 1. Moreover, since the stretching factor Λ is realised
by candidate loops of simplicial length at most 3 (by the Sausage Lemma [11,
Theorem 9.10]), we can then deduce that,

Λ(Xmin, X∆)Λ(X∆, Xmin) ≤ 3C(φ)Λ(X∆, Xmin) ≤ 3C(φ).

The result now follows from Lemma 6.6.

Corollary 6.10. Let [φ] ∈ Out(G) be an irreducible element with λ(φ) >
1. Then Min(φ) is uniformly locally finite.

Proof. By Theorem 6.4, it is sufficient to show that the simplex crit-
ical neighbourhood N of radius 2D2, of a minimally displaced simplex ∆0,
contains a uniformly bounded number of simplices (the number of faces of a
simplex is always uniformly bounded). Hence it suffices to uniformly bound
the cardinality of C∆ for each simplex we encounter in N .

By Lemma 6.7, λφ(X∆) ≤ (2D)2D
2

λφ(X∆0
), which is uniformly bounded

by Lemma 6.9. Lemma 6.8 completes the proof.

7. Definitions and basic results used in the paper

Our notation and definitions are quite standard. We briefly recall them
here, referring the reader to [12] for a detailed discussion.

Definition 7.1. A free splitting G of a group G is a decomposition of G
as a free product G1 ∗ · · · ∗Gk ∗ Fn where Fn is the free group of rank n. We
admit the trivial splitting G = Fn. We do not require that the groups Gi’s are
indecomposable.

Definition 7.2. A simplicial G-tree is a simplicial tree T endowed with
a faithful simplicial action of G. T is minimal if it has no proper G-invariant
sub-tree. A G-graph is a graph of groups whose fundamental group, as graph
of groups, is isomorphic to G. The action of G on a G-tree, is called marking.

Definition 7.3. Let G be a free splitting of G. In terms of Bass-Serre
theory, a G-tree is the tree dual to G, and a G-graph is the corresponding
graphs of groups. More explicitly, a G-tree is a simplicial G-tree T such that
the following holds.

• For every Gi there is exactly one orbit of vertices whose stabilizer is
conjugate to Gi. Such vertices are called non-free. Other vertices are
called free.

• T has trivial edge stabilisers.

A G-graph dual to a G-tree. Namely, it is a finite connected G-graph of groups
X, along with an isomorphism, ΨX : G → π1(X) - a marking - such that:

• X has trivial edge-groups;
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• the fundamental group of X as a topological space is Fn;
• the splitting given by the vertex groups is equivalent, via ΨX, to G.

That is, ΨX restricts to a bijection from the conjugacy classes of the
Gi to the vertex groups of X.

The universal cover of a G-graph is a G-tree and the G-quotient of a G-tree
is a G-graph.

Definition 7.4. Let G be a splitting of a group G. The Outer Space
of G, also known as deformation space of G, and denoted O(G) is the set of
classes of minimal, simplicial, metric G-graphs X with no redundant vertex
(the equivalence relation is given by G-isometries).

We denote by O1(G) the volume 1 subset of O(G).

O(G) can be regarded also as set of G-trees, but in the present paper we
adopted the graph view-point. Given a graph of groups X with trivial edge
groups, we denote by O(X) the corresponding deformation space O(π1(X))
(we notice that X ∈ O(X) if X is a core graph with no redundant vertex)
where π1(X) is endowed with the splitting given by vertex groups. We refer
the reader to [11, 12, 17] for more details on deformation spaces.

Definition 7.5. Let X ∈ O(G). The simplex ∆X is the set of marked
metric graphs obtained from X by just changing edge-lengths. Since edge-
lengths are strictly positive we think ∆X as (a cone over) an open simplex.
Given a simplex ∆ one can consider the the closure of ∆ ∈ O(G) or its sim-
plicial bordification. Namely, faces of ∆ come in two flavours: that in O(G),
called finitary faces, and that not in O(G) (typically in other deformation
spaces) called faces at infinity.

We also have a simplex ∆1(X) in O1(G) - the intersection of ∆(X) with
O1(G) - which is a standard open simplex of one dimension less.

There are two topologies on O(G), both of which restrict to the Eu-
clidean topology on each simplex; these are the weak topology and the axes
or Gromov-Hausdorff topology. The topology induced by the Lipschitz metric
is the latter one.

Definition 7.6. Let G be endowed with the splitting G : G = G1 ∗ · · · ∗
Gi ∗Fn. The group of automorphisms of G that preserve the set of conjugacy
classes of the Gi’s is denoted by Aut(G). We set Out(G) = Aut(G)/Inn(G).

The group Aut(G) naturally acts on O(G) by precomposition on marking,
and Inn(G) acts trivially, so Out(G) acts on O(G).

Since the volume is invariant under this action, we also get an action of
Aut(G) and Out(G) on O1(G).

Definition 7.7. Given a splitting G of G, and X,Y ∈ O(G), a map
f : X → Y is called an O-map at the level of the tree, if it is Lipschitz-
continuous and G-equivariant (resp., a G-map between graph of groups, is
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called an O-map if it is the projection of an O-map at level of the universal
covers). The Lipschitz constant of f is denoted by Lip(f).

Definition 7.8. Let X,Y be two metric graphs. A Lipschitz-continuous
map f : X → Y is straight if it has constant speed on edges, that is to say,
for any edge e of X there is a non-negative number λe(f) such that edge e
is uniformly stretched by a factor λe(f). A straight map between elements of
O(G) is always supposed to be an O-map.

Remark 7.9. O-maps always exist and the images of non-free vertices
are determined a priori by equivariance (see for instance [11]). For any O-
map f there is a unique straight map denoted by Str(f), which is homotopic,
relative to vertices, to f . We have Lip(Str(f)) ≤ Lip(f).

Definition 7.10. Let f : X → Y be a straight map. We set λmax(f) =
maxe λe(f) = Lip(f) and define the tension graph of f as the set

{e edge of X : λe(f) = λmax}.

Definition 7.11. Given X,Y ∈ O(G) we define Λ(X,Y ) as the infimum
of Lipschitz constants of O-maps from X to Y . That inf is in fact a minimum

and coincides with maxγ
LY (γ)
LX(γ)) where γ runs on the set of loops in X (seen

as a graph), (see for instance [9, 11, 12]).

Definition 7.12. A gate structure on a graph of groups X is a G-
equivariant equivalence relation of germs of edges at vertices of the universal

cover, X̃, of X. A train track structure on a graph of groups X is a gate
structure on X with at least two gates at each vertex.

Remark 7.13. For a straight map f : X → Y , we consider two different
gate structures, which we denote by ∼f and 〈∼fk〉, the latter being defined
only if X = Y . Two germs of X are ∼f -equivalent, if they have the same
non-collapsed f -image and they are 〈∼fk〉-equivalent, if they have the same

non-collapsed fk-image for some positive integer k.
This second gate structure - 〈∼fk〉 - only makes sense if Y is the same

topological object as X , so that we may iterate f . However, Y will usually
be a different point of O(G) since the G-action will be different.

We refer to ∼f , as the gate structure which is induced by f .

Definition 7.14. A turn of X ∈ O(G) is (the Gv-orbit of) an unoriented
pair of germs of edges based at a vertex v of X. A turn is legal if its germs
are not in the same gate. A simplicial path in X is legal if it crosses only legal
turns. Legality here depends on the gate structure, which for us will either be
the ∼f or 〈∼fk〉 structure for some O-map f with domain X.

Definition 7.15. Let X,Y ∈ O(G). A straight map f : X → Y is said
to be optimal if Lip(f) = Λ(X,Y ) and every vertex of the tension graph is
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at least two-gated (i.e. the gate structure ∼f is a train track structure on the
tension graph). An optimal map is minimal if every edge of the tension graph
extends to a legal loop in the tension graph (not all optimal maps are minimal,
but minimal optimal maps always exist (see [12])).

Definition 7.16. Given [φ] ∈ Out(G) and X ∈ O(G) we say that an
O-map f : X → φX represents φ. Note that X and φX are the same graph
with different markings, so we sometimes abuse notation by saying that f is
a map f : X → X which represents φ. In this situation we can speak of the
〈∼fk〉 gate structure.

Any φ is represented by a minimal optimal map (see [12]).

Definition 7.17. We call [φ] ∈ Out(G) reducible if there exists an O

map f : X → X representing φ, a lift f̃ : X̃ → X̃ and a G-subforest, Y ( X̃

which is f̃ -invariant and contains the axis of a hyperbolic element. Otherwise
[φ] is called irreducible.

Remark 7.18. An automorphism φ is called iwip - irreducible with irre-
ducible powers - if every positive iterate of φ is irreducible. We mention this
for completeness, but we are concerned with the general irreducible class for
this paper.

Definition 7.19. A straight map f : X → X representing φ is a train
track map, if there is a train track structure on X so that:

• f maps edges to legal paths
• If f(v) is a vertex, then f maps inequivalent germs at v to inequivalent

germs at f(v).

Remark 7.20. See [11, 12] for more details:

1. If f : X → X is train track map representing φ (with respect to some
gate structure), then it is a train track map with respect to the 〈∼fk〉
gate structure.

2. Irreducible elements of Out(G) admit train track representatives.

Definition 7.21. Given [φ] ∈ Out(G) the displacement function

λφ : O(G) → O(G)

is defined by

λφ(X) = Λ(X,φX).

If f : X → X is any O-map representing φ, then

λφ(X) = sup
γ

LX(φγ)

LX(γ)

where the sup is taken over all loops γ in X (and it is actually a maximun
by [11, 12]) and LX(γ) denotes the reduced length of γ. For a simplex ∆ we
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define

λφ(∆) = inf
X∈∆

λφ(X)

and

λ(φ) = inf
X∈O(G)

λφ(X).

Remark 7.22. Note that the displacement function - λφ - is invariant
under change of volume, so one can work interchangeably between O(G) and
O1(G).

Theorem 7.23 ([2, 11, 12]). Given [φ] ∈ Out(G) we define,

Min(φ) = {X ∈ O(G) : λφ(X) = λ(φ)}

(similarly for O1(G)). Then, if φ is irreducible, Min(φ) is non-empty and
coincides with the set of points which admit a train track map representing φ.

Remark 7.24. There is also a generalisation of the previous theorem for
reducible automorphisms, but in that case Min(φ) may be empty in O(G). In
any case Min(φ) is never emtpy if we add to O(G) the simplicial bordification
at infinity.

While we don’t use the following in this paper, it seems worthwhile men-
tioning that Min(φ) coincides with the set of points supporting partial train-
tracks (which reduce to classical train-tracks in irreducible case), (see [11, 12]
for more details).

Lemma 7.25. Let [φ] ∈ Out(G) be an irreducible element and let X be a
minimally displaced point. Let f : X → X be an optimal map representing φ,
then

(1) the tension graph of f is the whole X;
(2) if f is train track then it is a minimal optimal map.

Proof. By [12, Lemma 4.16] (see also[11]), since f is an optimal map
representing φ, its tension graph contains an invariant sub-graph φ. By irre-
ducibility, that sub-graph must be the whole X . In [12] (or also in [11]) it is
proved that if f is a train track, and it is not minimal, then any neighborhood
of X in the Min(φ) supports an optimal map representing φ whose tension
graph is not the whole X , contradicting point (1).
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