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SUMMARY 
Major depressive disorder is the greatest burden of developed countries in the context of morbidity caused by mental disorders.

Until recent, ketamine has been mostly used for anesthesia, analgesia, sedation and treatment of chronic pain syndromes. However, 

unique pharmacodynamic properties of ketamine have increased interests in it's use for treatment of depression. It is assumed that

ketamine reverses synaptic chronic stress pathology within one day of administration by postsynaptic glutamate activation, providing 

synaptic connectivity restoration that last for days or weeks. Potential glutamatergic agents, in context of treatment of major

depressive disorder are not entirely novel phenomenon. Considering the aforementioned, current neurobiological view of depression 

as a solely monoaminergic phenomenon should be reassessed in order to prompt discovery of putative antidepressant drugs of novel

generation. Acute side effects, such as increased salivation, increase in heart rate, systemic arterial pressure and intracranial 

pressure necessitate careful monitoring during intravenous administration of ketamine, even in subanesthetic doses. However, major 

burden of ketamine administration lies in it's ability to produce psychotomimetic side effects and emergence delirium. Esketamine 

nasal spray has now been widely approved and is considered safe in terms of acute side effects, tolerability and consistent 

therapeutic benefit. 
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*  *  *  *  *  

INTRODUCTION

It has been half a century since ketamine is widely 

known to medical professionals around the world as a 

safe anesthetic and sedation drug (Dundee 1990, Mion 

2017, Kurdi et al. 2014). The dynamics of the epidemio-

logical data required the intensification of the efforts 

of the entire scientific community to adapt to the rapid 

changes in society. As depression has become one of 

the leading scourges of modern society, and current 

advances in treatment are far from satisfactory, scien-

tists seek to think outside the box to better understand 

the pathophysiology and psychopathology of depres-

sion (Pereira & Hiroaki-Sato 2018, Jakovljevic & 

Borovecki 2018, Rush et al. 2006, McIntyre et al. 

2014). More than half a century ago, psychiatrists 

investigated the effects of psychotomimetics on certain 

mental disorders and the past decade has suggested 

that the same trend will continue in this century. In 

modern times, ketamine is known to the general popu-

lation as a club drug and to the medically educated 

people as a dissociative anesthetic. Why would anyone 

take a dissociative anesthetic for recreational pur-

poses? Through a decade of everyday global use in 

clinical practice, ketamine has shown a number of 

interesting but also confusing side effects. There has 

been improvement in mood in patients who received a 

certain dose of ketamine and that effect would last for 

days. Years of research into the effects of ketamine on 

the central nervous system have led to a revision of the 

current theory of depression as purely a disorder of the 

monoamine systems of the brain, neglecting the impor-

tance of the leading cortical neurotransmitter, glutamate. 

Recent research suggests that the effect of ketamine, in 

addition to the receptor, is achieved within the cell. 

Ketamine acts on a cascade of intracellular signaling 

pathways responsible for generating the inflammatory 

response, now proven to be involved in the patho-

physiology of depression (Pereira & Hiroaki-Sato 2018, 

Strasburger et al. 2017, Chaki 2017). Ketamine has re-

cently been approved for the treatment of therapeu-

tically resistant depression, with well-defined indica-

tions, contraindications, and treatment regimens (Ban 

2016, Canuso et al. 2018, Wajs et al. 2020). As keta-

mine is a psychotomimetic, during the administration 

of the drug patients will be in a state of consciousness 

to which they were not previously accustomed. Psychia-

trists face the challenge of developing new psycho-

therapeutic approaches to patients with partially disso-

ciated states of consciousness, altered perceptions, 

with potentially anxious, if not transient psychotic-like 

reactions. What follows is a time of questioning and 

re-examining current concepts in the treatment of 

depression. This is a narrative review article on phar-

macological properties and clinical potential of keta-

mine in treatment of depression. 
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TREATMENT OF DEPRESSION

AND WHERE WE ARE TODAY 

Major depressive disorder (MDD) is the greatest 

burden of developed countries in context of morbidity 

caused by mental disorders with estimated prevalence 

in nearly 17% (Wittchen et al. 2011, Kessler 2003). In 

classification of depressive disorders, persistent depres-

sive disorder (PDD) is defined by minimal two-year 

illness duration while treatment-resistant depression 

(TRD) is defined as depression with an unsatisfactory 

response to two different classes of prescribed anti-

depressant drugs (Bow 2018, Machmutow et al. 2019). 

Majority of approved antidepressant drugs for treat-

ment of MDD primarily modulates monoaminergic 

brain circuits (serotonin, norepinephrine, or dopamine) 

(Jaso et al. 2017). Among those groups of psychiatric 

medications most widely prescribed drugs belong to 

class of selective serotonin reuptake inhibitors (SSRI) 

and serotonin and noradrenaline reuptake inhibitors 

(SNRI). It is estimated that approximately 70% of 

patients with depression respond positively at some 

degree to prescribed antidepressants, while approxi-

mately 30% of patients stay nonrespondant (Rush et al. 

2006, Trivedi et al. 2006). According to National Insti-

tute of Mental Health only 27% of patients suffering 

from depression achieve remission within 12 weeks 

while adjunctive medication made very little impact 

(Howland 2010). In addition, average time needed for 

achieving stable remission was 7 weeks in patients that 

responded well to prescribed antidepressants. That 

being said, urgency for a new antidepressant treatment 

mechanisms is evident (Krystal et al. 2013). Further-

more, current neurobiological view of depression as a 

solely monoaminergic phenomenon should arguably 

be reassessed in order to expand the field of reasearch 

into other potential systems and prompt the discovery 

of putative antidepressant drugs of novel generation.  

HISTORY OF GLUTAMATERGIC 

AGENTS AND FUTURE OF KETAMINE 

Metabotropic glutamate (mGlu) receptors identified 

as an important regulators of glutamatergic transmission 

with possible significant role in the expression of moods 

and emotions (Schoepp & Conn 1993). Vast amounts of 

clinical data confirmed that ketamine, a non-competitive 

N-methyl-D-aspartate glutamate receptor antagonist 

produces remarkable rapid-onset antidepressant effect in 

both rodents and humans (Krystal et al. 1994). In 

contrast to the delayed onset in significant therapeutic 

effect (typically 3-6 weeks) of available antidepressants, 

it have been proved that ketamine produces significant 

antidepressant effect in just few days, or even hours 

after administration (Strasburger et al. 2017, Chaki 

2017). This surprising and potentially revolutional 

discovery could guide researchers to the development of 

a possible life-saving agent for depressed patients, 

primarily by reducing the risk of suicide associated 

with delayed onset of action of currently available 

antidepressants (Strasburger et al. 2017). Also, this 

discovery opened the door for investigation of the 

whole new class of non-monoamine-based agents for 

treatment of depression (Chaki 2017). The focus has 

shifted from monoaminergic system research to gluta-

matergic system research, which has now been iden-

tified as a potential target of action in a new generation 

of antidepressants (Sanacora et al. 2008, Skolnick et al. 

2009). Glutamate is the major excitatory neurotrans-

mitter in the central nervous system, and with its 

cognate receptors takes part in the pathophysiology of 

MDD (Jaso et al. 2017). Potential glutamatergic agents, 

in context of MDD treatment are not entirely novel 

phenomenon. In 1959, Dr. George Crane discovered 

that antituberculotic drug D-cycloserine induced mood 

improvement in 30 out of 37 patients suffering from 

tuberculosis and comorbid depression, predominately 

within 2 weeks (Crane 1959). More than half century 

later, first placebo-controlled trial replicating this 

reasearch reported progressive mood improvement over 

6 weeks of treatment with D-cycloserine (Kurdi et al. 

2014). D-cycloserine is a partial agonist at the glycineB 

coagonist site of N-methyl-D-aspartate (NMDA) glu-

tamate receptors bearing the GluN2A and GluN2B 

subunits (previously NR2A and NR2B subunits) and a 

full agonist of NMDA receptors containing the GluN2C 

and GluN2D subunits (Sheinin et al. 2001, Dravid et al. 

2010). In the late 1980's researches on the effects of 

ketamine in healthy subjects were started with an aim of 

determination the correlation between dysfunction of 

glutamate synaptic transmission in schizophrenia and in 

alcoholism (Krystal et al. 1994, Krystal et al. 2003a, 

Krystal et al. 2003b). Later on the same paradigm of 

dosing and administration was used to investigate the 

effects of ketamine in depressed patients with an aim 

of characterizing alterations in NMDA receptor func-

tion related to depression. In 2000 researchers proved 

that a single subanesthetic intravenous injection of 

ketamine in dose of 0.5 mg per kg over 40 minutes 

exerted rapid (few hours) and sustained (approxima-

tely one week) antidepressant effect in patients 

suffering from MDD and in subsequent studies also in 

patients suffering from TRD (Berman et al. 2000, 

Zarate et al. 2006). Following these discoveries, rea-

searchers studied the effects of repeated administration 

of ketamine in patient suffering from TRD and those 

studies have determined that no tolerance occurred for 

a short period of repeated administration while some 

patients relapsed after cessation of administration (Aan 

het Rot et al. 2010, Murrough et al. 2013, Rasmussen 

et al. 2013). Several studies reported that ketamine 

administration has shown beneficial results in suicidal 

ideation reduction (Ionescu et al. 2016, Price & 

Mathew 2015). Discovery of the antidepressant effects 

and anti-suicide potential of ketamine is the most 

promising finding in depression research in over 60 

years (Chaki 2017). 
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NEUROBIOLOGY AND ANTIDEPRESSANT 

PROPERTIES OF KETAMINE  

Ketamine blocks the NMDA receptor, presumably 

on GABA interneurons, leading to disinhibition of pyra-

midal neural activity in cortex, subsequently increa-

sing the glutamate release triggering a cascade of 

signaling pathways, including -amino-3-hydroxy-5-

methylisoxazole-4-propionate (AMPA) receptor activa-

tion, secretion of brain-derived neurotrophic factor 

(BDNF) secretion and activation of mammalian target 

of rapamycin (mTOR) signaling (Krystal et al. 2013). 

Some authors suggest that NMDA receptor antagonism 

results inhibiting eukaryotic elongation factor 2 kinase 

and increased BDNF production (Monteggia et al. 

2013). Both of these hypothesis underlie the theory of 

increased cortical synaptic connectivity. Model of the 

synaptic chronic stress pathology (CSP) in the pre-

frontal cortex (PFC), hippocampus and dopaminergic 

nucleus accumbens (NAc) suggests that synaptic dis-

connectivity could be a common pathology in nu-

merous psychiatric disorders correlated with chronic 

distress (Abdallah & Krystal 2020). The model of 

synaptic CSP proposes that chronic stress results in 

glial cell reduction, decreased capacity of overall 

glutamate reuptake, increased extrasynaptic glutamate 

levels and subsequent excitotoxicity, resulting in neu-

ronal atrophy, loss of dendritic spine density and 

decreased glutamate neurotransmission (Abdallah et 

al. 2018). According to CSP model during chronic 

stress, neurotransmission strength in sustained synapses 

of PFC also gets affected by reduced number of 

postsynaptic NMDA and AMPA receptors (Li et al. 

2017). It is assumed that ketamine reverses CSP in 

prefrontal cortex, hippocampus and NAc within one 

day of administration by postsynaptic glutamate activa-

tion with subsequent upregulation of neurotrophic 

signaling and increased protein synthesis, providing 

synaptic connectivity restoration that last for days or 

even weeks (Yuen et al. 2010, Abdallah et al. 2018). 

Also, according to the model of synaptic CSP chronic 

stress induces synaptic monoaminergic disregulation 

and hyperconnectivity in dopaminergic NAc (Melo et 

al. 2015, Abdallah et al. 2018). These synaptic altera-

tions in the PFC and NAc were both associated with 

depressive symptoms in earlier preclinical studies 

(Duman et al. 2016). These findings propose that 

synaptic hypoconnectivity in PFC and hippocampus as 

well as hyperconnectivity of dopaminergic NAc, reflect 

two independent pathways underlying clinical depres-

sion (Abdallah et al. 2015, 2017). This Dual Pathology 

model suggests that patients with underlying glutama-

tergic impairment would be treatment-resistant with 

widely used monoaminergic antidepressants in contrast 

to those with monoaminergic pathology that would 

effectively respond to same monoaminergic antide-

pressants (Abdallah et al. 2017). 

Antidepressant properties of ketamine might also 

be due to effect on mitochondrial energy metabolism. 

In a study on mice models, ketamine tended to down-

regulate the adenosine triphosphate/adenosine diphos-

phate metabolite ratio and increased levels of enzymes 

that are part of the oxidative phosphorylation pathway, 

which all leaded to less protein damage by decreasing 

reactive oxygen species (ROS) production (Weckman 

et al. 2017). However, it is to mention that in higher 

concentrations, ketamine can increase ROS generation 

and apoptosis in human neurons (Ito et al. 2015).  

EPIGENETIC ASPECTS OF KETAMINE 

Gene and environment interplay underlie the patho-

physiology of depression and these interactions are 

possibly mediated by the epigenetic mechanisms, defi-

ned as alterations of gene expression without structural 

changes in the DNA (Duclot & Kabbaj 2015). Through 

these mechanisms, the environment interacts with the 

genome to generate plastic phenotypic exposures which 

are a consequence of controlled gene regulation and 

transcription in a long term manner (Renthal et al. 

2007). Epigenetic modulation consists of DNA methy-

lation (Razin & Riggs 1980), histone modification 

(Strahl & Allis 2000), and regulation of non-coding 

RNAs (Wang et al. 2017). Recent studies have disco-

vered that epigenetic regulation is closely involved in 

the pathophysiology of depression and the therapeutic 

mechanisms of typical antidepressants (Mahgoub & 

Monteggia 2013, Tsankova et al. 2006). BDNF is now 

known as a crucial developmental factor in the adult 

central nervous system, acting as a modulator of 

activity-induced neuronal plasticity (Park & Poo 2013). 

It is clear that BDNF plays a critical role in the patho-

physiology of depression but the lack of clear genetic 

etiology has made the regulation of BDNF expression 

a focal point of extensive research (Duclot & Kabbaj 

2015). It is proven that antidepressant treatment with 

ketamine increases plasma BDNF levels in patients 

suffering from depression, but serum levels of BDNF 

were significantly elevated only at one week following 

the first ketamine infusion (Allen et al. 2015). Precli-

nical studies showed that an insufficient BDNF expres-

sion and signaling per se do not lead to depression, 

rather affecting the efficacy of antidepressant treatments 

(Adachi et al. 2007). Previous studies demonstrate that 

the class II histone deacetylase (HDAC and HDAC5) 

epigenetically controls behavioral adaptations to chronic 

emotional stimuli in nucleus accumbens (Renthal et al. 

2007). Ketamine rapidly stimulates phosphorylation of 

histone deacetylase 5 (HDAC5) and nuclear export in 

rat hippocampal neurons resulting in enhancement of 

the transcriptional activity of the myocyte enhancer 

factor 2 (MEF2) and subsequent activation of MEF2 

target genes (Choi et al. 2015). Substantial evidence 

supports a role for MEF2-mediated transcription in 

neuronal survival, differentiation, and synaptic func-

tion (Finsterwald et al. 2013). BDNF was shown to 

activate MEF2-mediated transcription in cerebellar 

granule and cortical neurons (Wang et al 2007). 
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CENTRAL NERVOUS SYSTEM 

EFFECTS OF KETAMINE 

Effects of ketamine on electroencephalogram are 

characterized by abolition of alpha rhythm and domi-

nance of theta activity. Appearance of delta activity 

coincides with loss of consciousness and onset of 

“dissociative anesthesia”, which is characterized by 

dissociation between the thalamocortical and limbic 

systems. Dissociative anesthesia resembles a cataleptic 

state in which eyes remain open with a slow nystagmic 

gaze. Ketamine-induced excitatory activity, clinically 

evident as myoclonic and seizure-like movements, 

occurs in both the thalamus and limbic systems without 

evidence of spread of seizure activity to cortical areas 

(Rathmell & Rosow 2015, Ferrer-Allado et al. 1973). 

Indeed, ketamine does not alter the seizure treshold and 

does not precipitate convulsions in patients with seizure 

disorders (Rathmell & Rosow 2015, Celesia et al. 

1975). On contrary, ketamine is considered to possess 

anticonvulsant activity and has been effectively used in 

treatment of refractory status epilepticus (Fang & Wang 

2015, Modica et al. 1990). Ketamine is considered to 

increase cerebral blood flow, intracranial pressure and 

cerebral rate of oxygen consumption (Rathmell & 

Rosow 2015, Reich & Silvay 1989). For that reason, 

patients with intracranial pathology are considered 

vulnerable to increase in intracranial pressure after keta-

mine administration (Rathmell & Rosow 2015). NMDA 

antagonism suggests a possible neuroprotective role of 

ketamine during cerebral ischemia, although this re-

mains an unproved hypothesis (Pfenninger & Him-

melseher 1997). 

Emergence from ketamine may be associated with 

visual, auditory, proprioceptive, and confusional illu-

sions, which may progress to delirium. Cortical blind-

ness may be transiently present. Dreams and halluci-

nations can occur up to 24 hours after administration but 

usually disappear within few hours of onset. Loss of 

skin and musculoskeletal sensations results in decreased 

ability to perceive gravity, thereby producing a sen-

sation of bodily detachment or floating in space 

(Rathmell & Rosow 2015, White et al. 1982). 

RACEMIC, S (+), R (-) KETAMINE

AND NORKETAMINE 

Ketamine structurally resembles phencyclidine and 

consists of two optical isomers (Rathmell & Rosow 

2015, Kohrs & Durieux 1998). Racemic ketamine is a 

mixture containing equal parts of S (+) ketamine and 

R(-) ketamine enantiomeres. Compared to racemic 

form, S(+) ketamine produces more intense analgesia, 

has more rapid metabolism and consequent recovery, 

produces less salivation, and causes less emergence 

delirium (Rathmell & Rosow 2015, Kienbaum et al. 

2001, White et al. 1980). S (+) ketamine has higher 

affinity for the NMDA receptors and higher anesthetic 

potency comparing to the R (-) enantiomere (Domino 

2010). Some authors suggest that R (-) ketamine is an 

enantiomere with greater antidepressant potential than S 

(+) enantiomere, arguably with less ketamine-related 

side-effects (Kohrs & Durieux 1998). Norketamine is an 

active metabolite of ketamine with approximately 7-fold 

lower affinity for the NMDA receptor than racemic 

ketamine. Some studies have shown promising results 

of rapid antidepressant effects of norketamine, with lower 

potency correlating its lower NMDA affinity (Sa at et al. 

2015). In a multicenter, randomized, placebo-controlled 

trial of intravenously administrated S (+) ketamine in 

doses of 0.2/0.4 mg/kg over 40 minutes conducted in 30 

patients suffering from TRD, results proved significant 

antidepressant effect with early onset (2h) after the 

administration following a 3-day response in 67% of 

patients treated with 0.2 mg/kg and 65% treated with 

0.4 mg/kg, while reported adverse effects of intrave-

nously administered S(+) ketamine were transient disso-

ciative and psychotic-like symptoms, which subsided 

within 4 h of cessation (Singh et al. 2016). Nevertheless, 

ketamine administration at sub-anesthetic doses hasn't 

shown any unacceptable level of risk in healthy indi-

viduals while self-reported transient negative adverse 

events were described as “very unpleasant sensations”, 

“no control, not a good feeling”, “weird”, “panicky”, 

and “too high, walls closing in”, nightmares, insomnia, 

a lower ability to concentrate, tearfulness, and no res-

ponse to verbal and painful stimuli (Perry et al. 2007). 

One meta-analysis showed that transient psychoto-

mimetic effects, following a single administration of 

ketamine, did not cause a persistent psychosis or rapid 

affective switches in patients suffering from unipolar 

and bipolar depression (McGirr et al. 2015). 

ESKETAMINE NASAL SPRAY SAFETY, 

EFFICACY AND TOLERABILITY 

The Food and Drug Administration (FDA) has re-

cently approved nasal spray formulation of S (+) keta-

mine for treatment of patient suffering from TRD 

(Szarmach et al. 2019). Several studies conducted in 

past two years investigated long-term effects, possible 

toxicity and side-effects during and after repeated 

administration of nasal formulation of S (+) ketamine, 

adjunctive to an oral antidepressant in subjects suffering 

from TRD and results have shown superior efficacy of 

S (+) ketamine compared with placebo nasal spray, not 

only in TRD patients but also in depressed patients at 

imminent risk for suicide (Daly et al. 2018, Canuso et 

al. 2018). Potential safety concerns of long-term keta-

mine/esketamine use have naturally emerged after nu-

merous observations of cognitive deficits, bladder toxi-

city with interstitial/ulcerative cystitis, hepatotoxicity, 

and dependence associated with prolonged, „recrea-

tional“ long-term (3 times a week or daily) use of 

ketamine (Morgan et al. 2010, Morgan & Curran 2012, 

Short et al. 2018). An open label, multicenter trial, 
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investigated safety, tolerability, and efficacy of nasal 

formulation of S(+) ketamine adjunctive to newly 

prescribed oral antidepressant. Authors concluded that 

treatment with esketamine nasal spray over a period of 

up to 1 year, results in consistent benefits and accept-

able tolerability. There were no reported cases of eske-

tamine abuse and the most common “withdrawal” 

symptoms included fatigue after discontinuation of 

maintenance phase and insomnia at the endpoint (Wajs 

et al. 2020). 

PHARMACOKINETIC

CHARACTERISTICS OF KETAMINE 

Ketamine can be administered via intravenous, sub-

cutaneous, intramuscular, intranasal, oral and sublingual 

route (Mion 2017). Peak plasma concentrations of keta-

mine occur within one minute after intravenous admi-

nistration, within five minutes after intramuscular injec-

tion and within fifteen minutes after intranasal admini-

stration (Rathmell & Rosow 2015, Vlerick et al. 2020). 

Bioavailabilty of ketamine is only 29% and peak plasma 

concentrations occur within 45 minutes after peroral or 

sublingual administration (Rolan et al. 2014). One study 

conducted on healthy volunteers, investigated phar-

macokinetic properties of ketamine in subanesthetic 

doses, after inhalational administration. Results of the 

mentioned study are shown in table 1 (Jonkman et al. 

2017). Extreme lipid solubility of ketamine ensures its 

rapid transfer across the blood–brain barrier and hence 

the rapid onset of action, which usually occurs within 45 

to 60 seconds after intravenous administration (Rathmell 

& Rosow 2015, White & Eng 2013). Subsequently, 

ketamine is redistributed from the brain and other highly 

perfused tissues to less perfused tissues, such as fat and 

muscles. Release of ketamine from less perfused tissues 

results in late psychodynamic effects after emergence. 

High rate of hepatic clearance results in relatively short 

elimination half-time of two to three hours. Demethy-

lation by cytochrome P450 enzymes leads to formation 

of norketamine, which is one-fifth to one-third as potent 

as ketamine and may contribute to prolonged effects of 

ketamine, especially with repeated intravenous boluses 

or a continuous intravenous infusion (Rathmell & Rosow 

2015, White & Eng 2013, White et al. 1982).  

SYSTEMIC EFFECTS OF KETAMINE 

Apart from causing dissociative anesthesia, ketamine 

is unique among intravenous anesthetics due to it's 

analgesic properties, ability to produce emergence de-

lirium, having mild properties of local anesthetic and 

stimulating the cardiovascular system (Reich & Silvay 

1989, Kurdi et al. 2014). 

Direct negative inotropic effect of ketamine is usu-

ally overshadowed by central sympathetic stimulation, 

which leads to increase in systemic blood pressure, 

heart rate, cardiac output and myocardial oxygen con-

sumption (Rathmell & Rosow 2015, Tweed et al. 1972). 

Consequently, ketamine is not recommended in patients 

with severe coronary artery disease (White & Eng 2013). 

Blood pressure typically increases during the first few 

minutes after intravenous administration of ketamine 

and then decreases over the next 10 to 20 minutes. 

Effect of ketamine on cardiac rhythm is a matter of 

debate. There is evidence that ketamine may abolish 

epinephrine-induced cardiac arrhythmias (Niiya 1990). 

However, ketamine might enhance the arrhythmogenic 

effect of epinephrine and ketamine-induced prolon-

gation of QT interval, as well as transient elevation of 

ST segment, have been reported (Koehntop et al. 1977, 

Tejinder et al. 2017). 

Ketamine does not produce significant ventilatory 

depression and medullary response to carbon dioxide 

is maintained (Rathmell & Rosow 2015, Soliman et al. 

1975). Breathing frequency typically decreases for few 

minutes after administration of ketamine. However, 

rare cases of apnea following ketamine administration 

have been reported (Driver & Reardon 2016, Jonna-

vithula et al. 2008). For that reason, administration of 

ketamine necessitates airway equipment and medical 

personell capable of advanced airway management.  

Table 1. Pharmacokinetic properties of S-ketamine and S-norketamine after inhalation 

Parameter First inhalation Second inhalation Third inhalation 

Dose (mg/kg) 0.35 0.5 0.7 

Duration of inhalation (min) 22 (7) 33 (8) 41 (7) 

S-ketamine    

Cmax (ng/ml) 128 (3) 180 (39) 227 (36) 

Range (ng/ml) 80-165 107-224 158-277 

Tmax (min) 22 (7) 15 (0) 25 (0) 

CV(%) 26 22 16 

S-norketamine    

Cmax (ng/ml) 52 (15) 97 (21) 153 (27) 

Range (ng/ml) 40-81 68-126 75-219 

Tmax (min) 63 (7) 48 (7) 41 (7) 

CV(%) 27 22 20 

Legend: Values are shown as mean (SD), except where otherwise indicated. C max: maximal concentration during or following 

inhalation; CV: coefficient of variation; Tmax: time of Cmax from the initiation of inhalation 
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Ketamine increases production of mucous secretions 

by salivary and tracheobronchial glands, leading to fre-

quent recommendation of administering anticholinergic 

drug before administration of ketamine (Rathmell & 

Rosow 2015). Due to effect of increasing upper res-

piratory secretions, administration of ketamine can 

rarely lead to laryngospasm, which is more of an issue 

in pediatric population (Baduni et al. 2010). Due to 

bronchodilatory activity, ketamine has been used suc-

cessfully for treating refractory bronchospasm, as well 

as status asthmaticus (Goyal & Agrawal 2013). Keta-

mine does not significantly alter laboratory tests that 

reflect hepatic or renal function (Rathmell & Rosow 

2015). Even though ketamine does not cause release of 

histamine and rarely leads to allergic reactions, cases 

of anaphylaxis after administration of ketamine have 

been reported (Mathais et al. 2019, Bylund et al. 

2017).

DRUG INTERACTIONS 

Small number of studies suggests that concurrent 

benzodiazepine medication may diminish the antide-

pressant effects of ketamine (Anrade 2017, Ford et al. 

2015). Some drugs that inhibit glutaminergic signaling, 

such as lamotrigine, may reduce the adverse effects of 

ketamine, but it is unclear whether these drugs also 

diminish the antidepressant effect. However, data from 

clinical trials indicate that most antidepressants can be 

combined with ketamine without compromising it's 

antidepressant efficacy (Anrade 2017). Administering 

diaepam or midazolam prior to administration of keta-

mine, is effective in preventing cardiovascular effects of 

ketamine, as well as ketamine-induced increase in intra-

cranial pressure (Rathmell & Rosow 2015). Chronic 

therapy with drugs that block adrenergic receptors, such 

as beta blockers, reduces ketamine-induced increase in 

heart rate and blood pressure. However, in the pre-

sence of heart failure, chronic alfa or beta blockade 

might unmask direct myocardial depressant effect of 

ketamine (White & Eng 2013, Rathmell & Rosow 

2015). Combination of ketamine and theophylline, 

used in chronic asthma therapy, might be epileptogenic 

(Hirshman et al. 1982).  

CONCLUSIONS 

Current potentials in the treatment of depression, the 

greatest psychopathological burden of today’s society, 

are still modest, and for some patients fatal. Currently 

available psychopharmaceuticals used in the treatment 

of depression are effective after almost a month of 

continuous use. If we take into account that patients are 

most vulnerable during this period, and many of them 

ruminate about suicide during this period, there is a 

significant need for urgent hospitalizations in the wards 

of intensive psychiatric treatment. Considering the 

aforementioned, surprising discovery of a drug that is 

effective after a few hours or days, after a single dose, 

and significantly decreases the risk of suicide faster than 

any other currently available psychopharmaceutical, the 

optimism of the psychopharmacologists seems entirely 

justified. Since it acts quickly and efficiently, it could 

significantly reduce the need for urgent hospitalizations 

in psychiatric wards. Despite numerous controversies 

still associated with ketamine, recent clinical trials have 

proven its efficacy and acceptable tolerance if taken 

according to a clearly prescribed regimen while moni-

tored by the medical staff. However, as this is a new 

drug, but also a new concept in the treatment of de-

pression, further research is needed regarding its appli-

cation, efficacy and safety, not only in the treatment of 

depression, but also regarding its potential in treatment 

of other psychiatric disorders. 
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