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Summary 

One of the major difficulties in linear wave-induced ship motion problem with forward 

speed is how to solve the m-terms accurately. This paper proposes a novel numerical method 

(Taylor Expansion Boundary Element Method, TEBEM) to compute the m-terms for arbitrary 

floating bodies. This method treats the m-terms as the Dirichlet type, uses the first-order 

derivatives terms on the right-handed side of boundary value problem, which is solved by 

TEBEM method. Numerical studies are performed for the hemisphere, mounted cylinder, and 

modified KVLCC2 ship models. Compared to the analytical solutions and other numerical 

results, a good agreement can be obtained by the TEBEM method. 

Key words: m-terms; Taylor expansion boundary element method; second-order derivative; 

forward speed; sharp corner 

1. Introduction 

When the linear wave-induced ship motion problem with forward speed is considered, 

the interaction between the local steady flow and unsteady wave field should be considered in 

both the body surface and free surface boundary condition for the unsteady boundary value 

problem (BVP). The m-terms involved in the body surface condition is the second order 

derivatives of the velocity potential substantially. It is difficulty to calculate accurately for any 

ship body. With the increase in computer power, many researchers choose the CFD method to 

study the ship motion and added resistance, such as Lee et al [1], and avoid to calculate the 

m-terms involved in the BVP of ships with forward speed. 

Faltinsen (1974) [2] considered the influence of the m-terms in the calculation of the 

added mass and damping coefficient of the ships with forward speed. Many references have 

revealed the importance of m-terms, such as Inglis and Price (1981) [3], Iwashita and Bertram 

(1997) [4], Chen and Malenica (1998) [5], Duan and Price (2002) [6] etc. Iwashita and 

Bertram (1997) [4] pointed out the influence of m-terms on the wave pressure near the bow 

region. Chen and Malenica (1998) [5] found m-terms play an important role in the solutions 

of the added mass and damping coefficient by the numerical method inspired from Wu (1991) 
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[7]. Duan and Price (2002) [5] even found that the local steady flow make a significant 

contribution to the slender body around the bow and stern. 

The m-terms are usually neglected when taking the steady potential as the incoming 

uniform stream for the slender ship under the assumption of high speed. However, the impact 

cannot be ignored for the blunt ship with low forward speed. There are several attempts to 

deal with m-terms, which can be divided into the indirect method and direct method. For the 

indirect method, Bai (2000) [8], Teng et al. (2002) [9]and Kim et al. (2011) [10] all applied a 

modified Stokes formula to rewrite the effect of the second-order derivatives in m-terms in 

terms of the first-order derivatives and the corresponding waterline integral which involves 

additionally the first-order derivatives of the Green function. Shao and Faltinsen (2012) [11] 

calculated the added resistance of the ships under the body-fixed coordinate system without 

the second-order derivatives of the steady velocity potential on the body surface condition. 

For the direct method, Zhao and Faltinsen (1989) [12] calculated the second-order 

derivatives at these points, which are offset in the fluid domain, because the singularity of 

Rankine source is weaken away from the boundary surface. The m-terms on the mean wetted 

body surface can be obtained by extrapolation. Raven (1996) [13] applied the desingularized 

panel method to calculate the wave-making resistance, whose kernel is making the 

singularities offset outside of the fluid domain to avoid the difficulty of dealing with the 

singularity of Green function, then the derivatives can be computed by differentiating the 

Green function. Nonetheless, the offset distance should be set carefully. Wu (1991) [7] 

handled the m-terms as Dirichlet type on the basis that the first-order derivatives could be 

accurately computed. Bingham and Maniar (1996) [14] represented the geometry and velocity 

potential by sixth-order B-splines method, which is solved by the higher-order boundary 

element method (HOBEM), then the first-order derivatives and m-terms could be evaluated 

by differentiating the shape functions. These methods could only offer satisfactory accuracy 

for the wave-body-current interactions problem without sharp corners. 

How to calculate the m-terms for arbitrary floating bodies is the purpose of this paper. A 

novel BEM method is proposed to solve the BVP, named the Taylor Expansion Boundary 

Element Method (TEBEM), which can calculate the potential and velocity accurately for 

non-smoothed boundary, such as the ship structures. Then solve the second-order derivatives 

as solutions of a problem of the Dirichlet type. The mathematical formulations of m-terms are 

briefly reviewed in section 2. The scheme for calculating m-terms by the TEBEM is discussed 

in section 3. In section 4, the numerical issues of the hemisphere, the mounted cylinder, 

modified KVLCC2 ship models will show the superiority of the TEBEM. 

2. Mathematica formulas for m-terms 

A moving system of coordinates o xyz− in steady translation with forward speed U is 

introduced. The xoy plane lies in the undisturbed free surface with the origin o at the projective 

point of the gravity center on this surface, the positive ox axis is in the direction of forward 

speed and the positive oz axis is vertically upwards. The fluid is assumed incompressible, 

inviscid, and irrotational, and the steady velocity potential can be described as follows: 

1) Based on the steady Double-Body (DB) assumption, the steady potential satisfies 



A novel method for the                                                               J.K. Chen 

m-terms of ship with forward speed                                                    W.Y. Duan  

97 

 

the Laplace equation: 

 
2 2 2

2 2 2
0

x y z

    
+ + =

  
 (1) 

in the whole fluid domain. 

2) The kinematics condition on the mean wetted body surface HS is governed by the 

relation 

 U n
n


= 


 (2) 

Where ( )1 2 3, ,n n n n= is the normal vector, which points to the outside of the fluid domain. 

3) On the undisturbed free surface,
 

0z =  

 0
z


=


 (3) 

4) In water of finite depth, the condition is 

 0
z


=


 (4) 

for z h→  

Consequently, the steady potential can be solved based on the above boundary value 

problem. For the unsteady problem of ships with forward speed, it is necessary to consider the 

impact of the steady potential for the body surface condition in the unsteady boundary value 

problem. The displacement of the ship is as following: 

( ) ( )1 2 3 4 5 6, , , , ,

d r 

       

= + 

= =
                         (5) 

Where  and  mean the translational and the rotational displacement respectively, 

( )= , ,r x y z is the position vector. In other words, it can be represented as following: 
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For unsteady boundary value problem, the condition on the body surface is: 

( )
6 6

1 1

( )k

k k H

k k

w n n on s t
n




= =


 + =


                         (7) 

Where  and are both first-order infinitesimal quantities, but the steady velocity 

( )= -w U is not the infinitesimal. Taylor expansion is applied and the second-order and 

high-order terms are all neglected. 
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Then w n can be expressed on the static water plane as following: 

( ) ( ) 
6

( )
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 =  −   +   = −               (9) 

Where
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. 

Finally, the body surface boundary condition for unsteady boundary value problem can 

be written as: 

( )= + 1 6,k

k k k k Hn U m k on s
n


 


=


                   (10) 

The well-known m-terms in details are given as 
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While based on Neumann-Kelvin (NK) assumption, the m-terms can be obtained as 

follows: 

 1 2 3 4

5 3 6 2

0

,

m m m m

m Un m Un

= = = =

= = −
 (12) 

3. The scheme for calculating m-terms by the TEBEM 

Here, the steady potential and its first-order derivatives have been solved accurately for 

arbitrary floating body by the TEBEM, which can be obtained from reference [15]. Then the 

m-terms can be solved based on the accurate first-order derivatives. The scheme is shown as 

following. 

Firstly, it introduces a new potential function ,x = . Green's third formula is applied to , 

when the field point locates in the external domain of the water, and gets 

 ( ) ( ), ,( , ) ( , )
qn q n q

S S

q G p q ds G p q q ds  =    (13) 

Where H FS S S= + , the subscript ',' means the differentiation, such as ',n ' is the normal 

derivative. G is Green function; 1/ r is Rankine source, in which r represents the distance 

between the source point ( , , )q    and the field point ( , , )p x y z .  

The whole boundary is divided into N small flat surface elements. Define ( ), ,   as the 
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local coordinates of the source point q in element Q (Referring to the Fig. 1, where the 

direction of is the same with qn ). Define ( ), ,x y z  as the local coordinates of the field point p

in element P, where the direction of z is the same with n . Meanwhile, the Taylor expansion is 

applied for the dipole strength in each small element, and only the first-order derivatives are 

reserved. 

 0 0 , 0,
( ) ( ) ( ) ( )q q q q

     = + +  (14) 
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Fig.1. The sketch of the local coordinate system 

Substitute Eq. (14) into the dipole strength in Eq. (13). The Cauchy Principal Value 

(CPV) of the BIE is 2 , and the new BIE can be obtained for the potential function as 

follows 
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 (15) 

For this Dirichlet type BVP, the other 2N equations are needed to form the closed 

equations. Hence, the tangential first-order derivatives of the field point p at x and y direction 

for Eq. (7) are adopted and the Taylor expansion procedure as Eq. (14) is applied to the dipole 

strength. The supplementary equations are 
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Where all the influence coefficients can be evaluated analytically on each element. The 

procedure to compute the influence coefficient is shown in the reference [15]. The gradients 

of can be obtained by solving the combining equation set (15), (16) and (17). Then we also 
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assume that , y = and ,z = . Finally, the whole terms of double gradients and m-terms can be 

solved accurately.  

4. Numerical results and discussion 

4.1 Hemisphere model 

To examine the validity of TEBEM method, the case of a hemisphere of radius 1.0R m=  

floating in infinite depth is considered. The analytical solution of the double-body flow 

velocity potential for hemisphere can be expressed as: 

 ( )
( ) ( ) ( )( )

3

0

3
2 2 2 2

0 0 0

, ,
2

x xUR
x y z

x x y y z z


−

= −

− + − + −

 (18) 

Where ( )0 0 0, ,x y z means the origin of the hemisphere on the plane xoy. 

Source Method (SM) and TEBEM method are applied to calculate the m-terms 

respectively. In view of the symmetry current, Green function is1/ 1/ 'r r+  here. There are total 

300 quadrilateral panels on the hemisphere. Fig. 2 and 3 show the m1 and m3 at the centre of 

mesh in the plane of z=-0.0775 near the free surface calculated by two methods. Compared 

with the analytical solutions, it is found that the results of the TEBEM and SM have a good 

agreement with the analytical solutions. 

We also apply Green function 1/r to solve this issue by two methods. Hence, it is 

necessary to arrange the singularity points on the free surface. The radius of free surface zone 

is 10fR R= , where the influence of the truncated free surface zone can be ignored due to the 

influence of local flow decrease rapidly with the distance from hemisphere. There are 640 

quadrilateral discretization panels on the free surface. Fig. 4 and 5 show the m1 and m3 at the 

same centroids for the model of hemisphere with free surface. Compared to the results of SM, 

a good agreement can be obtained between numerical results of TEBEM and analytical 

solution. For the m3, it can be easily found that the discrepancy of SM is induced for the 

first-order derivative ,z in Eq. (12). Compared with TEBEM, the ,z  calculated by SM is not 

accurate enough for the sharp corners near the interaction between free surface and body 

surface. 
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Fig.2. The values of m1 at the center of mesh in the plane of z=-0.0755  

by SM and TEBEM, G=1/ 1/ 'r r+  
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Fig.3. The values of m3 at the center of mesh in the plane of z=-0.0755  

by SM and TEBEM, G=1/ 1/ 'r r+  
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Fig.4. The values of m1 at the center of mesh in the plane of z=-0.0755  

by SM and TEBEM, G=1/ r  
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Fig.5. The values of m3 at the center of mesh in the plane of z=-0.0755  

by SM and TEBEM, G=1/ r  

In order to verify the convergence rate of the TEBEM. The L2 errors of the m3 terms on 

the hemisphere are shown in Fig. 6. Here, the L2 error for a function f is defined as: 

( ) ( )
2 2

2

1 1

/
N N

j j j
ana num ana

j j

L error f f f
= =

= −                        (19) 

Where 
j

anaf and 
j

numf  are the analytical and numerical solutions at the jth element centre 

respectively. The L2 error are plotted versus the function /s R , s means the average area 

of the panels on the hemisphere. The linear fitting of error in Fig.6 are shown below 

   ( )4

2 3
1.75 0.46 /

m
L error e s R−= − +                        (20) 

The present TEBEM has only j=1 convergence rate and the slope is 0.46 for m3 term. We 

could find the TEBEM method could retain the contribution of first and second order 

derivatives of the dipole strength, which could improve the accuracy and convergence rate of 

the velocity potential, the corresponding information can be referred to Duan (2015) [15]. 

However, the m-terms involve the second-order derivatives of the velocity potential. 

Compared with the velocity potential, the accuracy of second-order derivatives would 

decrease, as expected. 
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Fig.6. The L2 errors of the m3 term on the hemisphere surface by TEBEM, G=1/ r  

4.2 Mounted cylinder model 

Considering the influence of the current, diffraction problem of a bottom mounted 

cylinder has been studied by many researchers. Here, the same numerical example is solved 

by the TEBEM. The water depth, radius and draft of the cylinder are denoted by H, R and D, 

where H=R=D=1.0. The radius of free surface is set as 10fR R= . The detailed information is 

illustrated in Fig. 7. Here, there are 500 and 2000 quadrilateral discretization panels on the 

body and free surface, respectively. 

x
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H current

heading

o

R

Rf

 

Fig.7. Sketch of the computational parameters for the mounted cylinder 

The analytical solution of the double-body flow velocity potential  for the mounted 

cylinder can be expressed as, 

 ( )
( )

( ) ( )

2

0

2 2

0 0

, ,
U x x R

x y z
x x y y


−

= −
− + −

 (21) 

Where ( )0 0,x y means the position of the cylinder axis in the horizontal plane. 
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Fig.8. m1 at the center of mesh in the plane of z=-0.05 by TEBEM and SM, G=1/ r  
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Fig.9. m2 at the center of mesh in the plane of z=-0.05 by TEBEM and SM, G=1/ r  

Fig. 8 and 9 show the m1 and m2 at the centre of mesh in the plane of z=-0.05 calculated 

by the TEBEM and Wu formula by SM method (1991) [7]. means the angle of the location 

on the mounted cylinder with respect to the x-axis. It is found that the results of the TEBEM 

have a good agreement with the analytical solutions and are better than those of the SM 

method. Because there are sharp corners between the body- and free-surface, TEBEM can 

compute accurately the induced velocity for the fluid boundary with sharp corners. 

Consequently, the accuracy of the m-terms solved by TEBEM is better.  

For the hemisphere and mounted cylinder cases, we could find that the sharp corners 

would form near the body- and free-surface domain without the applying of the imaging 

Green function. The induced velocity and second-order derivatives of velocity potential are 

singularity on the sharp corner curve. Hence, they can’t be solved on the sharp corner curve 

through the Taylor expansion and perturbation method, which also means that m-terms on the 
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sharp corner curve cannot be calculated. In TEBEM method, the collect singular points are all 

arranged at the centre of the elements, would not locate on the sharp corner curve, and the 

boundary value problem obtained by Taylor expansion and perturbation method can be solved 

in theory. Compared with SM method, the rate of change of the dipole strength is considered 

in TEBEM, and details on how TEBEM improve the accuracy of the induced velocity near 

the sharp corner have been discussed in Duan (2020) [16].  

4.3 KVLCC2 ship model 

The influence of the m-terms for ship motion is discussed in this section. Here the 

modified KVLCC2 ship is taken as an example. Yasukawa (2019) [17] developed the 

seakeeping and manoeuvring research in the physical tank. The main dimensions of the 

modified KVLCC2 ship are shown in Table 1 as following: 

Table 1 The main dimensions of modified KVLCC2 ship 

 Full scale model 

Ship Length, m 178.0 2.909 

Breath, m 32.26 0.527 

Draught, m 11.57 0.189 

Radius of inertia, m 10.0,44.5,44.5  0.163, 0.727,0.727 

Center of gravity, m 

(Based on the water surface) 
5.33, 0.0, -4.51 0.087, 0.0, -0.074 

Block coefficient 0.84 0.84 

Metacentric height, m 6.61 0.108 

Roll natural period, s 9.0 1.15 

We developed the in-house code to predict the ship motion, which the principle could 

refer to Duan 2020 [18]. Fig. 10 and 11 show the comparison of ship heave motion 

amplitudes between DB and NK scheme with different forward speed in the heading waves 

by TEBEM method. Here, heave and pitch motion are non-dimensional by
ah and

aKh . 
ah  

means the amplitude of the incident wave. K and   are the wave number and length of the 

incident wave. Compared with the experimental solutions, agreement of numerical results of 

DB scheme is better than NK scheme. It should be pointed out that the difference between DB 

and NK scheme for ship motion involves two aspects, one is the m-terms in the body surface 

condition, the other is the convection term in the free surface condition. 

Compared with the pitch motion, the heave motion show larger discrepancy between the 

DB and NK scheme during the resonant frequency domain especially. Whereas in the high 

frequency domain, the ship motion is smaller naturally, and the diffraction impaction is 

weaker in the low frequency domain, hence the difference of ship motion between DB and 
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NK scheme can be neglected. 

Finally, we also made the comparison of the ship motion for different forward speeds. It 

can be found that the greater the forward speed, the larger the difference between DB and NK 

scheme, and the m-terms play an important role in the ship motions especially for the high 

forward speed condition. 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

 

 

z a
 /

 h
a

λ/L

                   Exp.   Cal.(NK)   Cal.(DB)

 Fn=0.0492                

 Fn=0.0984                

χ = 180deg

 
Fig.10. Comparison of ship heave motion amplitudes between DB and NK scheme 

by TEBEM method for different forward speed. 
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Fig.11. Comparison of ship pitch motion amplitudes between DB and NK scheme 

by TEBEM method for different forward speed. 

5. Conclusions 

This paper introduces a new method, named the TEBEM method, to solve the m-terms 

precisely, which involves in the wave-induced motion problem of the floating body with 
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forward speed. It is validated by the numerical results of the hemisphere, the mounted 

cylinder, and the modified KVLCC2 ship models. The main conclusions can be obtained are 

as follows: 

(1) Compared with the analytical solutions of the hemisphere and the mounted cylinder, 

it is demonstrated that the proposed method could compute precisely m-terms for any 

boundaries with sharp corners. 

(2) For DB assumption, a good agreement can be obtained for the unsteady ship motion. 

Large difference is shown in the resonant frequency domain notably. The greater the forward 

speed, the more important role m-terms play in ship motions.   
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