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Abstract

A fast and simple finite element model is presented in this paper to simulate the crack 
propagation in notched beam structures with two layers and one interface medium 
in Mode I delamination. The truss elements from FEAP element library are endowed 
with a user material law describing the bilinear cohesive zone model (CZM) with the 
material unloading path defined by embedding a history variable in the response. 
The layer is modelled with linear elastic Timoshenko beam elements. The method 
is used for damage growth and damage propagation simulations in interfaces with 
both ductile and brittle materials. The method is robust for ductile interfaces, but for 
brittle interfaces more specific numerical techniques are required. The results are 
evaluated using available analytical and numerical solutions and a good agreement 
is achieved. 
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Sažetak

U ovome radu predstavljen je brz i jednostavan model konačnih elemenata za opis 
raslojavanja u modu I u zasječenim dvoslojnim grednim konstrukcijama s kontaktnim 
materijalom među slojevima. Element rešetke iz knjižnice elemenata programa 
FEAP obogaćen je korisničkim materijalnim modelom koji opisuje bilinearni model 
kohezivne zone, a u kojem je rasterećenje omogućeno definiranjem varijabli koje 
pamte povijest odgovora. Gredni sloj opisan je linearnim Timoshenkovim grednim 
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elementom. Metodu koristimo za opis razvoja oštećenja u kontaktnom sloju, koji 
može biti izrađen od duktilnog ili krtog materijala. Metoda je robusna za duktilne 
kontaktne materijale, a krti materijali zahtijevaju drugačiji pristup, prilagođen 
takvim materijalima. Rezultati su ocijenjeni usporedbom s raspoloživim analitičkim i 
numeričkim rješenjima s kojima je uočena dobra podudarnost.

Ključne riječi test dvostruke konzole, razvoj pukotine, model kohezivne zone, 
ugradnja u FEAP

1. Introduction
Layered structures provide an extremely effective means of optimizing 

functional and structural performance of diverse mechanical systems in 
many engineering applications. Composite structures are made of two or 
more components from different materials combined in such a way that 
each of them fulfils the function for which its material characteristics are 
best suited. The mechanical behaviour of these structures largely depends 
on the type of connection between the layers. Delamination is one of the 
most prevalent and severe failure modes in layered composite structures, 
and has been widely investigated, from both experimental and numerical 
standpoints. The crack can propagate in the delamination problem in the 
opening (Mode I), sliding (Mode II) or tearing (Mode III) modes. In this 
paper we focus only on Mode I delamination and the double cantilever 
beam (DCB) test, which is the standard test for determining fracture 
toughness GIC in Mode I [1,2].

Fracture mechanics and damage mechanics are two main approaches 
for the numerical simulation of delamination. In the frame-work of damage 
mechanics, the most prevalent models for describing the interlayer 
behaviour are cohesive-zone models (CZMs), originally proposed by 
Dugdale [3] and Barenblatt [4]. As damage is usually not introduced 
in the layers, they are described through a simple Hook’s material law. 
Plane-strain elements in assembly with interface elements have been 
traditionally used to simulate crack propagation in delamination tests, 
including single and mixed modes [5, 6]. Modelling delamination using 
beam FEs rather than 2D plane–strain FEs, has been recently proposed to 
improve the computational efficiency of the numerical simulation [7]. For 
DCB tests, analytical solutions are also available, in fact, not only for linear-
elastic analysis, but also for a bi-linear constitutive law [8] as one of the 
most common traction-separation laws [9].

Oscillations in the load-displacement curve and the related convergence 
problems are usually reported in the numerical analysis of delamination 
tests, including DCB tests [5,7,10]. In DCB tests, the oscillations may 
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be reduced by simply refining the FE mesh [5, 7] and using Simpson 
integration rule instead of Gauss-integration [11]. In more complex 
delamination tests, snap-through and snap-backs in the response of a 
delaminated composite can be successfully handled using the arc-length 
method [12, 13]. Moreover, the interface parameters play a fundamental 
role in the resulting oscillations and instabilities: the more ductile an 
interface, the more robust the solution. The solution is strongly dependent 
on the tensile strength, but a good agreement between the CZM model and 
the linear-elastic fracture-mechanics (LEFM) formulation in low values of 
tensile strength can still be obtained. 

The present paper proposes a very simple model for the numerical 
simulation of delamination in Mode I for the DCB tests. A symmetric 
model, where only one half of the DCB specimen is modelled, employs 
beam (Frame) and truss (Bar) elements from the FEAP [14] element 
library for the arm and the interface, respectively. User material input and 
user material law subroutines are required to enhance the original truss 
elements from the FEAP library with a bilinear cohesive-zone model. 
Thus, once that the material model is modified, such truss elements can 
be easily implemented in a simulation using the standard FEAP frame-
work. However, such model is not applicable for simulations of Mode II 
delamination problems. 

The outline of the paper is as follows. In Section 2, the problem and its 
governing equations are described. In Section 3, the numerical method is 
explained from the points of view of implementation and finite element 
modelling. The numerical results are reported in Section 4 for ductile, 
and brittle interfaces and compared to available analytical and numerical 
results.

2. Problem Description
The geometry and boundary restraints of the problem are depicted 

in Figure 1 for a moment-loaded DCB (MDCB) with prescribed rotations 
and for a standard force-loaded DCB with a prescribed displacement, 
respectively. The specimen has a length L, width b and thickness 2h. In 
contrast to DCB, MDCB belongs to the family of steady-state J-integral 
specimens and is well-known in the field of experimental and analytical 
fracture mechanics [15, 16]. In this paper, results for both DCB and MDCB 
are presented.

The arms are modelled using simple Hook’s material law (σ = Eε), 
while the interface is modelled using a bi-linear constitutive law shown in 
Figure 2. The interface material has three parameters, namely σmax , δ0 and 
δC as the maximum value of contact tractions, the relative displacement at 
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the linear-elastic limit and the relative displacement for which a total loss 
of adhesion in the interface takes place, respectively. Parameters σmax  and 
δ0 define the elastic limit (point C in Figure 2), while at a point B, closer to 
the crack tip, there is an ongoing damage growth. At the crack tip (point 
A), the adhesion is completely lost and the crack starts to propagate. The 
cohesive-zone model can be formulated as:

𝛿𝛿𝛿𝛿𝑐𝑐𝑐𝑐 as the maximum value of contact tractions, the relative displacement at 
the linear-elastic limit and the relative displacement for which a total loss 
of adhesion in the interface takes place, respectively. Parameters 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  and 
𝛿𝛿𝛿𝛿0 define the elastic limit (point C in Figure 2), while at a point B, closer to 
the crack tip, there is an ongoing damage growth. At the crack tip (point A), 
the adhesion is completely lost and the crack starts to propagate. The 
cohesive-zone model can be formulated as: 

𝜎𝜎𝜎𝜎 = �
𝑆𝑆𝑆𝑆𝛿𝛿𝛿𝛿                  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �̅�𝛽𝛽𝛽 ≤ 0 
(1 − 𝑔𝑔𝑔𝑔)𝑆𝑆𝑆𝑆𝛿𝛿𝛿𝛿    𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �̅�𝛽𝛽𝛽 > 0 

. (1) 

in which the damage parameter �̅�𝛽𝛽𝛽 is defined as 

�̅�𝛽𝛽𝛽(𝜏𝜏𝜏𝜏) = max
0≤𝜏𝜏𝜏𝜏′<𝜏𝜏𝜏𝜏

𝛽𝛽𝛽𝛽(𝜏𝜏𝜏𝜏′), (2) 

𝛽𝛽𝛽𝛽(𝜏𝜏𝜏𝜏′) = 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿0
− 1, (3) 

the stiffness of the interface is 

𝑆𝑆𝑆𝑆 = 𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝛿𝛿𝛿𝛿0

, (4) 

and the damage parameter reads 

𝑔𝑔𝑔𝑔 = min �1, 𝛿𝛿𝛿𝛿𝑐𝑐𝑐𝑐
𝛿𝛿𝛿𝛿𝑐𝑐𝑐𝑐−𝛿𝛿𝛿𝛿0

𝛽𝛽𝛽𝛽�

1+𝛽𝛽𝛽𝛽�
�, (5) 

where σ and δ denote the traction and separation of the interface, 
respectively. 
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Figure 2. A typical bi-linear CZM representing interface constitutive behaviour

3. Numerical Simulation of the problem

3.1. FEAP implementation of the CZM law

As shown in equation (1), the constitutive equation of the interface 
relates the stress to the relative displacement, which is unlike the common 
material laws, where strains are related to stress values in the constitutive 
equations. In FEAP, the residual and tangent stiffness computations are 
based on the constitutive stress-strain relations and the existing truss 
element can be adapted to account for the non-linear constitutive law (1). 
This is performed via a user material input subroutine UMATI with three 
material inputs (σmax , δ0 and δC) and one history variable (β̅) implemented 
in FEAP. The implemented user material law is called in the solution 
procedure and computes the components of stress based on equation (1) 
and tangent stiffness value (dd) using the following relations:
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

⎩
⎪
⎨

⎪
⎧ 𝑆𝑆𝑆𝑆                             𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �̅�𝛽𝛽𝛽 ≤ 0

(1 − 𝑔𝑔𝑔𝑔)𝑆𝑆𝑆𝑆         𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔 < 1 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 𝛽𝛽𝛽𝛽 < �̅�𝛽𝛽𝛽
𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝛿𝛿𝛿𝛿0−𝛿𝛿𝛿𝛿c

            𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔 < 1 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 𝛽𝛽𝛽𝛽 > �̅�𝛽𝛽𝛽

0                                  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔 = 1
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The material behaviour of a single non-linear truss element is shown in 
Figure 3, where loading, unloading and reloading parts can be observed. The 
cross-section of the truss element is set to 1 mm2, its length is 1 mm and 
𝜎𝜎𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝛿𝛿𝛿𝛿0 and 𝛿𝛿𝛿𝛿𝑐𝑐𝑐𝑐 are equal to 10 MPa, 0.5 mm and 2 mm, respectively.  
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Figure 3. Unloading-reloading paths (CA-AC and DA-AD) of the implemented 
Truss Element with a bi-linear CZM law

3.2. Finite Element Model of the problem 

Due to the symmetry of the structure, only a half of it is modelled 
using finite elements as shown in Figure 4. The beam is divided in n 
Timoshenko beam (Frame) elements of equal length. The interface is 
modelled by connecting (n(1 – a0/L)+1) truss elements to each beam node 
in the interface area if n is set in such a way that 
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4. 4. Numerical Results
In this section, three numerical examples, for which analytical or 

numerical results are already available in the literature, are used to test the 
present numerical model. 

4.1. Example 1

A DCB test with variable interface properties, but equal area under the 
traction-separation law , is simulated. The analytical solution is obtained 
by assuming an infinite length of the beam [8], but setting L = 200mm is 
sufficient for excluding the end-of-beam effects in the biggest part of the 
numerical simulation. Referring to Figure 1, a DCB with dimensions h = 6 
mm, b = 25 mm and a0 = 30 mm is considered. Table 1 lists the material 
properties of the bulk material (beam layers) and interface. The maximum 
contact traction is varied between 7.5 and 120MPa to provide 5 cases of 
different brittleness in the interface.

Table 1. Material properties of the DCB example 1

BULK INTERFACE
E (GPa) ϑ σmax (MPa) δc (mm) δ0 (mm)

70 0.33

7.5 0.26

0.01 δc

15 0.13
30 0.066
60 0.033

120 0.016

2000 2-noded Timoshenko linear beam (Frame) elements from FEAP 
element library are distributed over the upper half of the DCB, which 
means that the distance between the nodes is le = 0.1 mm. Therefore, 
according to Figure 4, there are1701 truss elements at the interface, each 
of them connected to a Frame-element node. Such mesh proved to be 
sufficiently fine to avoid oscillations and convergence issues typical for 
FE simulations delamination problems [7]. Due to symmetry, the values 
of δ0 and δc are divided by 2 in the FEAP input file. A vertical deflection 
∆/2 = 10 mm is applied on the left-end node in 250 increments. Do note 
that, because of the symmetry of the DCB test, when only one half of the 
specimen is modelled, the deflection of the arm is half of the total value of 
the crack mouth opening ∆ (see Figures 1(b) and 4). The FEAP simulation 
completes with converged Newton-Raphson iterations with a quadratic 
rate of convergence and a maximum of 6 iterations per load step. 
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The crack length can be measured during crack propagation by 
detecting the location of leftmost truss element with zero stiffness. The 
agreement between FEAP and analytical results, which are obtained from 
the software EasyDCB [8], is shown in Figure 5. Small differences between 
the solutions can be noticed only for relatively large values of crack length 
because of the infinite-length assumption in the analytical solution. In 
Figure 6, the force-displacement curve for the DCB test is obtained from 
both FEAP simulation and EasyDCB. An excellent agreement is observed 
between proposed interface model and the analytical solution.
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4.2. Example 2

Using the same material properties, geometrical dimensions and finite 
element descriptions as in the previous example, in this example a MDCB 
test is simulated. Rotation  is applied on the left end node and the load-
displacement results are plotted in Figure 7, which shows an excellent 
agreement with the analytical results [8].
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Figure 7. The load-displacement plots of the MDCB example 2

4.3. Example 3

The specimen used in this example is shown in Figure 8 with its 
corresponding geometrical properties (the width of the beam is 20 mm), 
boundary conditions and loading. The material properties for bulk and 
interface are listed in Table 2. 800 2-noded Timoshenko beam (Frame) 
elements are used to discretise the DCB arm, which means that the 
distance between the nodes is . Thus, according to Figures 4 and 8, at the 
interconnection there are 561 nodes to which truss elements are attached. 
The solution procedure is not as robust as the previous examples due to 
the high brittleness of interface material. Very small increments and a 
relatively large number of iterations in the displacement control solution 
are required to avoid loss of convergence in the Newton-Raphson solution 
procedure. In particular, the displacement increment is decreased from 
0.04 mm in the previous examples to 0.005 mm, while the maximum 
number of iterations is increased from 7 to 15. To simulate brittle interface 
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numerically a more sophisticated solution algorithm than the displacement 
control method is needed (not included in the present paper). The 
numerical results are presented in Figure 9 and are compared to the multi-
layer beam model from [7]. The results are in good agreement, oscillations 
are less pronounced in the truss element model results but more 
differences after the limit point exist due to reducing the residual tolerance 
to avoid losing convergence near the limit point (the point with singularity 
in the tangent stiffness of the finite element method). 

Figure 8. Geometrical properties of specimen example 3

Table 2. The material properties of the DCB in example 3

BULK INTERFACE
E (GPa) G(GPa) σmax (MPa) δc (mm) δ0 (mm)
135.3 5.2 57 0.009825 1e-7
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Figure 9. The load-displacement plot of DCB in example 3,  
a) A range of interest, b) zoom
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5. Conclusion and Outlook
In this paper, a simple and efficient model for simulation of crack 

propagation in Mode I using the DCB test is presented. A truss element 
with a non-linear material law based on the bi-linear CZM can model the 
interlaminar media in the composites in a simple manner. The model is 
accurate, fast and robust for the interfaces with ductile interfaces but it is 
recommended for the brittle interfaces only if decreasing σmax is feasible. 
Numerical instabilities, typical of numerical simulations with cohesive-
zone elements, can be observed in the numerical simulation of brittle 
interfaces with non-linear truss elements. However, this can be suppressed 
by refining either the mesh or increment sizes. The material behaviour for 
interface media is implemented in FEAP, and the simulation results are 
validated against available analytical and numerical results.

The lack of efficiency of the non-linear truss elements in the case 
of brittle interfaces is the main motivation to implement a 2D interface 
element in FEAP in the next step of this research to simulate continuous 
interface. Besides that, with the coupled interface element [5], Mode II and 
mixed-mode simulations will be possible. Efficiency and robustness of this 
extension will be assessed and reported subsequently.
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