
GLASNIK MATEMATIČKI
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Abstract. In this paper we study geometric concepts in a general
cubic structure. The well-known relationships on the cubic curve motivate
us to introduce new concepts into a general cubic structure. We will define
the concept of the tangential of a point in a general cubic structure and
we will study tangentials of higher-order. The characterization of this
concept will be also given by means of the associated totally symmetric
quasigroup. We will introduce the concept of associated and corresponding
points in a cubic structure, and discuss the number of mutually different
corresponding points. The properties of the introduced geometric concepts
will be investigated in a general cubic structure.

The cubic structure abstracts the properties of many geometric models,
the most famous of which is the geometry on a cubic curve. In this model
the terms tangentials, corresponding points and associated points appear.
There is an abundance of literature on this topic, and we will use the classic
Durége’s book [1]. The theory of cubic structures is closely related to the
theory of totally symmetric medial quasigroups, which has been exhaustively
studied by Etherington ([2]). In this paper, the corresponding concepts are
defined and studied in a general cubic structure. Although some theorems in
certain models of a cubic structure could be proved algebraically by apply-
ing TSM-quasigroups, geometric proofs directly in a cubic structure (which
is actually a “geometric” structure) can give a better insight into interrela-
tionships between the statements in this structure or in its particular model.
In addition, such a study of certain concepts and properties remains “purely
geometric.”
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1. Introduction

The cubic structure is defined in [5]. Let Q be a nonempty set, whose
elements are called points, and let [ ] ⊆ Q3 be a ternary relation on Q. Such
a relation and the ordered pair (Q, [ ]) will be called a cubic relation and a
cubic structure, respectively, if the following properties are satisfied:

C1. For any two points a, b ∈ Q there is a unique point c ∈ Q such that
[a, b, c], i.e., (a, b, c) ∈ [ ].

C2. The relation [ ] is totally symmetric, i.e., [a, b, c] implies [a, c, b], [b, a, c],
[b, c, a], [c, a, b] and [c, b, a].

C3. [a, b, c], [d, e, f ], [g, h, i], [a, d, g] and [b, e, h] imply [c, f, i], which can be
clearly written in the form of the following table:

a b c

d e f

g h i

Throughout the paper we will use the property C2 without mentioning it
explicitly.

Let Q be a nonempty set and · a binary operation on Q. The ordered pair
(Q, ·) is a quasigroup if for each a, b ∈ Q there exist unique elements x and y

such that ax = b and ya = b. The quasigroup (Q, ·) is medial if the identity
ab · cd = ac · bd is valid, and totally symmetric if it satisfies the identities
ab · b = a, a ·ab = b, where, e.g., ab · cd is the shorter notation for (a · b) · (c ·d).
A totally symmetric medial quasigroup will be called a TSM-quasigroup for
short.

The following statement is proved in [5, Theorem 1]. If the ternary rela-
tion [ ] and the binary operation · on the set Q are connected by the equiva-
lence

[a, b, c] ⇔ ab = c,

then (Q, [ ]) is a cubic structure if and only if (Q, ·) is a TSM-quasigroup.
The properties of TSM-quasigroups have been studied in detail in [2]. In
[5], a number of geometric examples of cubic structures are listed, the most
important of which is perhaps the one in Example 2.1. Let Q be the set of
all nonsingular points of a planar cubic curve Γ, and for three given points
a, b, c ∈ Q, let the statement ab = c mean that the points a, b, and c lie on
the same line. Then (Q, [ ]) is a cubic structure.

In this paper, the well-known relationships on the cubic curve Γ will
motivate us to introduce new concepts into a general cubic structure. The
obtained results can easily be applied to other examples of cubic structures
in [5].
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2. Tangentials of elements of cubic structures

From now on, let (Q, [ ]) be any cubic structure whose elements will be
called points, and the triples of points [a, b, c] will be called lines. We shall
say that the point a′ is the tangential of the point a if the statement [a, a, a′]
holds. It is obvious that each point has one and only one tangential a′. In
the associated TSM-quasigroup (Q, ·) tangential of element a is the element
a′ = aa. If the point a′ is the tangential of the point a, then we will also say
that the point a is an antecedent of the point a′.

Theorem 2.1. If a′, b′, and c′ are the tangentials of points a, b, and c,
then [a, b, c] implies [a′, b′, c′].

Proof. The proof follows applying the table

a a a′

b b b′

c c c′
.

Theorem 2.2. Let a1, a2, and a3 be any three points. Let for each i, j ∈
{1, 2, 3}, i 6= j, [ai, aj, aij ] holds (obviously aij = aji), and let for each i ∈
{1, 2, 3}, j, k ∈ {1, 2, 3} \ {i}, j 6= k, [aij , aik, bi] holds. Then for each i ∈
{1, 2, 3}, j, k ∈ {1, 2, 3}\{i}, j 6= k, [ajk, bi, a

′

i] holds, where a
′

i is the tangential
of the point ai.

Proof.
ai ai a′i
aj ak ajk
aij aik bi

.

Theorem 2.3. If a′, b′, and c′ are the tangentials of the points a, b, and
c, respectively, then [b, c, a′] and [c, a, b′] imply [a, b, c′].

Proof.
a′ a a

b b′ b

c c c′
.

Theorem 2.4. If for the tangentials a′, b′, and c′ of the points a, b, and
c, [a′, b′, c′] holds true and if d, e, and f are points such that [b, c, d], [c, a, e]
and [a, b, f ] then [d, e, f ] holds.

Proof. Apply the following tables in succession

a b f

a b f

a′ b′ c′

b c d

a c e

f c′ f

.



340 V. VOLENEC, Z. KOLAR-BEGOVIĆ AND R. KOLAR-ŠUPER

For any integer n greater than 1, we define the n-th tangential of a point as
the tangential of its (n − 1)-tangential, with the first tangential of the point
a being its tangential a′.

Theorem 2.5. If a′ and a′′ are the first and the second tangential of the
point a, then [a, b, c], [a, d, e] and [b, d, a′] imply [c, e, a′′].

Proof.
a b c

a d e

a′ a′ a′′
.

Theorem 2.6. If b, c, and d are the first, second and the third tangential
of the point a and if [a, c, e], then [b, d, e] is equivalent to the fact that the point
a is the tangential of the point d, i.e., the point a itself is its fourth tangential.

Proof. Assuming [b, d, e], then [d, d, a] follows by applying the first table
below, and assuming [d, d, a] then [b, d, e] follows from the second table

c c d

b e d

b a a

b c b

a d d

a c e

.

3. Corresponding points in the cubic structure

Two points are said to be corresponding if they have the common tan-
gential.

Theorem 3.1. Let a1 and a2 be corresponding elements with the common
tangential a′, o be any point, and let b1, b2 be points such that [o, a1, b1]
and [o, a2, b2]. Then b1 and b2 are corresponding points with the common
tangential b′ such that [o′, a′, b′], where o′ is the tangential of the point o. In
addition, there is a point c such that [a1, b2, c] and [a2, b1, c] hold and points o
and c are corresponding.

Proof. Let b′ be the point such that [o′, a′, b′]. From the tables

o a1 b1
o a1 b1
o′ a′ b′

o a2 b2
o a2 b2
o′ a′ b′

it follows that the point b′ is the common tangential of points b1 and b2. Now
let c be the point such that [a1, b2, c] and let o′ be the tangential of the point
o. Then from the tables

o b2 a2
b1 b′ b1
a1 b2 c

a1 b2 c

b1 a2 c

o o o′
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we acquire [a2, b1, c], whence it follows that the point c has the tangential o′

so the points o and c are corresponding.

Theorem 3.2. If [o, a1, b1] and [o, a2, b2], and if there is a point c such
that [a1, b2, c] and [a2, b1, c], then a1, a2 and b1, b2 are pairs of corresponding
points.

Proof. Let a′ and b′ be the tangentials of points a1 and b1. From the
tables

b1 c a2
o b2 a2
a1 a1 a′

a1 c b2
o a2 b2
b1 b1 b′

it follows that points a2 and b2 also have tangentials a′ and b′, respectively;
therefore, a1, a2 and b1, b2 are pairs of corresponding points.

Theorem 3.3. If a1 and a2 are corresponding points with common tan-
gential a′, then the points a′ and b are also corresponding, where b is the point
such that [a1, a2, b].

Proof. Let a′′ be the tangential of the point a′. From the table

a1 a2 b

a1 a2 b

a′ a′ a′′

we obtain that the point b has the tangential a′′, so points a′ and b are
corresponding.

Theorem 3.4. If [a, b, c], [a, e, f ], [b, f, d], and [c, d, e], then a, d; b, e and
c, f are pairs of corresponding points, and for the associated tangentials a′, b′,
and c′, [a′, b′, c′] holds true.

Proof. From the tables:

f b d

e c d

a a a′

f a e

d c e

b b b′

d b f

e a f

c c c′

it follows that points d, e, and f have the tangentials a′, b′, and c′, respectively,
and therefore a, d; b, e and c, f are pairs of corresponding points. By Theorem
2.1, [a, b, c] implies [a′, b′, c′].

Theorem 3.5. If [a, e, f ], [b, f, d], and [c, d, e], and if a and d are corre-
sponding points, then [a, b, c] holds.
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Proof. Let a′ be the common tangential of the points a and d. The
assertion of the theorem follows from the table

a a′ a

f d b

e d c

.

Theorem 3.6. If the tangentials a′, b′, and c′ of a, b, and c satisfy
[a′, b′, c′], and if [b, c, d], [c, a, e] and [a, b, f ], then a, d; b, e and c, f are pairs
of corresponding points and [d, e, f ] holds.

Proof. From the tables:

b c d

b c d

b′ c′ a′

c a e

c a e

c′ a′ b′

a b f

a b f

a′ b′ c′

it follows that the points d, e, and f have the tangentials a′, b′, and c′, re-

spectively, so a, d; b, e and c, f are pairs of corresponding points. Now, the
table

b c d

a c e

f c′ f

proves [d, e, f ].

In Theorems 3.4, 3.5 and 3.6, sextuples of the form a, b, c, d, e, f appear
with the property that [a, b, c], [a, e, f ], [b, f, d] and [c, d, e] hold. We say that
a, d; b, e and c, f are pairs of opposite vertices of a complete quadrilateral.

In Theorems 3.1 and 3.2, a1, a2; b1, b2 and o, c are pairs of opposite vertices
of a complete quadrilateral. From Theorem 3.4 we now get the following
result.

Corollary 3.7. The pairs of opposite vertices of a complete quadrilateral
are pairs of corresponding points.

Theorem 3.8. If a, d is a pair of corresponding points and b is any point,
then there are points c, e, and f such that a, d; b, e and c, f are pairs of opposite
vertices of a complete quadrilateral, i.e., [a, b, c], [a, e, f ], [b, f, d] and [c, d, e]
hold.

Proof. Let a′ be the common tangential of the points a and d and let
c, f, e be the points such that [a, b, c], [b, d, f ] and [a, f, e]. Then [c, d, e] follows
from the table

a b c

a′ d d

a f e

.
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Theorem 3.9. If a, d; b0, e0 and c0, f0 are pairs of opposite vertices of
a complete quadrilateral and if b is any point, then there are points c, e, and
f such that a, d; b, e and c, f are pairs of opposite vertices of a complete
quadrilateral.

Proof. By Corollary 3.7, points a and d are corresponding, and then
the statement of the theorem follows from Theorem 3.8.

Theorem 3.10. If a1, a2, a3 are pairwise corresponding and if o and a4
are points such that [a2, a3, o] and [a1, o, a4], then the point a4 is also corre-
sponding to each of the points a1, a2, and a3.

Proof. Let a′ be the common tangential of points a1, a2, and a3 and let
p and q be points such that [a1, a2, p] and [a1, a3, q]. From the tables:

a′ a3 a3
a1 o a4
a1 a2 p

a′ a2 a2
a1 o a4
a1 a3 q

we obtain [a3, a4, p] and [a2, a4, q]. Then [a′, a4, a4] follows from the table

a1 a1 a′

a2 q a4
p a3 a4

and the point a4 has also the tangential a′.

Corollary 3.11. If a point has at least three different antecedents, then
it has at least four different antecedents.

Theorem 3.12. Let a1, . . . , an be mutually different points which are pair-
wise corresponding and have the common tangential a′, let o be any point, and
let b1, . . . , bn be points such that [o, ai, bi], for i = 1, . . . , n. Then b1, . . . , bn are
mutually different pairwise corresponding points with the common tangential
b′ such that [o′, a′, b′], where o′ is the tangential of the point o.

Proof. From [o, ai, bi] and [o, aj , bj ], ai 6= aj , by C1, it follows that
bi 6= bj . Other claims follow from the first assertion of Theorem 3.1.

In the case of a cubic structure from the example with collinearity on the set
of regular points of a cubic, the statements of several previous theorems can
be found in the classic books [4] and [1].

4. Associated points in the cubic structure

In the conditions of Theorem 3.12, the fact that the point a′ has n differ-
ent antecedents implies that the point b′ has at least n different antecedents.
Replacing the role of points a′ and b′, it follows that these points have an equal
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number of different antecedents. What about the number of possible differ-
ent antecedents of individual points, i.e., the number of mutually different
corresponding points in a cubic structure?

A third order plane curve can have a degree equal to 3, 4 or 6, i.e., from
any point P of that plane 3, 4 or 6 tangents can be drawn to that curve. If
the point P is on that curve, then besides the tangent at the very point P,
which is counted as two tangents, we have 1, 2, or 4 remaining tangents to
that curve from the point P . Therefore, the point of a cubic is tangential for
one, two, or four other points of that curve.

In [2] Etherington proved that in general, in any TSM quasigroup, if the
maximum number of elements having the common tangential is finite, then it
is of the form 2m, with a constant number m ∈ N∪ {0}, and each element of
that quasigroup has exactly that many antecedents. This means that in each
cubic structure a maximum number of mutually different corresponding points
is of the form n = 2m with a constant number m ∈ N ∪ {0}, and that each
point has that many antecedents. In such a case, we shall say that mutually
different points a1, . . . , an with the common tangential are associated. The
number m is called the rank of the observed cubic structure (Q, [ ]). From
Theorem 3.12 the corollary immediately follows.

Corollary 4.1. If a1, a2, a3, and a4 are associated points with the com-
mon tangential a′, and o is any point, and b1, b2, b3, b4 are points such that
[o, ai, bi], i = 1, 2, 3, 4, then b1, b2, b3, and b4 are associated points with the
common tangential b′ such that [o′, a′, b′], where o′ is the tangential of the
point o.

The properties of associated points of rank m = 1, i.e., only pairs of
points are associated, are covered by theorems proved in the previous section
on corresponding points and other claims of the same form. Now we will
prove several statements for rankm = 2, that is, when we have four associated
points in a cubic structure. These statements are obtained by generalizing the
properties of associated points on the sixth degree cubic curve. Many of such
properties can be found in [1]. Cases of ranks m ≥ 3 could be very interesting
for future study, although we do not have specific geometric examples for
them.

Theorem 4.2. If a1, a2, a3, and a4 are associated points with the common
first tangential a′ and the second tangential a′′, and if p and q are points such
that [a1, a2, p] and [a3, a4, q] hold, and b is the point such that [p, q, b], then a′′

and b are corresponding points.

Proof. From the tables:

a1 a2 p

a1 a2 p

a′ a′ a′′

a3 a4 q

a3 a4 q

a′ a′ a′′
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it follows that the points p and q have the common tangential a′′. Let a′′′ be
the tangential of the point a′′. Then from the table

p q b

p q b

a′′ a′′ a′′′

we get that the point b has the tangential a′′′, i.e., the points a′′ and b are
corresponding.

Theorem 4.3. If a1, a2, a3, and a4 are associated points with the common
tangential a′, then there exist points p, q, and r such that [a1, a2, p], [a3, a4, p],
[a1, a3, q], [a2, a4, q], [a1, a4, r] and [a2, a3, r] and the points a′, p, q, and r are
associated.

Proof. Let p, q, and r be points such that [a1, a2, p], [a1, a3, q] and
[a1, a4, r] hold. From the mutual difference of points a2, a3, and a4, according
to C1, the points p, q, and r are also mutually different. As the pairs of points
a1, a2; a1, a3 and a1, a4 are corresponding, the first assertion of Theorem 3.1
implies that each of the points p, q, and r is corresponding with the point a′.
Because of the correspondence of points a2 and a3, and [a1, a2, p], [a1, a3, q],
according to the second statement of Theorem 3.1, there is a point o such that
[a2, q, o], [a3, p, o] and that the points a1 and o are corresponding. If o = a1,
then we would have [a1, a2, p] and [a1, a3, p], a2 6= a3, which is impossible by
C1. If o = a2, then we would have [a1, a2, p] and [a2, a3, p], a1 6= a3, which
is again impossible. If o = a3, then we would have [a1, a3, q] and [a2, a3, q],
a1 6= a2, which is impossible, too. All we have left is the possibility that
o = a4, and then we get [a3, a4, p] and [a2, a4, q]. From the table

a2 a′ a2
p a4 a3
a1 a4 r

follows [a2, a3, r]. It only remains to show that the points p, q, and r are
different from the point a′. However, by C1, this follows from the difference
of points a2, a3, and a4 from the point a1, and comparing [a1, a2, p], [a1, a3, q],
[a1, a4, r] with [a1, a1, a

′].

Theorem 4.4. If [a′, b′, c′] holds and a and b are antecedents of the points
a′ and b′, respectively, and if c is the point such that [a, b, c], then c is an
antecedent of the point c′.

Proof. The points a′ and b′ are tangentials of points a and b. Let ct
be the tangential of the point c. Theorem 2.1 implies [a′, b′, ct] from [a, b, c],
which, together with [a′, b′, c′], yields ct = c′, i.e., c′ is the tangential of the
point c.
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Theorem 4.5. Let [a′, b′, c′] hold, where a′, b′ and c′ are different points.
All different antecedents of points a′, b′ and c′ can be denoted by a1, a2, a3,
a4; b1, b2, b3, b4 and c1, c2, c3, c4, so that the following hold:

[a1, b1, c1], [a1, b2, c2], [a1, b3, c3], [a1, b4, c4],

[a2, b1, c2], [a2, b2, c1], [a2, b3, c4], [a2, b4, c3],

[a3, b1, c3], [a3, b2, c4], [a3, b3, c1], [a3, b4, c2],

[a4, b1, c4], [a4, b2, c3], [a4, b3, c2], [a4, b4, c1].

Proof. For each of the points a1, a2, a3, a4 and each of the points
b1, b2, b3, b4 there is a line containing them, and thus we obtain 16 lines.
On each of them, by Theorem 4.4, there are unique points c1, c2, c3, and c4 ly-
ing on these lines, and each of these four points lies on four such lines. We can
select the indices of points c1, c2, c3, and c4 so that we have lines [a1, b1, c1],
[a1, b2, c2], [a1, b3, c3] and [a1, b4, c4], where we have the option of choosing in-
dices for points a2, a3, and a4 freely. Since the points b1, b2 are corresponding
and since we have lines [a1, b1, c1], [a1, b2, c2], then, by the second assertion of
Theorem 3.1, there is a point corresponding to the point a1, which completes
the pairs b1, c2 and b2, c1 to lines. It cannot be the point a1 and we denote
that point by a2. So we have the lines [a2, b1, c2] and [a2, b2, c1].

As the points b1 and b3 are corresponding and we have lines [a1, b1, c1],
[a1, b3, c3], for the same reason, there is a point corresponding to the point a1,
which completes the pairs b1, c3 and b3, c1 to lines. This cannot be the point
a1 nor a2, so let us denote it by a3. Therefore we have the lines [a3, b1, c3]
and [a3, b3, c1]. In the same way, we conclude that the remaining point a4,
corresponding to a1, belongs to the lines [a4, b1, c4] and [a4, b4, c1]. As there
are already lines [a2, b2, c1], [a2, b1, c2], [a1, b3, c3], the points a2 and b3 can-
not be complemented by any of the points c1, c2, c3, so we necessarily have
the line [a2, b3, c4]. From the existence of the lines [a2, b1, c2], [a2, b2, c1] and
[a2, b3, c4] follows the existence of the line [a2, b4, c3]. From the existence of
the lines [a1, b3, c3], [a2, b3, c4] and [a3, b3, c1] we conclude that there is also
the line [a4, b3, c2], and from the existence of lines [a1, b4, c4], [a2, b4, c3] and
[a4, b4, c1], it follows that there is also the line [a3, b4, c2]. Finally, as there are
lines [a3, b1, c3], [a3, b3, c1] and [a3, b4, c2], there is also the line [a3, b2, c4], and
as there are lines [a4, b1.c4], [a4, b3, c2] and [a4, b4, c1], there is also the line
[a4, b2, c3].

The proof of this theorem is essentially transcribed from pages 212–213 in
Durége’s book [1]. In [3] Hesse discovered a configuration of the type (124, 163)
of points and lines, which is today (obviously wrongly) called the Reye’s con-
figuration. As for the notation in the preceding theorem, it can be observed
that for an arrangement of indices for the 16 obtained lines, the rule is that if
any two indices are equal, then the third index is necessarily equal to 1, and
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if two indices are different from each other and different from 1, then all three
indices are different from each other and different from 1.

Theorem 4.6. If a1, a2, a3, and a4 are associated points, i.e., different
antecedents of a point a′, and b1, b2, b3, b4 are different antecedents of the point
a1, then the indices of points a2, a3, and a4 can be chosen such that

(4.1) [b1, b2, a2], [b3, b4, a2], [b1, b3, a3], [b2, b4, a3], [b1, b4, a4], [b2, b3, a4].

Proof. Let c be the point such that [b1, b2, c], and then let d be the point
such that [b3, c, d]. By Theorem 3.1, it follows from [b1, b2, c] and [b3, d, c] that
b3 and d are different corresponding points. The point d is different from
points b1 and b2 because otherwise we would have [b3, b1, c] or [b3, b2, c], which
is not possible by C1 since we already have [b1, b2, c]. Therefore, it is necessary
that d = b4, so we have [b3, b4, c], that is, we have proved that there is a point
c such that [b1, b2, c] and [b3, b4, c]. Similarly, it can be proved that there are
points e and f such that [b1, b3, e], [b2, b4, e] and [b1, b4, f ], [b2, b3, f ]. From
the tables:

b1 b2 c

b1 b2 c

a1 a1 a′

b1 b3 e

b1 b3 e

a1 a1 a′

b1 b4 f

b1 b4 f

a1 a1 a′

we obtain that points c, e, and f are corresponding to the point a1. Owing
to C1, points c, e, and f are mutually different because we have [b1, b2, c],
[b1, b3, e] and [b1, b4, f ], and points b2, b3, and b4 are different. Points c, e, and
f are different from the point a1 because otherwise we would have one of
the statements [a1, b1, b2], [a1, b1, b3] or [a1, b1, b4], which is impossible by C1
because we have [a1, b1, b1]. Accordingly, a1, c, e, and f are mutually different
corresponding points, and consequently, points c, e, f can be designated in the
sequence as a2, a3, a4. This proves the theorem.

Theorem 4.7. Suppose [a′, b′, c′] holds, where a′, b′, c′ are different points
and let a, b, c be some of the antecedents of points a′, b′, c′ such that [a, b, c] is
not valid. If d, e, and f are points such that [b, c, d], [c, a, e] and [a, b, f ], then
[d, e, f ] holds and a, d; b, e; c, f are pairs of corresponding points.

Proof. Let a1, a2, a3, a4; b1, b2, b3, b4; c1, c2, c3, c4 be all different an-
tecedents of the points a′, b′, c′, respectively. By using Theorem 4.4, we
conclude that the points a and d are some of the points a1, a2, a3, and a4,
points b, e are some of the points b1, b2, b3, b4, and points c, f are some of the
points c1, c2, c3, c4. Because of the rule stated after Theorem 4.5 about the
arrangement of indices in the statements of that theorem, and since [a, b, c] is
not valid, it follows that the triple a, b, c has to be one of these four:

a1, b1, ci; a1, bi, cj ; ai, bi, ci; ai, bi, cj ,

or the triples derived from these by permuting of the letters a, b, c, which, with-
out loss of generality, needs not to be studied. Hereafter, in this proof (i, j, k)
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is always some permutation of (2, 3, 4). In the first case, where the points
a, b, c are a1, b1, ci, respectively, according to the aforementioned rule, the
lines [b, c, d], [c, a, e], [a, b, f ] are the lines [b1, ci, ai], [ci, a1, bi] and [a1, b1, c1],
and therefore d = ai, e = bi, f = c1, and the line [ai, bi, c1] is the required
line [d, e, f ]. In the second case, when a = a1, b = bi, c = cj , the lines [b, c, d],
[c, a, e], [a, b, f ] are [bi, cj , ak], [cj , a1, bj], [a1, bi, ci], respectively, hence d = ak,
e = bj , f = ci, and the line [ak, bj, ci] is the required line [d, e, f ]. In the third
case, when a = ai, b = bi, c = ci, the lines [b, c, d], [c, a, e], [a, b, f ] are the
lines [bi, ci, a1], [ci, ai, b1], [ai, bi, c1], respectively, so the line [a1, b1, c1] is the
required line [d, e, f ]. In the fourth case, when a = ai, b = bi, c = cj , the lines
[b, c, d], [c, a, e], [a, b, f ] are consecutively [bi, cj , ak], [cj , ai, bk], [ai, bi, c1], so
the line [ak, bk, c1] is the required line [d, e, f ]. We have proved [d, e, f ], and
as [b, c, d], [c, a, e] and [a, b, f ] also hold, by Theorem 3.4 (with substitutions
a ↔ d, b ↔ e, c ↔ f), it follows that a, d; b, e; c, f are pairs of corresponding
points.

The previous proof is also taken from [1], pp. 215–216.

Theorem 4.8. If claims (4.1) are valid, then b1, b2, b3 and b4 are associ-
ated points with a common tangential a1, where the points a1, a2, a3, and a4
are associated.

Proof. If we write the first four statements (4.1) in the form [a2, b1, b2],
[a2, b4, b3], [b1, b3, a3] and [b2, a3, b4], then by Theorem 3.4 it follows that the
pairs of points a2, a3; b1, b4 and b2, b3 are corresponding. Similarly, if we write
the last four statements (4.1) in the form [a3, b1, b3], [a3, b2, b4], [b1, b4, a4]
and [b3, a4, b2], then by Theorem 3.4 it follows that the pairs of points a3, a4;
b1, b2 and b3, b4 are corresponding. That is why points b1, b2, b3, and b4 are
associated and have the common tangential, which we denote a1, and we also
know that points a2, a3, and a4 are pairwise corresponding, so they have the
common tangential a′. From the table

b1 b1 a1
b2 b2 a1
a2 a2 a′

it follows that the point a1 has the tangential a′, so the points a1, a2, a3, and
a4 are associated.
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