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1 Introduction
Industrialization is vital to sustainable development, and 
water resource management is essential in protecting the 
environment. However, the increase in world popula-
tion leads to industrial growth and low quality wastewa-
ter containing pollutants harmful to human health and 
the environment.1 The wastewater generated in industrial 
processes requires the use of pre-treatment methods and 
processes to reduce and/or eliminate all types of pollutants 
before discharge of the effluent into nature2. Wastewaters 
travel through the treatment plants to remove pollutants 
from them. Most of the wastewaters contain many sub-
stances that could be categorised into organic and inorgan-
ic pollutants.3 Most of the organic pollutants in industrial 
effluents are difficult to analyse and cannot be treated us-
ing conventional methods.4,5 This is due to the unlimited 
flow rates and excessively high concentrations, and their 
presence could cause significant environmental damage 
and health risks. Several studies and research have been 
conducted on the removal of these environmental organic 
pollutants using various physical and chemical methods. 
These methods include chemical precipitation, oxidation, 
ion exchange, coagulation/flocculation, solvent extraction, 
membrane separation, and adsorption.6,7 Dynamic and/
or fixed bed adsorption is one of the most widely used 
processes in the environmental applications of chemical 
industries, especially for the separation and purification of 
effluents, due to its high efficiency, low cost, and easy op-
eration.8,9 The dynamic conduct of a fixed-bed column is 
described according to the breakthrough curve resulting 
from the adsorbent–adsorbate system analysis.8,10

Artificial neural networks (ANNs) have also proven to be a 
suitable modelling tool to deal with complicated problems, 
especially when physical phenomena are present within 
the system.11,12 (ANN) models can also be used as an alter-
native prediction method in analysis and engineering. They 
work like “black box” models, and require no detailed in-
formation about the system.13 In many applications, ANNs 
have proven to be a valuable tool for creating databased 
empirical models. The great number of scientific papers 
that are being published recently, containing experimental 
data about the adsorption process, reflects the importance 
of this phenomenon; therefore, it is of the highest inter-
est to exploit these results available in the literature. They 
can be used for development, monitoring, and design of 
the separation process with the help of informatics tools, 
where the spearhead of any innovative technique is mod-
elling, optimisation, and simulation. Among these applica-
tions found in the literature, ANNs have been applied to 
describe the dynamic, p-nitrophenol,14 the complex sys-
tem,15 and multi-component system of heavy metals,16,17 
with the adsorption process.

The aim of this research was to develop a multi-layer ANN 
to predict the dynamic adsorption of the adsorbent-ad-
sorbate system consisting of 15 components as organic 
pollutants in the presence of multi-characteristic activated 
carbon under different operating conditions using the larg-
est and most representative database in comparison with 
other studies. The performance of the ANN model was 
evaluated using classical analysis methods; the correlation 
coefficient (R), statistical root mean square error (RMSE), 
and average absolute deviation (AAD).
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2 Materials and methods
2.1 Artificial neural networks (ANNs)

ANNs are defined by a set of algorithms graphically derived 
from the performance of biological neurons, and have 
many uses for process modelling and analysis, as well as 
for predicting a particular system.18 They are characterised 
by simple processing units known as nodes that perform 
certain mathematical functions. They are also known for 
their similarity to the structure of the human brain, having 
the potential to learn (store experimental knowledge) and 
automatically extract rules from complicated data.19,20 The 
architecture of ANN consists of one or more hidden in-
put layer(s), and an output layer. Each layer of the network 
consists of neurons, which are inter-connected processing 
elements. Each neuron is connected to all the neurons in 
the next layer. The output of the neural network is given 
by the output layer for the given input data.21,22 The hid-
den layers enable these networks to compute complicated 
relations between inputs and outputs. The architecture of 
the ANN model is shown in Fig. 1.

Fig. 1 – Architecture of ANN

The mathematical expression between the input vector Xi 
and output vector Zj of this element (Fig. 1) can be defined 
as follows:23,24
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Combining Eqs. 1 and 2, the relation between the output 
Y and the inputs Xi of the ANN is obtained:
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Shown below are three transfer functions that are the most 
commonly used for back-propagation (BP).23

The logarithmic sigmoid transfer function (logsig):
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The hyperbolic tangent sigmoid transfer function (tansig):
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The pure linear transfer function (purelin):

( )    f x x= (6)

The procedure for updating the synaptic weights is called 
back-propagation (BP). BP refers to the way error comput-
ed at the output side is propagated backward from the out-
put to the hidden layer(s), and finally to the input layer.23

2.2 Data collection, pre-treatment, and analysis 

In this study, an experimental database of 15 systems, 
counting [5951 points, 9 variables], was collected from 
previously published works in literature.25–41 Details of the 
studied adsorption systems are presented in Table 1. The 
database contained eight input parameters: molar mass 
(M), initial concentration (c0), flow rate (Q), bed height 
(H), particle diameter (dp), specific surface area (BET), aver-
age pore diameter (Dp), time (t), and an output parameter 
which is the dimensionless effluent concentration (c/c0). 
The input and output variables were chosen according to 
the interactions between organic compound proprieties, 
adsorbent characteristics, and dynamic adsorption operat-
ing conditions.

The used database for the ANN model is shown in Table 2.

Linear scaling in the range of [−1, +1] was used in the 
present study by calculating the minimum and maximum 
of each variable vector and scaling the data with respect 
to these limits. Normalisation function used in this work 
is given by Eq. 7, and it was programmed in MATLAB as 
(mapminmax, [−1, +1]):42–44

min
norm

max min

2 1iX XX
X X

 −
= − − 

(7)

where Xi is the input or output variable X, and Xmin and Xmax 
are the minimum and maximum values of variable X.
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2.3 Model performance evaluation

The performance of the ANN model was evaluated using 
the following statistical parameters,45–47 as expressed below 
for the correlation coefficient (R):

R 
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and for the root mean square error for (RMSE) presented 
by the following expression: 
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and for the average absolute deviation of (AAD) as follows: 
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where i is the number of data points, 
 
 
 0 ,expi

c
c  is the experimental reduced concentration, and
 
 
 0 ,cali

c
c  is the reduced concentration predicted by the 

ANN model.

3 Results and discussion
3.1 ANN predictive model

The Artificial Neural Network (ANN) model was devel-
oped with back-propagation learning algorithms to predict 
the dynamic adsorption of a complex system.

In this study, the database was randomly divided into three 
groups: training, test, and validation set, composed of 
80 %, 10 %, and 10 %, respectively. Since there was no 
rule to determine the number of neurons in the hidden 
layers, a test and trial method was adopted in this work by 
repeating each architecture twenty times to avoid overfit-
ting problem.

The optimised ANN architecture consisted of {8-45-1}, 
which means eight inputs forty-five neurons in the hidden 
layer and one output, as is shown in Fig. 2. The best ANN 
was found with the logarithmic sigmoid (logsig) given in 
Eqs.  (4), and tangent hyperbolic (tansig) given in Eqs.  (5) 
transfer functions for the hidden and the output layers, re-

Table 1 – Systems organic pollutants and the number of experi-
mental data points used in this work

N° Systems Brute formula Experimental 
data points Refs.

1 Phenol C6H5OH 2935 25,26,34–38

2 Parachlorophenol C6H5ClO 456 39

3 Orthochlorophenol C6H5ClO 126 36

4 Paranitrophenol C6H5NO3 312 36,40

5 Toluene C7H8 366 27,41

6 Orthoxylene C8H10 158 27

7 Benzene C6H6 152 27

8 Benzaldehyde C7H6O 280 28

9 Caffeine C8H10N4O2 146 29

10 Diclofenac C14H11Cl2NO2 66 29

11 2,4-dichloro- 
-phenoxyacetic acid C8H6Cl2O3 140 30

12 Flumequine C14H12FNO3 302 31

13 Ciprofloxacin C17H18FN3O3 170 32

14 Norfloxacin C16H18FN3O3 171 32

15 Levofloxacin C18H20FN3O4 171 33

Table 2 – Statistical analysis of input and output data used in this work

Statistical analysis Parameters Unit Minimum Maximum Mean Standard deviation

Inputs

molar mass g mol−1 78.11 361.37   137.29   77.39
initial concentration mg l−1 0.00019 500   108.86 104.06
flow rate ml min−1 0.05 456.62   206.83 567.48
bed height cm 2 200     32.58     54.064
particle diameter mm 0.1  2.4       0.80         0.5514
specific surface area m² g−1 678 2869   981.40 409.04
average pore diameter nm 1.29  3.15       2.15      0.652
time min 0 57170 1991.21 6023.77

Output dimensionless effluent concentration – 0 1       0.51      0.3819
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spectively. The output of each hidden neuron (Yi) is calcu-
lated as:
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45
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while the output of the network is given by:
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In Eqs. (11) and (12): wi,j is the weight of the connections 
between the input and the hidden neurons, xi are the input 
variables (relevant descriptors), bj is the bias on the hidden 
neuron similarly, w1,j represents the weight of the connec-
tions between the hidden and output neuron, and b1 is the 
bias on the output neuron.

The results showed that the ANN with one hidden layer 
was the best. Tests conducted for more than one of the 
hidden layers and different parameters showed no signifi-
cant improvement. Table 3 shows the structure of the im-
proved ANN model to obtain the highest correlation coef-
ficient closer to 1, with the minimum RMSE error closer to 
0. The linear regression parameters were obtained directly 
using the postreg MATLAB R2018a function.

The performance of the optimised network was evaluated 
for each epoch in the training through mean square error 
(MSE). Evolution of the mean square error for the training, 
validation, and testing stage vs. the number of epochs is 
shown in Fig. 3. The best ANN was found with a very ac-
ceptable validation performance at 4892 epochs, indicat-
ing an accurate mapping of the experimental data.

Fig.  4 represents the regression plot of the whole data-
base, validation, and test subset. Results shown in Table 
3 suggest high performance of the optimised ANN with 
a correlation coefficient of R = 0.997, root mean square 
error of RMSE  =  0.029, and the absolute deviation of 
AAD (%) = 1.810. It can be observed that ANN was able 
to capture the adsorption dynamics very well.

Detailed comparison between the calculated and the ex-
perimental values of each system in terms of correlation 
coefficient (R), root mean square error (RMSE), and aver-
age absolute deviation (AAD) is presented in Table 4. 

Figs. 5 to 9 show comparison curves between experimen-
tal and ANN-predicted values illustrated in empty and full 
geometric shapes, respectively, of dynamic adsorption of 

Table 3 – Selected parameters of the optimal multi-layer perception ANN model

Studied parameters R (max) RMSE (min) AAD % (min) Selected parameters
Learning algorithms

Levenberg-Marquardt
backpropagation 0.997 0.029   1.810 Levenberg-Marquardt 

backpropagation
Activation functions (hidden neurons/output neurons)

Logarithmic sigmoid–sigmoid 0.793 0.290 21.072

Logarithmic sigmoid–tangent 
hyperbolic

Logarithmic sigmoid–linear 0.937 0.134 10.012
Logarithmic sigmoid–tangent hyperbolic 0.997 0.029   1.810
Tangent hyperbolic–logarithmic sigmoid 0.893 0.274 18.702

Tangent hyperbolic–linear 0.963 0.103   6.644
Tangent hyperbolic–tangent hyperbolic

Linear–linear
Linear– logarithmic sigmoid
Linear– tangent hyperbolic

0.995
0.238
0.496
0.489

0.035
0.360
0.338
0.351

  2.063
32.298
28.777
26.890

Number of neurons in the hidden layer
Changed from 8 to 50 0.997 0.029   1.810 45 neurons

Fig. 2 – Optimal structure of ANN model, containing 45 neu-
rons
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Fig. 3 – Profiles of the MSE during training, validation, and testing stage vs. the number of 
epochs for the best network topology
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different adsorbate systems on activated carbon under dif-
ferent operating conditions. Results show very good agree-
ment and good prediction ability of the ANN model. Fig. 5 
represents the comparison between the experimental and 

the predicted dimensionless effluent concentration of dy-
namic adsorption of phenol system on activated carbon at 
various average pore diameters, initial concentration, and 
bed height at various flow rates. 
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(d)

Fig. 5 – Experimental dynamic adsorption of a Phenol system on activated carbon by the ANN model (a): at various av-
erage pore diameters; (b): at various initial concentrations; (c): at various bed heights; (d): at various flow rates

Table 4 – Detailed comparison of the correlation coefficient (R), root mean square error (RMSE), and the average absolute deviation 
(AAD) of each system

System R RMSE AAD %
Phenol 0.998 0.023 1.337

Parachlorophenol 0.997 0.026 1.999
Orthochlorophenol 0.993 0.050 2.533

Paranitrophenol 0.994 0.043 2.520
Toluene 0.998 0.027 1.857

Orthoxylene 0.994 0.028 2.125
Benzene 0.995 0.030 2.399

Benzaldehyde 0.998 0.024 1.931

System R RMSE AAD %
Caffeine 0.995 0.041 2.312

Diclofenac 0.995 0.032 2.578
2,4-Dichlorophenoxyacetic acid 0.998 0.021 1.674

Flumequine 0.981 0.054 3.414
Ciprofloxacin 0.995 0.032 2.377
Norfloxacin 0.996 0.029 2.153
Levofloxacin 0.996 0.029 2.139

Total 0.995 0.032 2.225
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Fig. 6 shows a comparison between experimental and pre-
dicted dimensionless effluent concentration of Benzalde-
hyde at various initial concentrations, and Parachlorophe-
nol system at various bed heights. Results show the ability 
of the ANN model to predict the dimensionless effluent 
concentration with high accuracy.

Figs. 7 shows comparison between experimental and pre-
dicted values of dynamic adsorption on activated carbon 
of (a) 2,4-Dichlorophenoxyacetic acid system, and (b) 
Paranitrophenol system at various initial concentrations. 
Fig 8 shows a comparison between experimental and pre-
dicted values of dynamic adsorption on activated carbon 
of (a) Toluene system at various flow rates, and (b) Orth-
oxylene system at various bed heights. Results show a very 
high performance of the developed model in following the 
trend of the experimental value with high accuracy.

The last comparison, plotted in Fig. 9, of Norfloxacin, Cip-
rofloxacin, and Levofloxacin systems was conducted with 
the same three initial concentration values. Results show 
the ability of the ANN to model dimensionless effluent 
concentration of different dynamic adsorption systems at 
various operating conditions with high performance. 

3.2 Sensitivity analysis

Sensitivity analysis is a critical tool for the determination of 
the relative importance of each input on the output varia-
ble. A sensitivity study was conducted by programming the 
Garson equation48 in MATLAB software, and using the best 
model architecture {8, 45, 1} and parameters {weight ma-
trix and vectors biases}.
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Fig. 6 – Comparison between experimental and predicted values of dynamic adsorption of (a) Benzaldehyde at various 
initial concentrations, (b) Parachlorophenol system at various bed heights
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Fig. 7 – Comparison between experimental and predicted values of dynamic adsorption on activated carbon of (a) 2,4-Di-
chlorophenoxyacetic acid system, and(b) Paranitophenol system at various initial concentrations
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Fig. 8 – Comparison between experimental and predicted values of dynamic adsorption on activated carbon of (a) Toluene 
system at various flow rates, and (b) Orthoxylene system at various bed heights
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Fig. 9 – Comparison between experimental and predicted values of dynamic adsorption on activated carbon of (a) Norfloxa-
cin, (b) Ciprofloxacin, and (d) Levofloxacin system, at various initial concentrations
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where Ij is the relative importance of the j input variable 
on the output variable; Ni and Nh are the number of input 
and hidden neurons, respectively; w are the connection 
weights; the superscripts i, h, and o refer to input, hidden, 
and output layers, respectively; and subscripts k, m, and 
n refer to input, hidden, and output neurons, respective-
ly.48,49 The contribution of the input variables obtained by 
the ‘weight’ method for the neural network is shown in 
Fig. 10.

Fig. 10 – Pie chart depicting the relative importance of the input 
variables, on dynamic adsorption of organic pollutants 
on activated carbon

Fig. 10 shows that all input variables have an impact on 
adsorption dynamics of organic pollutants on activated 
carbon with relative importance higher than  5  %. The 
flow rate (17.22 %), specific surface area (15.24 %), mean 
pore diameter (13.6  %), time (12.02  %), particle diam-
eter (11.21  %), molecular weight (11.09  %), bed height 
(10.77 %), and initial concentration (8.83 %) have less ef-
fect than other variables. 

4 Program for calculating the effluent 
concentration

In order to provide easy computing of effluent concentra-
tion, a computer program was designed based on the best 
ANN architecture {weights and biases}. All inputs were 
normalised and de-normalised via this interface to calcu-
late the dimensionless effluent concentration (Fig. 11).

Developed by Yamin Mesellem

c/c0 (–)

c0

Fig. 11 – MATLAB R2018a interface for effluent concentration 
computing

5 Conclusions
In this work, a methodology was proposed to predict the 
multi-system dynamic adsorption of organic pollutants on 
activated carbon. Conclusions are summarised as follows:

•	 Before using ANN, the database used was collected from 
experimental data recently published in scientific arti-
cles, which include a relevant input matrix of [5951, 8], 
as follows: molar mass, initial concentration, flow rate, 
bed height, particle diameter, BET surface area, average 
pore diameter, and dimensionless effluent concentra-
tion as an output. 

•	Good agreement was shown between the experimental 
data and the data calculated by the ANN model, the cor-
relation coefficients of the dataset (training, validation, 
and testing) were greater than 0.99, plus better robust-
ness (R = 0.997, RMSE = 0.029, and AAD = 1.810 %) 
for the training group were obtained. 

•	 For determination of the importance of each input var-
iable, a sensitivity analysis was conducted. The results 
showed that all input parameters had a significant rela-
tive importance on the output and could not be neglect-
ed.

•	 Finally, a user-friendly graphical interface was designed 
based on the optimised ANN parameters.
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List of symbols

AAD – average absolute deviation, %
As – BET Specific surface area, m2 g−1

bh1 – bias of neurons, –
bO1 – bias of neurons in the output layer, –
c0 – initial concentration, mg l−1

Dp – average pore diameter, nm
dp – particle diameter, mm
H – bed height, cm
M – molar mass, g mol−1

MSE – mean square error, –
c/c0 – dimensionless effluent concentration, –
Q – flow rate, ml min−1

R2 – regression coefficient, –
R – correlation coefficient, –
RMSE – root mean square error, –
t – time r, min

– matrix weights in the output hidden layer, –

– matrix weights in the hidden input layer, –

Sub-index
ANNs – artificial neural networks
BP – back-propagation
cal – calculated
exp – experimental
LM – Levenberg-Marquardt
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SAŽETAK
Modeliranje umjetne neuronske mreže višesustavnom dinamičkom 

adsorpcijom organskih onečišćujućih tvari na aktivnom ugljenu
Yamin Mesellem,a* Abdallah El Hadj Abdallah,b Maamar Laidi,a  

Salah Hanini a i Mohamed Hentabli a

Cilj ovog rada bio je modelirati višesustavnu dinamičku adsorpciju tehnikom umjetne inteligenci-
je. Za izradu umjetne neuronske mreže (ANN) upotrijebljen je skup podataka prikupljen iz znan-
stvenih radova koji sadrže kinetiku dinamičke adsorpcije na aktivnom ugljenu. Ispitivani parametri 
bili su: molarna masa, početna koncentracija, brzina protoka, visina sloja, promjer čestica, površi-
na BET, prosječni promjer pora, vrijeme i koncentracija bezdimenzijskih otpadnih voda. Rezultati 
su pokazali da je tijekom faze generalizacije dobiven optimiran ANN s visokim koeficijentom ko-
relacije, R = 0,997, korijenom srednje kvadratne pogreške RMSE = 0,029 i srednjim apsolutnim 
odstupanjem AAD (%) = 1,810. Dodatno, provedena je i analiza osjetljivosti primjenom metode 
inverzne umjetne neuronske mreže kako bi se proučio učinak svih ulaza na dinamičku adsorpciju. 
U radu je provedena i sljedivost procijenjenih rezultata razvojem grafičkog korisničkog sučelja.

Ključne riječi 
Umjetna neuronska mreža, dinamička adsorpcija, organske onečišćujuće tvari, aktivni ugljen
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