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Abstract. If we view the field of complex numbers as a 2-dimensional
commutative real algebra, we can consider the differential equation z′ =
az2 + bz+ c as a particular case of A− Riccati equations z′ = a · (z · z)+ b ·

z+ c where A = (Rn, ·) is a commutative, possibly nonassociative algebra,
a, b, c ∈ A and z : I → A is defined on some nontrivial real interval. In the
case A = C, the nature of (at most two) critical points can be described
using purely algebraic conditions involving involution ∗ of C. In the present
paper we study the critical points of L(π)− Riccati equations, where L(π)
is the limit case of the so-called family of planar Lyapunov algebras, which
characterize 2-dimensional homogeneous systems of quadratic ODEs with
stable origin. The number of possible critical points is 1, 3 or ∞, depending
on coefficients. The nature of critical points is also completely described.
Finally, simultaneous stability of the origin is considered for homogeneous
quadratic part corresponding to algebras L(θ).

1. Introduction

Let ~x′ = Q(~x) denote autonomous system of homogeneous quadratic dif-
ferential equations in Rn. One possible non-classical way of investigating pos-
sible behavior of its solutions, for example the stability of the origin, uses the
theory of non-associative algebras. This was first studied by Markus in [16].
He considered ~x′ = Q (~x) , and naturally associated it to a nonassociative
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commutative algebra AQ=(Rn, ◦) defined by the following algebra multipli-
cation:

(1.1) ~x ◦ ~y =
1

2
(Q (~x+ ~y)−Q (~x)−Q (~y)) .

This approach makes sense because ~x′ = Q1(~x) and ~x′ = Q2(~x) are
equivalent systems of ODEs if and only if algebras AQ1

and AQ2
are iso-

morphic. The algebra AQ is called the real Markus algebra of the system
~x′ = Q(~x), which can be viewed as an algebraic differential equation z′ = z2

for z : I → AQ where I ⊂ R is some nontrivial interval. A standard mono-
graph on the subject is [28] where details can be found, was written by S.
Walcher.

Certain properties of homogeneous quadratic systems became very nat-
ural when viewed through Markus lenses. For example, it is a purely alge-
braic fact that every real finite-dimensional algebra contains either a nonzero
element satisfying p2 = p or a nonzero element satisfying n2 = 0. Since the
existence of an element of the former type implies existence of solutions whose
formula is given by

x(t) =
δ

1− δt
p for any δ > 0,

x(0) = x0 = δp,

which blow-up in finite time and whose initial conditions can be arbitrary close
to the origin, a homogenous quadratic system ~x′ = Q(~x) with a stable origin
corresponds to an algebra AQ which contains a nonzero nilpotent element of
order two. Since (αn)2 = α2n2 = 0 for all real constants α and the constant
function z : (−∞,+∞) → AQ defined by z(t) = n is obviously a solution of
z′ = z2, it follows that in every homogenous quadratic systems of ODEs with
the stable origin, the origin cannot be an isolated critical point, but in fact
lies on a line which consists entirely of critical points.

In planar case, i.e., when dim (AQ) = 2, some well-known classical results
can be elegantly expressed using Markus approach. One such example was
presented in [21] where it was proved that a nontrivial (i.e., Q 6= 0) system
~x′ = Q(~x) in the real plane has a stable origin if and only if AQ is isomorphic
to one of the planar Lyapunov algebras L(θ), where θ ∈ (0, π]. These algebras
will be described in Section 2. In [2] Boujemaa, El Qotbi and Rouiouih treated
the (in)stability and behavior of the solutions near the critical point away from
origin. Some other recent papers concerning similar topics as well as some
applications to differential and integral equations are [1, 3, 8, 9, 10, 21, 22, 23].

The purpose of studying known results in R2 and reformulating them
into the language of Markus algebras, is to gain some structural insight and
hopefully form sensible conjectures concerning possible new results in higher
dimensions. One such example is [18] where 3-dimensional systems with a
stable origin and a plane of critical points were successfully classified.
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All 2-dimensional real commutative algebras can be classified (see [16,
Theorems 6, 7 and 8] for details) in three large groups (those containing
a nonzero idempotent, those containing a basis consisting of two nilpotent
elements and those containing no idempotents and only one nilpotent line)
and further, with respect to their multiplication tables, into 23 parametric
families. Let (A, ◦) be one of 2-dimensional Markus algebras. Since a Markus
algebra need not contain an identity element, we will define Riccati equations
with respect to A as the following differential equation:

z′ = a ◦ z2 + b ◦ z + c for a, b, c ∈ A and a 6= 0.

Assuming the existence of a singular point, the system can be transformed
with a simple linear change of coordinates in such a way that the origin
becomes one of singular points and the constant term vanish

z′ = a ◦ z2 + b ◦ z for 0 6= a, b ∈ A and a 6= 0.

In the sequel we call an equation of this type an A−Riccati equation, in
order to avoid any possible confusion with the classical use of the term Riccati
differential equation.

If we choose any fixed algebraic basis {e1, e2} of A and write z(t) =
x(t)e1 + y(t)e2, the planar A−Riccati equation transforms into a familiar
systems of ODEs

(1.2)
ẋ = α1x+ β1y + a1x

2 + 2b1xy + c1y
2,

ẏ = α2x+ β2y + a2x
2 + 2b2xy + c2y

2,

for some real parameters α1,2, β1,2, a1,2, b1,2 and c1,2, which were studied by
many authors. One good recent survey concerning global behavior of (1.2)
is the paper [1] by Artés, Llibre, Schlomiuk and Vulpe. The authors proved
that for (1.2) there are 1765 different global geometrical configurations of sin-
gularities of quadratic differential systems in the plane. There are other 8
configurations conjectured impossible, all of them related with a single con-
figuration of finite singularities. Another good source of general information
is [29].

This system was recently considered for symmetries in [8]. Note that if
b 6= 0 the interesting dynamics occurs if the origin is a nonhyperbolic singular
point of (1.2) in which case we have the system

x′ = −y + q11x
2 + 2q12xy + q13y

2,
y′ = x+ q21x

2 + 2q22xy + q23y
2,

qij ∈ R for i, j ∈ {1, 2, 3}.

The singular point at the origin of this system is a center (near the origin all
trajectories of the system are ovals) or focus (all trajectories are spirals).

For the singular point at the origin of the planar analytic differential
system in the form of a linear center perturbed by higher order terms, i.e.,

(1.3) ẋ = −y + F (x, y), ẏ = x+G(x, y),
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where F and G are real analytic functions whose series expansions in a neigh-
borhood of the origin start in at least second order terms Poincaré and Lya-
punov ([13, 22]) proved that it is a center if system (1.3) admits a first integral
of the form

(1.4) Φ = x2 + y2 +
∑

k+l≥3

φklx
kyl.

This is the so-called problem of distinguishing between a center and a focus,
or the Poincaré center problem which was studied for the first time in 1908
by Dulac ([6]) where he has solved it for the case of the quadratic system.
Later it was solved for the systems in the form of a linear center perturbed
with homogeneous cubic nonlinearities ([15]), for the so-called Kukles system
([14, 24]), for some linear centers perturbed with homogeneous polynomials
of degree five ([5]), and for a few other specific families of polynomial systems
of ODE’s. Although in the general case a first integral of the form (1.4)
does not always exist we can always find series of the form (1.4) for which

Φ̇ = ∂Φ
∂x

(−y + F (x, y)) + ∂Φ
∂y

(x+G(x, y)) reduces to

(1.5) Φ̇ = x2+ y2− g22 ·
(

x2 + y2
)2− g33 ·

(

x2 + y2
)3− g44 ·

(

x2 + y2
)4− · · · ,

where gkk is called k−th focus quantity and it is a polynomial in the param-
eters of the system. By the definition, (1.4) is a first integral of system (1.3)

if Φ̇ ≡ 0 from which it follows that all focus quantities must be zero. This is
one of the tools to study the problem of distinguishing between a center and
a focus in polynomial systems of the form (1.3). To find necessary conditions
for the existence of a first integral of the form (1.4) for system (1.3) we look for
a formal series (1.4) satisfying (1.5). To start the computational process for
finding the first several conditions for integrability we write down the initial
string of (1.4) up to order N

ΦN (x, y) = x2 + y2 +

N
∑

k+l=3

φklx
kyl.

Then for each i = 3, . . . , N we equate coefficients of terms of order i in the
expression

(1.6)
∂ΦN

∂x
(−y + F (x, y)) +

∂ΦN

∂y
(x+G(x, y))

to zero obtaining systems of linear equations of unknown variables φkl. Then,
we look for solutions of the linear systems obtained starting from system that
corresponds to i = 3. Linear systems corresponding to odd i = 2ℓ− 1 always
have unique solutions. After solving the system we substitute the obtained
values of φkl into the linear systems corresponding to i > 2ℓ− 1. For systems
that correspond to even i = 2ℓ, there is one equation more than the number
of variables. After dropping a suitable equation one obtains the system with
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the unique solution. After solving the system we assign the value 0 for the
undefined φkl (with k + l = 2ℓ) and substitute the obtained values of φkl

into the linear systems corresponding to i > 2ℓ. Next, we evaluate (1.6) with
the found φkl (k + l ≤ 2ℓ) and find the coefficient of (x2 + y2)ℓ which we
denote by gℓ−1ℓ−1. Computing in this way we obtain a list of polynomials
g11, g22, g33, . . . in the parameters of system (1.3) (see for instance [23] for
more details). We will use this approach later to prove the existence of first
integral of the certain quadratic system.

Our idea is to study the dynamics of 2-dimensional Riccati equations asso-
ciated to commutative nonassociative algebras, using the apparatus developed
by Markus, Walcher and others, which should eventually lead to elegant al-
gebraic formulations of some known results concerning global dynamics and
behavior of solutions near critical points, while our final goal is to use the
obtained algebraic insight to formulate and hopefully prove some new results
concerning the dynamics of quadratic systems in 3-dimensional space.

2. A simple example

The most obvious case of a planar Markus algebra is the (associative)
field C of complex numbers, viewed as 2-dimensional real algebra. In order
to illustrate what kind of algebraic formulation we are looking for in general
case, we will write two simple observations in an explicit way. For the sake of
reader’s convenience we also include some details concerning computations.

Proposition 2.1. Let z′ = az2 + bz, where a 6= 0, be a C−Riccati equa-
tion. Then one of the following three possibilities must hold.

(1) The equation has precisely one singular point, which is unstable. More-
over, every neighborhood of this singular point contains initial condi-
tions for which the corresponding solution blows-up in finite time. This
happens if and only if b = 0.

(2) The equation has precisely two singular points, one of which is a stable
focus, while the other one is an unstable focus. This happens if and
only if b 6= 0 and b2 6=

(

b2
)∗
or b 6= 0 and b = b∗.

(3) The equation has precisely two singular points, both of which are cen-
ters. This happens if and only if b 6= 0 and b = −b∗.

Proof. (1) The polynomial p(z) = az2+bz has a double zero if and only
if b = 0. We can rewrite the A−Riccati equation in the form z′ = az2 whose
solution is

z(t) =

{

0 if z0 = 0
(

z−1
0 − ta

)−1
if z0 6= 0

.

In the second case the solution is defined on (−∞,+∞) if az is not real and
on

(

−∞, a−1z−1
0

)

otherwise. Every neighborhood of 0 contains points of the
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form z0 = εa−1 for sufficiently small real ε, for which the solution

z(t) =
1

ε−1 − t
a−1

goes to infinity as t → ε−1.
(2) If the polynomial p(z) has two different zeros, we can rewrite the

A−Riccati equation in the form z′ = az(z − z1) where z1 6= z2 = 0 are
distinct singular points. The solution of this equation is given by

z(t) =







z1 if z0 = z1
0 if z0 = 0

z1
(

1−
(

1− z1z
−1
0

)

etaz1
)−1

if z0 6= z1 and z0 6= 0

.

The corresponding Jacobians are representing multiplications with complex
numbers az1 = −b and −az1 = b whose real parts have opposite signs. If the
real part of b is nonzero, we therefore have one stable and one unstable foci.

(3) If the real part of b is zero then b = iϕ for some real ϕ. The solution
is of the form A(1 + Beiϕt)−1 for some constants A, B, ϕ and is therefore
periodic, which yields a center.

3. A−Riccati equations associated with limit Lyapunov algebra

The most natural way to describe Lyapunov algebras is using their com-
plex envelopes. Let {p, p∗} be some base of the complex linear space C2,

and the product being defined by p2 = p, (p∗)2 = p∗ and p · p∗ = p∗ · p =
(eiθp + e−iθp∗)/2, where the constant θ satisfies the condition 0 < θ ≤ π.
The involution is defined by (p∗)∗ = p and extended on C2 by conjugate-
linearity. In this fashion we equip C2 with the structure of an involutive
algebra C(θ) = (C2, ·, ∗). The Lyapunov algebra L(θ) is the self-adjoint part
of C(θ), i.e., L(θ) = {x ∈ C(θ) : x∗ = x}. Since C(θ) has dimension 4 over R,
the real dimension of L(θ) is 2. They are interesting because of the following
result (see [21]).

Theorem 3.1 ([21]). The system of differential equations

ẋ = α1x
2 + β1xy + γ1y

2,
ẏ = α2x

2 + β2xy + γ2y
2,

where at least one of the above coefficients α1,2, β1,2, γ1,2 is nonzero has a
stable origin if and only if its Markus algebra is isomorphic to one of L(θ).

Because in the limit case θ = π the multiplication table is somewhat
simpler, in the original Markus paper those algebras were listed as two families
([16, Theorem 6, families 9 and 10], for more details, see next section).

Because of Theorem 3.1, from the viewpoint of our final goal, the present
paper deals with two natural antipodes. If we consider planar homogeneous
A−Riccati equations, then A = C represents the most unstable possibility,
while A = L(π) is the most stable possibility.
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It is not difficult to compute that the multiplication table of L(π) can be
given by

(3.1)

· n e

n 0 e
e e −n

with the corresponding simplified A−Riccati equation z′ = az2 + bz defined
by

(3.2)
ẋ = −b2y − 2a2xy,
ẏ = b2x+ b1y + 2a1xy − a2y

2,

where a = a1n+a2e and b = b1n+ b2e. In the sequel we will use abbreviation
a = (a1, a2), b = (b1, b2) . The involution can be defined by n∗ = n and
e∗ = −e. Using the above multiplication table it is easy to compute that
(xy)∗ = x∗y∗ for all x, y ∈ L(π). Let x = (x1, x2), Re (x) = x1 and Im (x) =
x2. Note that e is in some sense an equivalent of the imaginary unit for L(π).
More precisely, e (ex) = −x for all x ∈ L(π).

In order to interpret our computations in terms of L(π) structural prop-
erties we note the following

Observation 1. (1) Let x = (x1, x2) ∈ L(π). Then x1 = 0 if and only
if x = −x∗.

(2) Let x = (x1, x2) ∈ L(π). Then x2 = 0 if and only if x = x∗.
(3) Let x = (x1, x2) ∈ L(π). Then x2 = 0 if and only if x2 = 0.
(4) Let a = (a1, a2) ∈ L(π), b = (b1, b2) ∈ L(π). Then a2b2 = Re (ab∗)

and a1b2 − a2b1 = − Im (ab∗).
(5) Let b = (b1, b2) ∈ L(π). Then b21 − 4b22 > 0 if and only if

(

Re((eb)2)
)2

>
(

Im((eb)2)
)2

.

The proof is a straightforward computation and will be omitted.

Theorem 3.2. The homogeneous equation z′ = az2, where a 6= 0 always
has an unstable origin.

Proof. Let x ◦ y = a · (x · y) define the multiplication in algebra A◦. To
check that A◦ is not isomorphic to any L(θ), one just has to prove that A◦

has a nontrivial idempotent (yielding blow-up solutions). Therefore we seek
for solutions to az2 = z:

• if a1a2 6= 0 algebra A◦ has two linearly independent idempotents e1 =
− 1

a2

e and e2 = − 1
8a1a2

n− 1
2a2

e;

• if a1 = 0 and a2 6= 0 algebra A◦ has idempotent e1 = − 1
a2

e.
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Theorem 3.3. Let z′ = az2 + bz, where a 6= 0 and b 6= 0, be a
L(π)−Riccati equation. Then one of the following possibilities must hold.

(1a) If a2 6= 0, (Im (ab∗))
2
> 2 (Re ( ab∗))

2
, Re

(

(eb)
2
)2

< Im
(

(eb)
2
)2

and

b 6= −b∗, the equation z′ = az2 + bz has three distinct singular points.
Two of them are either a pair of sink and saddle or a pair of source
and saddle or a pair sink-source, while the origin is a focus.

(1b) If a2 6= 0, (Im (ab∗))2 > 2 (Re (ab∗))2 and Re
(

(eb)2
)2

> Im
(

(eb)2
)2

,

the equation z′ = az2 + bz has three distinct singular points. Two of
them are either a pair of sink and saddle or a pair of source and saddle
or a pair sink-source, while the origin is sink (if Re (b) > 0) or source
(if Re (b) < 0).

(1c) If a2 6= 0 and (Im (ab∗))2 > 2 (Re (ab∗))2 and b = −b∗, b 6= b∗, the
equation z′ = az2 + bz has three distinct singular points. Two of them
are either two saddles, a saddle and a source or a saddle and a sink or
a pair sink-source, while the origin is a center if a1a2 = 0 and a focus
otherwise.

(2a) If a2 6= 0, (Im (ab∗))
2
< 2 (Re (ab∗))

2
, Re

(

(eb)
2
)2

< Im
(

(eb)
2
)2

and

b 6= −b∗, the equation z′ = az2 + bz has the origin as the only singular
point, which is a focus.

(2b) If a2 6= 0, (Im (ab∗))
2
< 2 (Re (ab∗))

2
and Re

(

(eb)
2
)2

> Im
(

(eb)
2
)2

,

the equation z′ = az2 + bz has the origin as the only singular point,
which is either a sink or a source.

(2c) If a2 6= 0 and (Im (ab∗))
2
< 2 (Re (ab∗))

2
and b = −b∗, b 6= b∗, the

equation z′ = az2 + bz has the origin as the only singular point, which
is a center, if a2 =

(

a2
)∗

and a focus otherwise.

(3a) If a2 6= 0, b2 6= 0, (Im (ab∗))
2
= 2 (Re (ab∗))

2
the equation z′ = az2+bz

has two isolated singular points. For Re (b) = 0 see (1c). For Re (b) 6=
0, the origin is hyperbolic and (un)stable, if Re (b) < 0 (Re (b) > 0),
the other one is a semi-hyperbolic saddle.

(3b) If a2 6= 0, b2 = 0, (Im (ab∗))2 = 2 (Re (ab∗))2 and Re (ab∗)2 = 0 then
Im (b) = 0 and the equation z′ = az2+bz has a line of semi-hyperbolic
saddles containing the origin and an isolated singular point which is
either a sink or a source.

(4) If a2 = 0, b2 6= 0 and b 6= −b∗ the only singular point of the equation
z′ = az2+b is the origin, which can be either a focus of sink or source.

(5) If a2 = 0, b2 6= 0 and b = −b∗ the only singular point of the equation
z′ = az2 + b is the origin. This singular point is a center.

(6a) If a2 = 0, b2 = 0 and a 6= a∗, all singular points form two perpendicular
lines; one of them passing trough the origin admits infinitely many
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stable and unstable singular points, while the other one admits just
unstable singular points.

(6b) If a2 = 0, b2 = 0 and a = a∗, all singular points form a line passing
trough the origin, which admits just stable or just unstable singular
points.

Proof. Singular points of z′ = az2 + bz in this case are the solutions to
−b2y− 2a2xy = 0, b2x+ b1y+2a1xy−a2y

2 = 0. Denoting ∆ = a1b2− b1a2 =
− Im (ab∗) and D = ∆2 − 2(a2b2)

2 there are at most three possible singular
points

(3.3) x0 = y0 = 0, x1,2 = − b2
2a2

y1,2 =
−∆±

√
D

2a22
.

The spectra of Jacobian

J (x, y) =

[

−2a2y −b2 − 2a2x
b2 + 2a1y b1 + 2a1x− 2a2y

]

at (0, 0) , (x1, y1) and (x2, y2) are

σJ(0,0) =

{

1

2

(

b1 ±
√

b21 − 4b22

)}

, σJ(x1,2,y1,2) =

{

∓
√
D

a2
,
1

a2

(

∆∓
√
D
)

}

.

Clearly, if D > 0 there are three different singular points. If b21 − 4b22 < 0 the
origin is a focus. If b21 − 4b22 > 0 the origin is a sink (if b1 > 0) or a source (if
b1 < 0).

(1a) The origin is clearly a focus. The signs of σJ(x1,2,y1,2) = {λ1,2, µ1,2}
depend on the sign of ∆ and a2 (see Table 1), yielding (x1, y1) and (x2, y2)
to be either a pair of sink and saddle or a pair of source and saddle if ∆ 6= 0
and a pair sink-source, if ∆ = 0, as stated.

λ1 µ1 λ2 µ2 ∆ a2

− + + + + +
+ − − − + −
− − + − − +
+ + − + − −

Table 1. Signs of elements of spectra of J (x1,2, y1,2)

(1b) The origin is clearly a sink (if b1 > 0) or a source (if b1 < 0). For
nature of (x1, y1) and (x2, y2) refer to Table 1.

(1c) For (x1, y1) and (x2, y2) refer to Table 1, if a1 6= 0. If a1 = 0 we have

{λ1,2, µ1,2} =
{

∓ 1
a2

√
D,∓ 1

a2

√
D
}

which corresponds to a pair sink-source,
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as stated. The origin undergoes a Hopf bifurcation. We can perform change
of time τ = b2t and system (3.2) becomes

(3.4)
ẋ = −y − 2A2xy,
ẏ = x+ 2A1xy −A2y

2,

where
A1 =

a1
b2

, A2 =
a2
b2

.

We compute first three focus quantities, briefly explained in the introduction1

of this system and we obtain

g22 =
1

2
A1A2,

g33 =
1

24
(2A3

1A2 − 217A1A
3
2),

g44 =
1

2304
(88A5

1A2 − 14110A3
1A

3
2 + 577111A1A

5
2).

We see that there are two necessary conditions for the existence of a center:
A1 = 0 and A2 = 0.

• For A1 = 0 the corresponding system is ẋ = −y−2A2xy, ẏ = x−A2y
2.

This system has an integrating factor µ (x, y) = (1 + 2A2x)
−2 from

which we construct first integral

Φ (x, y) =
1

2 (1 + 2A2x)
y2 +

1

4A2
2 (1 + 2A2x)

+
1

4A2
2

ln (1 + 2A2x) + C.

Choosing C = −1/(4A2
2), expanding Φ (x, y) in a power series and then

multiplying it by 2, we obtain first integral of the form (1.4). Hence,
by the Poincaré-Lyapunov Theorem system (3.4) admits center at the
origin.

• For A2 = 0 system (3.2) is of the form ẋ = −y, ẏ = x + 2A1xy. It
admits first integral

Φ =
2A1y − ln (1 + 2A1y)

2A2
1

+ x2

which is analytic first integral of the form (1.4).

(2a,2b) The observation follows directly from (3.3) and the spectrum of
J (0, 0) .

(2c) The system is equivalent to (3.4). The center/focus analysis of the
origin is done in the proof of (1c).

(3a) If D = 0 and a2 6= 0 there are two isolated singular points: (0, 0) and

y2 = y1 = − ∆
2a2

2

(and x2 = x1 = − b2
2a2

) with σJ(0,0) =
{

1
2

(

b1 ±
√

b21 − 4b22

)}

and σJ(x1,y1) =
{

0, ∆
a2

}

. For case b1 = 0 see (1c). If b1 6= 0, the origin

1See for example [23] for details.
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is hyperbolic and (un)stable, if b1 < 0 (b1 > 0), while (x1, y1) is a semi-
hyperbolic. If we apply transformation u = x+ b2

2a2

and v = y+ ∆
2a2

2

we arrive

at

u′ =
(

a1b2
a2

− b1

)

u− 2a2uv,

v′ =
(

b2 +
a1b1
a2

− a2

1
b2

a2

2

)

u+ 2a1uv − a2v
2.

The normal form of the above system is

X ′ =
−b1a2 + a1b2

a2
X + 2a2

(

−b2a
2
2 − a1b1a2 + a21b2

)

X2 − 2a2XY,

Y ′ =
(

b22a
5
2 − a2a

4
1b

2
2 − a21b

2
1a

3
2 + 2a31b1a

2
2b2

)

X2

+ 2a1a2 (a1b2 − b1a2)XY − a2Y
2

and a change of coordinates X = X , Y = XW takes it to

X ′ =
−b1a2 + a1b2

a2
X + h.o.t,

W ′ = −a2
(

−b22a
4
2 + a41b

2
2 + a21b

2
1a

2
2 − 2a31b1a2b2

)

X +
b1a2 − a1b2

a2
W + h.o.t,

with the Jacobian

JX=0,W=0 =

[

−b1a2+a1b2
a2

0

−a2
(

−b22a
4
2 + a41b

2
2 + a21b

2
1a

2
2 − 2a31b1a2b2

)

b1a2−a1b2
a2

]

.

Eigenvalues of JX=0,W=0 are λ1 = ∆
a2

, λ2 = − ∆
a2

which means that this sin-

gular point is a (semi-hyperbolic) saddle.
(3b) If a2 6= 0, b2 = 0 then y = 0 is a line of singular points. Another

singular point (x, y) =
(

0, b1
a2

)

is isolated. The eigenvalues of J
(

0, b1
a2

)

=
[ −2b1 0

2a1

a2

b1 −b1

]

are λ1 = −2b1, λ2 = −b1, real and of the same sign, yielding

a sink or source, since b1 6= 0. The corresponding system x′ = −2a2xy,
y′ = b1y+2a1xy−a2y

2 contains also a line of semi-hyperbolic singular points.
We can verify this by the change of coordinates x = yX , y = Y. This yields a
system

X ′ = −X (b1 + 2a1Y X + a2Y ) ,

Y ′ = b1Y + 2a1Y
2X − a2Y

2,

whose Jacobian at point (X,Y ) = (0, 0) (i.e., (x, y) =
(

0, b1
a2

)

) is

J =

[

−b1 0
0 b1

]

yielding a (semi-hyperbolic) saddle, as stated.
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(4) System (3.2) takes the form ẋ = −b2y, ẏ = b2x + b1y + 2a1xy. The
only singular point (0, 0) is either a focus, if b21 < 4b22, otherwise, if b1 < 0 it
is a sink or a source (if b1 > 0); see σJ(0,0) and (3.3).

(5) By change of time τ = b2t and denoting A1 = a1

b2
corresponding

system ẋ = −b2y, ẏ = b2x+ 2a1xy is equivalent to x′ = −y, y′ = x+ 2A1xy,
which admits a non-hyperbolic singular point at origin. The corresponding
first integral is Φ (x, y) = 2A2

1x
2 + 2A1y − ln (1 + 2A1y). Note that 2A1y −

ln (1 + 2A1y) = 2A2
1y

2− 8
3A

3
1y

3+O
(

y4
)

. Thus, expanding Φ (x, y) in a power

series and dividing it by 2A2
1, we obtain first integral of the form (1.4). Hence,

by the Poincaré-Lyapunov Theorem system x′ = −y, y′ = x+ 2A1xy admits
a center at the origin.

(6a) The corresponding system ẋ = 0, ẏ = b1y + 2a1xy is linear. Ob-
viously, the lines y = 0 and x = − b1

2a1

6= 0 are two (perpendicular) lines

of singular points. Singular point x0 = − b1
2a1

, y0 = 0 always splits the
line y = 0 into two half-lines; one of them containing only stable singular
point, while the other only unstable singular points. To observe that all
points on the line x = − b1

2a1

are unstable, take (small) ε > 0 and consider

ẏ = (b1 + 2a1 (x0 ± ε)) y, y (0) = y0 to observe ẏ = ±ǫy, y (0) = y0, for some
(small) ǫ > 0, yielding instability, as stated.

(6b) The corresponding system ẋ = 0, ẏ = b1y is linear. The line y = 0
admits all singular points. For (b1 > 0) b1 < 0 all singularities are (un)stable,
as stated.

4. Analysis of simultaneous stability of the origin

Let X be a quadratic dynamical system. By simultaneous stability, it is
meant the stability of the origin for both X and −X . It is known that if we
write X = XL + XH , where XL and XH are respectively the linear and the
homogeneous quadratic part, and if XL = 0, the origin is stable if and only
if, up to linear equivalence, X is

either XH,1 =

{

ẋ = −y2

ẏ = 2xy
or XH,k =

{

ẋ = ky2

ẏ = 2xy + y2
k < − 1

8 is a scalar.

Moreover, if XL = 0, the origin is stable for both X and −X .
Note that algebras corresponding to systems XH,1 and XH,k are isomor-

phic to algebras L(θ) for θ ∈ (0, π]. In the limit case θ = π algebra L(θ)
is isomorphic to algebras corresponding to XH,1, while for θ ∈ (0, π) alge-
bras L(θ) are isomorphic to algebras corresponding to XH,k. The relation
between parameters θ and k is (see [21, p. 10]) described by k : (0, π) →
(−∞,−1/8) defined by k(θ) = −1/(8 cos2 θ

2 ), which is clearly a bijective

function. The real form systems Ẋ = Q1,θ (X,Y ), Ẏ = Q2,θ (X,Y ) corre-
sponding to algebras L(θ) are obtained by taking the real basis h1 = p + p∗

and h2 = i(p − p∗). The linear equivalence between Ẋ = Q1,θ (X,Y ),
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Ẏ = Q2,θ (X,Y ) and systems XH,k is the following (see [21, p. 10])X = x+ 1
2y,

Y = −
(

cos 1
2θ

)

x− 1
2

(

cot 1
2θ

)

y.
Using the classic results we will handle the problem of simultaneous sta-

bility for quadratic systems with XH,θ, i.e., to XH corresponding to algebras
L(θ). Treating (simultaneous) stability of L(θ)−Riccati equation is a problem
for the future work.

If XL is no longer the trivial linear map, classical results show that the
origin is unstable for X or −X if XL has a nonzero real eigenvalue or a complex
eigenvalue with a nonzero real part. When, XL has zero as an eigenvalue with
multiplicity two, then, in a convenient basis it can be written

XL1
=

{

ẋ = y
ẏ = 0

.

The topological type of X = XL1
+XH has been studied for a large sub-

family already in [27] (we recover the well-known cusp) and recently also in
[1], and in all cases, the origin is unstable either for X or for −X , yielding
simultaneous instability of the origin in this case.

The remaining case occurs when XL has two purely conjugate complex
eigenvalues. In this case, up to an isomorphism of the corresponding algebras,
XL writes

XL2
=

{

ẋ = −y
ẏ = x

.

In their paper on limit cycles, Bautin and Frommer ([29]) gave necessary
and sufficient conditions for which X = XL2

+XH is center and consequently,
the origin is stable for both X and −X . We recall this very useful theorem.

Theorem 4.1 ([27]). Suppose a quadratic dynamical system has a form

ẋ = −y − bx2 − (2c+ β)xy − dy2,

ẏ = x+ ax2 + (2b+ α)xy + cy2.

Then the origin is a center if and only if one of the following conditions holds:

1. α = β = 0,
2. a+ c = b+ d = 0,
3. a = c = β = 0 ( or b = d = α = 0),
4. a+ c = β = α+ 5(b+ d) = bd+ 2d2 + a2 = 0, with a+ c 6= 0,
5. α

β
= b+d

a+c
= k, with ak3 − (3b+ α)k2 + (3c+ β)k − d = 0.

When it is not a center, the origin is an unstable focus either for X or for
−X .

In what follows, we consider the following question for systems XH,θ corre-
sponding to algebras L(θ): If we consider the homogeneous quadratic dynam-
ical systems XH = XH,1 and XH = XH,k, and if we add a linear part having
two purely imaginary conjugate complex eigenvalues, XL = XL2

, when will
we obtain a center? We partially answer this question by emphasizing two
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preliminary examples. The results below give an example of simultaneous
stability for both the homogeneous quadratic part and the associated linear
part.

Lemma 4.2. The origin is a center for the following quadratic system

XL2
+ XH,1 =

{

ẋ = −y − y2

ẏ = x+ 2xy
.

Proof. The conclusion follows directly from Theorem 4.1 for a = c =
β = 0 (case 3).

Lemma 4.3. Consider the quadratic dynamical system

X = XL2
+ XH,k =

{

ẋ = −y + ky2

ẏ = x+ 2xy + y2
with k < −1

8
,

then the origin is not simultaneously stable.

Proof. According to the classification theorem 4.1, X is not a center for
any value of k: the origin is a focus either for X or for −X , thus we have not
obtained the simultaneous stability.

A direct corollary of the above lemmas is the following

Theorem 4.4. Let X = XL2
+ XH,θ. Then the origin is simultaneously

stable if and only if XH = XH,1; i.e., in the limit case L(π).
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