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BUCKLING AND VIBRATION OF A STEPPED PLATE 

Summary 

This study analyses the elastic stability and free vibration of a simply supported stepped 
plate under combined loading conditions defined by the parameter α. Mathematical 
identification of these phenomena has been made using Levy's method as implemented in the 
conditions of equivalent fictitious load. The buckling coefficient k and the frequency 
parameter λ of the stepped plate were verified according to literature sources. Influential 
parameters of stability and the free vibration of the stepped plate under combined load were 
identified. It has been concluded that the buckling coefficient primarily depends on the 
relative thickness Δt, while the frequency parameter λ was significantly affected by the 
position of discontinuity Δb. Pure bending (α=2) induces several buckling modes for the same 
plate geometry with respect to uniform compression (α=0), thus creating a considerable 
technological stability reserve, particularly at higher discontinuities. Formulation of the 
frequency parameter enables us to choose the optimum geometry with minimal susceptibility 
to the appearance of free vibration in the plate. 

Key words: stability, vibration, stepped plate, buckling coefficient, frequency parameter. 

1. Introduction 

Plates of stepwise variable thickness are often present as elements in optimally designed 
structures with high performance requirements (e.g. aircraft elements). In the last ten years 
numerous publications using different methods have provided significant results in the field of 
buckling and vibration of thin plates [1-5]. The largest number of studies on the stability and 
vibration of plates of stepwise variable thickness refer to the cases of uniform compressive 
loading under various boundary conditions [6-8]. These studies based their research on the 
classical theory of thin plates (Kirchhof's method) and resolve it using Levy's function; 
theoretical foundations of these studies are provided in [9]. The methodology based on this 
approach allows for the implementation of Kirchhof's method when analysing the stability 
and vibration of plates with one of two discontinuities [10]. Linearly varying load is often 
present in technical practice as a result of bending moment; in some studies, this effect was 
analysed only for the case of uniform plates [11-12]. A significant contribution in this regard 
is offered by studies [13-14], where the elastic stability of a uniform longitudinally stiffened 
plate was studied using the Galerkin method. 
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Nomenclature 
a Plate length 
b Plate width 
ti Thickness of the i-th plate segment
bi Width of the i-th plate segment
i Number of segments in the stepped plate of variable thickness (i = 2)
Di Stiffness of the i-th plate segment {Eti

3/[12(1-ν2)]}
E Elasticity modulus (for steel 21000 kN/cm2)
ν Poisson's ratio (for steel 0.3)
x, y Coordinates of the Cartesian system
wi (x, y, t) Dynamic traverse plate displacement (deflection)
Wi (x, y) Static traverse plate displacement (deflection)
σx, σy, σxy Components of plane stresses
ρ Density of the plate material (for steel 7850 kg/m3)

iw  Acceleration of traverse plate displacement
ωn Natural frequency of plate vibration
Δt  Relative plate thickness (t1/t2)
Δb Relative plate width (b1/b)
m, n Number of buckling and vibration modes
k Elastic buckling coefficient {Ncrb2/(π2D2)}
λ Frequency parameter {(ωna2/π2)[ρt2/D2]1/2} 

 
Numerical approaches such as the finite difference method (FDM) are suitable for 

resolving the issue of stability in arbitrary boundary conditions, where the accuracy of results 
depends on the number of nodal points generated [15]. The finite strip method (FSM) 
provides a wide range of possibilities for studying the stability and the eigenfrequencies of 
oscillations of rectangular plates in complex supporting conditions [16-17]. As a recent 
approach, the differential square method (DQM) is also used in the analysis of buckling and 
free vibration of plates; its implementation enables the analysis of inclined plates [18]. The 
approximate procedure, discussed in [19], which is based on a modified form of buckling 
mode is a significant contribution to this field. Effects of the higher-order shear stress on 
Levy-type solutions for dealing with the plate buckling is presented in [20]; this is important 
for the analysis of structural elements with high shear stresses (e.g. in the girder support 
zone). An analogy can be drawn between the buckling and vibration phenomena in terms of 
the plate behaviour, although the causes of critical state are indicated differently. The dynamic 
stability of isotropic or orthotropic plates is studied in [21] based on the static component and 
using the buckling coefficient, while the dynamic susceptibility of stepped plates is analysed 
in [22] based on the effect of free vibration. A simplified dynamic analysis of stepped plates is 
presented in [23] .Structural analysis of thin plates with the finite element method is given in 
[24-25]. The new finite element formulation has been successfully applied to vibration 
analysis of thin plates [26].In this sense, it is important for the frequency of dynamic change 
in the external load not to overlap with the plate frequencies. In this respect, the present study 
aims to complement the lack of data on the critical buckling force and the frequency 
parameter of stepwise variable thickness plates subjected to uniform and linearly varying 
loads.  
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2. Mathematical modelling 

The most general interpretation of buckling and free (harmonic) vibration phenomena in 
the field of elastic behaviour of an isotropic plate which is loaded only by external forces is 
expressed through the differential equation of the following form: 
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To solve the partial differential equation (1), it is necessary to separate the variables that 
are related to x and y coordinates and time t so that the deflection function wi is assumed in 
the form of the product of two independent functions: 

)sin(),(),,( tyxWtyxw nii    (2) 

The research in this study is focused on the stability of the box girder vertical plate - 
ribs (Fig. 1). The prevailing stress of the box girder comes from the bending moment (in the 
vertical plane) and the localized effect of the load. The bending moment of the vertical plates 
(Mr) is proportional to the axial moment of their surface areas and the overall bending 
moment of the girder. Global stresses in terms of optimum design require an increase in the 
girder height, and consequently that of the rib; this result in increased slenderness and a 
potential loss of stability due to a greater bending moment [27]. 

 
Fig. 1  A plate loaded: a) by linearly varying load from the moment Mr (actual load) and 

                          b) by equivalent constant forces N1 and N2 (fictitious load) 

The main problem regarding the implementation of equation (1) for vertical girder 
plates is not related only to the geometry (stepwise variable thickness), but also to the 
conditions of supporting (boundary conditions), as well as the characteristics of loading. 
Studies dealing with the issue of elastic stability of plates subjected to a linearly varying load 
use numerical methods. The present study discusses a procedure of equivalent fictitious load 
that offers the possibility of implementation in equation (1) through a constant value. The idea 
behind this approach is based on substituting the actual load (Fig. 1a) with a fictitious load 
(Fig. 1b) that has an equivalent effect on the plate behaviour. Values of fictitious forces N1 
and N2 are given in Appendix A. 

TRANSACTIONS OF FAMENA XLIV-4 (2020) 117



M. Đelošević, G. Tepić Buckling and Vibration of a Stepped Plate 

By substituting (2) into (1) and bearing in mind the previous analysis we have that: 
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If the plate is simply supported at two opposite edges x = 0 and x = a, then the function 
along the x – axis can be assumed in the form of a harmonic function, i.e. 
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Substituting (4) into (3) leads to an ordinary linear differential equation of the fourth 
order with the y variable, which has the following form: 
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or in a shorter form: 
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where φ, εm and δm are given in Appendix B. 
The general solution to equation (6) has the following form [28]: 

   1][ )0()(][  FyFe yA
i   (7)  

where, with [χ]i , the form of the solution for Ym,i is assumed. 
The matrix [F (y)] is formed by the functions of eigenvalues rq and eigenvectors vq. 
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Eigenvalues of matrix [A] define the roots of the characteristic equation (6): 
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There are three cases or forms of function (4), bearing in mind that in all cases (φ, εm) > 0.  
The first case: εm

2 < δm 

       
        























 a
xm

yyDyyC
yyByyA

yxW
m mmmmmm

mmmmmm
i





sin
coscoshsincosh

cossinhsinsinh
),(

1
 (10) 

2
mm

m





     and    
2

mm
m





   (11) 

The second case: εm
2 > δm, δm < 0 
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mmmm   2     and    mmmm   2   (13) 
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The third case: εm
2 > δm, δm > 0 
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mmmm   2     and    mmmm   2     (15) 

The parameters Am, Bm, Cm, and Dm of the mode m are determined according to the 
given boundary conditions of the plate support and the compatibility conditions at the plates 
connection.  

Segment 1:                                Segment 2: 

W1=0,         for y = 0                   W2=0,        for y = b  (16) 
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Segments 1 and 2 are functionally connected into an inseparable unit along the line  
y = b1, which ensures the conditions of plate displacement continuity and stress compatibility 
in the zone of discontinuity. Functions of deflection, inclination, bending moments and 
transverse forces along the connection line between the two segments of the observed plate 
system must be all continuous functions, which is mathematically formulated as follows: 
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The introduction of an equivalent fictitious load clearly indicates that the element 1 is 
subjected to tension and the element 2 to compression. The minimum values of the elastic 
buckling coefficient k and free vibrations for the plate λ need to be determined from the 
following homogeneous systems of algebraic equations: 

   0][ 88  CKs   (22) 

[Ks]8×8 – matrix of the boundary and compatibility conditions of the plate formed based on 
(16)-(21); 
{C} – matrix of unknown coefficients (= { Am,1 Bm,1 Cm,1 Dm,1 Am,2 Bm,2 Cm,2 Dm,2}T). 
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3. Elastic buckling of a stepped plate 

The developed mathematical model discussed in Section 2 provides an exact solution 
when analysing the issue of elastic buckling and free vibration of stepped plates with stepwise 
in-plane load. The functional dependence of the elastic buckling coefficient k on the 
geometric parameters of the stepped plate (Δt, Δb, and a/b) is given in Fig. 2. Increasing the 
relative plate thickness leads to an increase in the value of the parameter k, while the effect of 
the first buckling mode ranges from the value of a/b = 1.4 for Δt = 1.0 to the value of 
a/b = 1.6 for Δt = 1.4. Larger plate discontinuities indicate more significant changes to the 
buckling coefficient k in the interval of a/b = 1-2, indicating a considerable technological 
reserve in the plate with respect to the minimum values. The parameter k has a linear trend of 
increase with the decreasing relative plate width Δb. With the increasing a/b, values of the 
function k display a clear tendency towards an asymptotic value; thus, for a/b > 2, the 
minimum value kmin is being assumed. 

 
Fig. 2  Dependence of the buckling coefficient k on the plate geometry (for α = 0) 

Exceptions from this rule are large discontinuities (Δt > 2); in that case, it is reasonable 
to analyse the third or possibly higher buckling modes (m ≥ 3). The present analysis clearly 
indicates the necessity of using plates of stepwise variable thickness regardless of the fact that 
they are subjected to uniform pressure. 
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Fig. 3  Distribution of the buckling coefficient k for α = 2 

The analysis is performed only for fictitious load, Fig. 1b. For this load case (α = 2), it is 
necessary to analyse the first three modes, while for larger discontinuities, higher buckling 
modes have to be analysed as well (Fig. 3). Other rules are as in the previous case; numerical 
values for the characteristic parameters of the stepped plate are given in Table 1. A value of 
t1/t2 = 1.0 is consistent with [8], which is given for the second approximation, with an average 
deviation of 3.8 %. 

Table 1  Values of buckling coefficient k for the first three modes (α = 2) 

b2/b t1/t2 
a/b 

0.5 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

0.3 

0.8 14.992 13.876 14.922 13.870 13.631 13.705 13.640 13.630 
0.9 20.633 18.968 20.633 19.082 18.681 18.968 18.732 18.681 
1.0 27.758 25.322 27.760 25.586 24.984 25.322 24.708 24.608 
1.1 36.453 33.080 36.453 33.526 32.679 33.080 33.209 32.679 
1.2 46.877 42.383 46.377 43.046 41.906 42.383 43.964 41.906 

0.5 

0.8 16.702 15.361 14.922 18.918 15.179 15.365 15.297 15.171 
0.9 21.618 19.792 20.633 19.991 19.539 19.792 19.543 19.530 
1.1 35.257 32.076 36.453 32.421 31.635 32.076 33.352 31.632 
1.2 44.251 40.176 46.377 40.619 39.611 40.176 41.811 39.611 

4. Free vibration of a stepped plate 

The eigenfrequency of a plate with one discontinuity (two elements of different 
thickness) is defined by the frequency parameter λ. As indicated by the discussed 
mathematical model, there is an analogy between the buckling coefficient k and the frequency 
parameter λ in terms of loss of the plate stability. The elastic buckling coefficient k is the basis 
for defining the critical in-plane stress that leads to the buckling of the plate as a result of 
external compression loading. The frequency parameter λ enables us to determine the 
eigenfrequencies of the plate vibration, which is crucial in the analysis of the plate dynamic 
behaviour. Harmonic transverse displacement, i.e. deflection of the plate whose excitation 
(forcing) frequency of vibration ω corresponds to its own frequency ωn, or is very close to it, 
leads to the resonant behaviour or critical condition.  
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It is important to note that the loss of plate stability in the case when ω ≈ ωn can occur at 
much lower intensity of external load than in the case of static action. The eigenfrequency of 
vibration of plates of stepwise variable thickness ωn is defined according to convention as 
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The frequency parameter λ is an exclusively geometric property which is functionally 
dependent on the length, width, and thickness of the element of which the plate of stepwise 
variable thickness is formed. The frequency parameter λ, depending on the relative thickness 
(t1/t2), slenderness (a/b), and the relative plate width (b1/b) for the first and second modes of 
vibration is formulated from the following expressions, respectively: 
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Expressions for parameters B1, B2, and C are given in Appendix C. 
The three-dimensional functions of the frequency parameter for the first and second 

modes of plate vibration are provided in Fig. 4 and Fig. 5.  

 
Fig. 4  Function of the frequency parameter λ of the plate geometric dimensions for m = 1 

The minimum value of the function (24) corresponds to the value of Δt = 0.5 for all 
values for the a/b ratio. The three-dimensional function (24) is characterized by two changes 
along the Δt direction for values of a/b = 1.3 and 1.5, representing the phenomenon of "quasi- 
frequency crossing". The occurrence of frequency crossing is characteristic of the higher 
modes of buckling when the reduction in λ coefficient occurs between two modes of 
vibration. This phenomenon can partially happen in the first mode at the ratio a/b = 1.4 (Fig. 
4). The frequency parameter λ for the second mode is characterized by the uniformity of 
distribution, whose minimum value obtained from (25) corresponds to the amount of Δt = 0.4 
for all the values of a/b (Fig. 5). Increasing the dimension of b1, i.e. reducing the relative plate 
width Δb, the frequency parameter λ has a growing tendency for all modes of vibration. 
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Fig. 5  Function of the frequency parameter λ of the plate geometric dimensions for m = 2 

5. Verification of the results 

The methodology applied and the results obtained were validated based on a 
comparative analysis using literature data for specific geometrical parameters obtained by 
using different methods (Table 2). Values of the buckling coefficient k obtained in the present 
study are in quantitative and qualitative agreement with the reference values.  

Table 2  Comparison of the buckling coefficient k for the first mode 

    b2/b mean 
difference [%]  m a/b t1/t2 0.3 0.5 0.7 

Present study 

1 1.0 1.2 

6.094 5.272 4.650  
Xiang and Wei [9] 5.738 4.961 4.509 5.8 
Finite difference method 
[14] 5.694 4.941 4.477 6.3 

Xiang and Wang [3] 5.981 5.199 4.609 1.4 
Present study 

1 1.0 1.5 
10.615 7.553 5.762  

Xiang and Wang [3] 9.501 7.065 5.593 6.5 

Numerical data for the first mode of plate vibration which were obtained by using (24) are 
shown in Table 3 and Table 4. As indicated by the comparative analysis of data obtained for the 
frequency parameter λ, the presented data is consistent with the data presented in studies [3, 21]. 
It should be borne in mind that certain deviations were exhibited at larger plate discontinuities 
(higher relative thickness t1/t2). Results for the frequency parameter obtained in the study [21] 
display a clear tendency towards certain deviations at higher relative thickness of the plate. This 
fact is the result of approximation of the last two boundary conditions related to the continuity 
of bending moment and the transverse force along the connection line of the plates [21]. The 
approximation method has neglected the tangential stress components; at high discontinuities 
these have a significant effect of reducing the plate eigenfrequency. 

The study dealing with exact buckling and vibration solutions for stepped rectangular 
plates [3] is based on the Levy function and the numerical identification of the frequency 
parameter based on the boundary conditions along the discontinuity line. Based on the 
analysis of functional dependency which corresponds to the first mode of plate vibration (24), 
it can be concluded that the frequency parameter λ rises progressively with an increase in the 
plate dimensions ratio a/b, particularly in the case of larger discontinuities (Fig. 4). It is 
necessary to point out that all the examples referred to in the literature are given for fictitious 
load, Fig. 1b. 
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Table 3  Comparison of the frequency parameter λ for the first mode of vibration 

    t1/t2 
 m a/b b1/b 0.5 0.8 1.0 1.1 1.2 1.3 
Present study 

1 1.0 0.75 
1.448 1.728 2.000 2.056 2.313 2.478 

Chopra [21] - - 2.000 2.199 2.437 2.724 
Xiang     [3] 1.293 1.703 2.000 - - - 
Present study 

1 1.0 0.50 
0.874 1.062 1.250 1.352 1.458 1.568 

Chopra [21] - - 1.250 1.314 1.379 1.443 
Xiang     [3] 0.897 1.117 1.250 - - - 
Present study 

1 1.0 0.25 
1.857 1.916 2.000 2.056 2.122 2.199 

Chopra [21] - - 2.000 2.018 2.033 2.047 
Xiang     [3] 1.629 1.889 2.000 - - - 

Table 4  Comparison of the frequency parameter λ for the first and second modes of vibration 

    a/b 
 m t1/t2 b1/b 0.50 0.75 1.00 1.25 1.50 2.00 
Present study 

1 1.1 0.50 
1.316 1.646 2.107 2.700 3.424 5.267 

Chopra [21] 1.314 - 2.101 - - 5.243 
Present study 

1 1.2 0.50 
1.391 1.739 2.227 2.853 3.619 5.567 

Chopra [21] 1.379 - 2.202 - - 5.463 
Present study 

1 1.3 0.50 
1.473 1.842 .2357 3.021 3.831 5.894 

Chopra [21] 1.443 - 2.299 - - 5.651 
Present study 

2 1.1 0.50 
4.477 4.086 5.267 5.860 6.584 8.428 

Chopra [21] - - 5.243 - - 8.457 
Present study 

2 1.2 0.50 
4.732 5.080 5.567 6.194 6.959 8.908 

Chopra [21] - - 5.463 - - 9.049 
Present study 

2 1.3 0.50 
5.010 5.379 5.894 6.558 7.368 9.431 

Chopra [21] - - 5.651 - - 9.801 
 
6. Conclusion 

The presented paper discusses the analytical method of determining the elastic buckling 
coefficient k for the stepped plate subjected to a combined uniaxial load (defined as α). The 
numerical data and diagrams of distribution of the parameter k are given for two boundary 
cases (α = 0 and α = 2) corresponding to uniform compression and pure bending. The 
application of stepwise variable plates exposed to constant pressure was deemed reasonable, 
and their use in the cases of linearly varying loads was necessary. The size of discontinuity as 
defined by relative thickness Δt has the dominant influence on the buckling coefficient of the 
stepped plate. For the same geometric parameters of the plate, the load variant α = 2 is 
characterized by higher number buckling modes than it is the case when α = 0, in particular at 
higher discontinuities, which contributes to stability and facilitates the reduction in the critical 
buckling stress. The explicit formulation of frequency parameter λ enables the geometry of 
plates subjected to dynamic loads to be optimized in order to achieve a minimum sensitivity 
to free vibration being induced. The specific contribution of this research is the significant 
data provided for the linearly varying load (α = 2) of plates of stepwise variable thickness, 
which so far has failed to be the issue of systematic analyses in the literature on this subject 
matter. The influence of fictitious load, Fig. 1b, on the accuracy of the stability and natural 
vibration will be investigated by FEM (commercial package) in the future work. 
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