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ABSTRACT. Soil contamination caused by heavy metals presents a potential 
long-term issue to human health and biodiversity due to the bioaccumulation 
effect. Previous research at the micro level in Croatia detected soil contamination 
caused by heavy metals above maximum permitted values, which also implied 
the necessity of their current spatial representation at the macro level in Croatia. 
The aim of this study was to provide a spatial prediction of six heavy metals con-
sidered as contaminants of soils in continental Croatia using two approaches: a 
conventional approach based on interpolation and a machine learning approach. 
The prediction was performed on the most recent available data on cadmium (Cd), 
chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) concentrations in 
soils, from the Ministry of environment and energy. The conventional prediction 
approach consisted of the interpolation using the ordinary kriging (OK) in case 
of input data normality and stationarity, alongside the inverse distance weight-
ing (IDW) method. For the machine learning approach, random forest (RF) and 
support vector machine (SVM) methods were used. IDW outperformed RF and 
SVM prediction results for all soil heavy metals contents, primarily due to sparse 
soil sampling. Soil Cr contents were predicted above the maximum allowed limit, 
while elevated soil contamination levels in some parts of the study area were de-
tected for Ni and Zn. The highest soil contamination levels were observed in the 
urban areas of generalized land cover classes, indicating a necessity for its moni-
toring and the adjustment of land-use management plans.
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1. Introduction

Bioaccumulation of heavy metals located in the soil presents a long-term dan-
ger to human health and vegetation stress, which affects biodiversity and en-
ters the food chain through plant-based food consumption (Hu et al. 2020). 
Soil contamination by heavy metals has been a concern worldwide, with the 
detected contamination on agricultural areas (Atafar et al. 2010), urban areas 
(Hu et al. 2013) and forests (Yan et al. 2015). A previous study by Sollitto et al. 
(2010) explored soil contamination caused by heavy metals on a micro scale of 
Croatia, detecting multiple locations of critical soil anthropogenic contamina-
tion in Zagreb. The recent information about heavy metal soil content spatial 
distribution at the macro scale in Croatia was not found during a literature 
review, which disables a prompt soil contamination management in case of 
severe contamination. The analysis of soil contamination caused by heavy met-
als according to land cover classes is an indicator of the dominant exposure of 
heavy metals, enabling the adjustment of land-use management and the soil 
remediation planning (Zhao et al. 2012). Soil contamination by heavy metals 
is also a side-effect of growing urbanization globally and presents an issue for 
human health due to higher population density (Hu et al. 2013).
An accurate soil mapping presents a foundation for sustainable soil remedia-
tion and overall land-use management (Ottesen et al. 2008). The prediction of 
the spatial distribution of heavy metals in the soil is traditionally performed by 
spatial interpolation methods in a geographic information system (GIS). This 
process allows the determination of the continuous distribution of heavy met-
als over the entire study area. The collection of discrete soil sampling points 
requires extensive field and laboratory work. Sampled points allow a limited 
representation of the distribution of heavy metals on agricultural land, mak-
ing the interpolation methods necessary for their monitoring (Radočaj et al. 
2020a). Various geostatistical and deterministic interpolation methods were 
traditionally applied in the prediction of soil variables with high accuracy (Qiao 
et al. 2018). Geostatistical methods, consisting of kriging variations, were gen-
erally superior to deterministic methods for the majority of applications regard-
ing interpolation accuracy and user subjective impact (Šiljeg et al. 2019). Since 
the introduction of machine learning algorithms in the GIS environment, their 
application in the prediction of soil properties became increasingly popular in 
soil-related studies (Keskin et al. 2019). These methods present a potential im-
provement of the conventional approach using interpolation methods regarding 
processing time-efficiency and prediction accuracy. The machine learning algo-
rithms were successfully applied for the analysis of the spatial distribution of 
soil heavy metals in multiple studies (Khanal et al. 2018, Sergeev et al. 2019).
The primary aim of this study was to evaluate heavy metal soil contents in 
continental Croatia using the conventional approach based on the geostatisti-
cal and deterministic interpolation, as well as the machine learning approach 
using multiple independent predictors. The created soil contamination maps 
would represent one of the few studies of heavy metal spatial distribution re-
search in Croatia. The spatial distribution of these heavy metals according to 
land cover classes was the secondary aim of the research in order to evaluate 
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the most contaminated sites in the study area and to identify potential con-
tamination sources.

2. Materials and Methods

The study area covers the continental biogeoregion of Croatia, a 30 864 km2 area 
classified according to the European Environment Agency data on a European 
Union level (URL 1) (Fig. 1). A total of 469 soil samples collected during 2016 
in the study area were used from the Ministry of environment protection and 
energy, Department of environment and nature protection web feature service 
(WFS). The soil content data of six heavy metals considered as contaminants 
in Croatia were extracted for further analysis, according to Ordinance on the 
protection of agricultural land from contamination (URL 2). These data consist 
of total soil contents of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), 
lead (Pb) and zinc (Zn), expressed in mg kg–1. Training and test datasets were 
created using the Simple Random Sampling method of input soil sample data 
in a ratio of 80% for training (375 samples) and 20% for test dataset (94 sam-
ples), according to Tayebi et al. (2017). Land cover classes were downloaded 
from CORINE Land Cover (CLC) 2018 data, created by the classification of 
satellite multispectral Sentinel-2 and Landsat 8 images within the European 
Space Agency (ESA) Copernicus program. Land cover is represented using the 
five generalized land cover classes: artificial surfaces, agricultural areas, for-
ests with semi-natural areas, wetlands and water bodies (URL 3). Agricultural 
areas were the dominant land cover class, covering 54.0% of the study area, 
followed by forests (40.7%) and artificial surfaces (3.5%). Water bodies were 
excluded from further analysis, as sampling for heavy metals was performed 
exclusively for soil. Terrain elevation data was collected from the ESA Coperni-
cus program digital elevation model EU-DEM v1.1, which is natively available 
at 25 m spatial resolution on the EU level (URL 4).

 
Fig. 1. Continental biogeoregion of Croatia.
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The spatial prediction of heavy metal soil content in the continental biogeoregion 
of Croatia was performed using two different approaches. The selected projected 
coordinate system for the analysis in the GIS environment was the Croatian 
terrestrial reference system (HTRS96/TM). The spatial resolution of 250 m for 
the interpolated rasters was selected based on the modified Inspection density 
method using the finest legible resolution, which integrated the surface of the 
study area and soil sampling count (Hengl 2006). Other input rasters were 
resampled and processed at 250 m spatial resolution for the standardization 
with the interpolated rasters. Open-source GIS software, SAGA GIS v7.4.0 and 
QGIS v3.8.3, were used for the research.
The first approach was based on using machine learning algorithms for 
classification based on multiple predictors which affect the accumulation and 
mobility of heavy metals in soil. Spatial predictors for the classification of heavy 
metal soil content were selected based on the data availability and their impact 
on the availability of soil metals in recent soil-related studies (Table 1). All soil 
sample values which served as predictors, natively imported as point vector 
data, were interpolated to raster data type in the pre-processing. The optimal 
interpolation method for predictor values was determined according to data 
normality and stationarity from the descriptive statistics. Machine learning 
algorithms implemented in the first prediction approach were Random Forest 
(RF) and Support Vector Machine (SVM), both allowing high accuracy and 
resistance to data overfitting in similar studies (Khanal et al. 2018, Keskin 
et al. 2019). RF performs classification based on the aggregation of multiple 
randomized decision trees and is thoroughly described in (Belgiu and Drăguţ 
2016). SVM represents a robust machine learning classification method of the 
non-linear statistical approach, that performs well in case of limited input 
training data (Elbisy 2015). The selection of RF and SVM parameters was 
performed in the iterative procedure using the training data and selecting the 
parameters that acquired the highest interpolation accuracy based on the test 
dataset. Both training and test datasets were buffered to fixed 250 m distance 
from the original points for the conversion to training and test polygons, as 
a requirement of RF and SVM. Optimal parameters for the RF classification 
were set to maximum tree depth of 30, maximum sample count of 5 and a 
maximum number of categories of 10. SVM was performed using the c-support 
vector classification method, with polynomial kernel type and gamma value of 
1. A detailed description of the parameters used in RF and SVM classification 
is available in a study by Kranjčić and Medak (2020).
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Table 1. Predictors used for the heavy metal soil content calculation.

Independent predictor variable Effects on heavy metal 
accumulation References

Soil clay content
(Clay)

Affects solubility and availability 
to vegetation, finer soil texture 
(higher clay content) indicates 
high immobilization and lower 
drainage of heavy metals to 
groundwater

Laghlimi et 
al. 2015

Soil silt content
(Silt)

Soil sand content
(Sand)

Soil pH
(pH)

Affects soil heavy metal solubility 
and availability to vegetation, 
lower pH indicates higher solubility

Rees et al. 
2014

Soil carbon-to-nitrogen ratio
(C/N)

Represents soil organic matter, 
which affects the binding of heavy 
metals with organic compounds

Mohamed 
et al. 2010

Soil calcium carbonate content
(CaCO3)

Affects accumulation and mobility 
of heavy metals in the soil

Sungur et 
al. 2014

Digital elevation model
(DEM)

Affects micro variations of 
topography and precipitation flow

Shi et al. 
2018

Terrain slope
(Slope)

Represents terrain waterlogging, 
which affects fractionation of 
heavy metals in soil

Zheng et 
al. 2012

The second approach for the prediction of heavy metal soil contents was based 
on conventional spatial interpolation methods. Ordinary kriging (OK) is the 
most commonly used geostatistical method in similar soil-related studies, being 
considered as the best unbiased spatial predictor (Li and Heap 2008, Negreiros 
et al. 2010). OK was founded on a presumption of spatial dependence between 
the variance of soil sample values with the distance between them. The empirical 
variogram represents the relationship of these properties, while the variance 
of soil sample values is being aggregated in individual lags, which represent 
specific distance intervals in the search range of OK (Robinson and Metternicht 
2006). The interpolation of the input soil variables at the unknown locations 
was performed using the mathematical models that were fitted to an empirical 
variogram, used for the approximation of the variance of values according to 
the distance to the soil samples. OK was performed according to 20 nearest 
neighboring points in one sector and 12 lags, each covering 5 800 m distance. 
Tested mathematical models in this study were linear, square root, Gaussian 
and spherical, whose formulas were explained in a study by Ver Hoef (2018). The 
selection of the best-fitting mathematical model to the empirical variogram was 
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performed according to the highest fitting coefficient of determination values of 
repeatedly evaluated mathematical models per soil parameter.
The limitations of kriging are the interpolation inefficiency in cases of non-
normal and non-stationary input sample data (Hengl et al. 2004). The low 
sample count also disables the fitting of some or all mathematic functions to 
the empirical variogram. Deterministic methods overcome these limitations by 
the implementation of the uniform functions according to the distance of the 
unknown predicted location to the soil samples. Inverse distance weighting 
(IDW) is one of the most commonly used deterministic interpolation methods, 
which calculates value weights according to the distance between soil samples 
and predicted unknown locations (Robinson and Metternicht 2006, Li and Heap 
2008). IDW also outperformed OK in the case of low sample count (Radočaj et 
al. 2020a) and with the presence of extremely high values of soil heavy metal 
content (Qiao et al. 2018). IDW was performed with the power parameter of 
3 with the Inverse distance to a power method, as the primary interpolation 
parameters for IDW. This combination of parameters reduced the local 
variability in case of low soil sample data stationarity. IDW was performed 
using the 20 nearest neighboring points in one sector, with the maximum 
search range of 30 000 m.
The threshold values for the evaluation of data normality and stationarity 
were based on the descriptive statistics using the two conditions proposed 
by Radočaj et al. (2020b). The first condition was a 0.500 threshold value for 
the coefficient of variation (CV), where the higher CV values in combination 
with the second condition of skewness and kurtosis deviations higher than 
0.500 from the baseline values of 0.000 and 3.000 indicate the absence of data 
normality and stationarity.
Accuracy assessment of prediction results by both approaches, as well as for the 
pre-processing of predictors that were natively available as point vector data, 
was performed using the coefficient of determination (R2) and root mean square 
error (RMSE). These values provide complementary information in accuracy 
assessment for the prediction of soil values and were calculated according to 
the equations (1) and (2) (An et al. 2016):

 
in which  is the soil sample value,  s the predicted value,  is the average 
of the soil sample value y, n is the number of values. The higher R2 and lower 
RMSE values indicate higher prediction accuracy of the evaluated method.
The analysis of heavy metal soil content distribution per land cover class was 
performed to identify the areas of greatest soil contamination and to estimate 
potential primary contamination sources. CLC 2018 subclasses were reclassi-
fied and dissolved to four generalized land cover classes, which correspond to 
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artificial surfaces, agricultural areas, forests and wetlands. Mean and RMSE 
values were calculated for six evaluated heavy metals of particular prediction 
model per land cover class for the estimation of the contamination levels.

3. Results and Discussion

The descriptive statistics of point vector predictor data during the pre-process-
ing indicated a moderate level of data normality and stationarity, as in all cases 
only one condition of CV values higher than 0.500 and skewness and kurtosis 
0.500 deviation from ideal values applied (Table 2). Finer soil texture fractions 
were observed in the study area, which is in accordance with United States 
Department of Agriculture (USDA) specifications of soil texture classes in the 
continental Croatia (Radočaj et al. 2020b). These values indicated the selection 
of maximum permitted values of heavy metal soil content for silty-loamy soils 
from the Ordinance on the protection of agricultural land from contamination, 
which were used in the further analysis (URL 2). According to this source, 
maximum permitted heavy metal soil contents for Cd, Cr, Cu, Ni, Pb and Zn 
were 1, 80, 90, 50, 100 and 150 mg kg–1, respectively. Sand soil content, soil C/N 
and CaCO3 achieved the lowest overall normality and stationarity scores of ap-
plied predictors, as CV and skewness values deviated from ideal values higher 
than the selected thresholds.

Table 2. Descriptive statistics of soil samples for predictor values.

Clay (%) Silt (%) Sand (%) pH C/N CaCO3 (mg kg–1)

mean 30.96 56.67 12.38 6.22 9.47 3.71

minimum 7.56 9.83 0.47 4.19 1.92 0.00

maximum 73.67 87.89 75.75 8.23 26.60 37.40

CV 0.347 0.226 1.168 0.192 1.289 1.225

skewness 0.837 –0.776 1.869 0.227 1.594 1.788

kurtosis 0.955 0.539 3.358 –1.357 2.573 3.305

These observations supported the application of OK interpolation for predictor 
data, whose parameters and interpolation accuracy are displayed in Table 3. 
The moderate spatial dependence was achieved for all predictors, while square 
root model allowed the highest spatial dependence, which did not reflect on the 
high interpolation accuracy in both cases it was used. Soil pH and soil texture 
fractions resulted in the highest interpolation accuracies, partially as they are 
slightly susceptible to long-term variations in the field, compared to soil C/N, 
which can have high variability annually (Giles et al. 2012). The lowest inter-
polation accuracy based on the R2 values was observed for sand soil content, 
soil C/N and CaCO3, which also indicated the lowest data normality and sta-
tionarity during the analysis of descriptive statistics. RMSE values showed 
the similar trend, indicating that silt, sand and CaCO3 produced the lowest 
interpolation accuracy in that regard.
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Table 3. OK interpolation parameters and accuracy assessment for predictor values.

Soil property model nugget sill nugget/sill range (m) R2 RMSE

Clay Gaussian 0.752 1.134 0.663 39141.5 0.649 3.711

Silt Gaussian 1.132 1.766 0.641 25682.0 0.531 4.584

Sand spherical 1.301 1.852 0.703 35046.5 0.496 5.025

pH square root 0.679 1.817 0.374 36912.0 0.716 0.407

C/N square root 1.127 1.956 0.576 29529.5 0.394 1.724

CaCO3 linear 0.608 0.912 0.667 33205.5 0.389 3.856

All soil sample values of heavy metal soil content resulted in very high kurtosis 
values, indicating a highly skewed data distribution due to several extremely 
large values (Table 4). Cu, Zn and Pb achieved the highest kurtosis values, 
having maximum values 25.1, 12.1 and 12.3 times larger than the mean val-
ues, respectively. As the prerequisites of input data normality and stationarity 
for OK interpolation were not present, it was excluded from the further pre-
diction of heavy metal soil contents distribution in the study. A total of three 
prediction models were used, containing RF and SVM in the first approach, as 
well as IDW from the second prediction approach. Finer soil textures resulted 
in the entire study area with the exception of the northern part, while the 
highest values of soil C/N and CaCO3 were observed at the most western part 
of the study area (Fig. 2). The highest soil pH values resulted in the dominant 
wetland area in the Nature part Kopački rit in the northeast part of the study 
area, while high values were obtained for the major part in the proximity of 
rivers Dunav, Sava and Drava. DEM and Slope showed minor variabilities, as 
lowland soil covers most of the study area.

Table 4. Descriptive statistics of soil samples for heavy metals.

Cd (mg kg–1) Cr (mg kg–1) Cu (mg kg–1) Ni (mg kg–1) Pb (mg kg–1) Zn (mg kg–1)

mean 0.32 80.37 28.70 39.71 32.80 94.78

minimum 0.00 0.00 0.00 0.00 0.00 0.00

maximum 4.80 237.50 720.60 195.25 404.65 1147.50

CV 1.279 0.346 1.361 0.555 1.045 0.931

skewness 6.499 1.055 13.164 2.955 7.893 8.614

kurtosis 54.684 6.462 217.113 15.452 69.357 86.692
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Fig. 2. Predictor input rasters in RF and SVM methods after pre-processing.

IDW resulted in the highest interpolation accuracy, having the highest R2 val-
ues for all evaluated heavy metals except for Ni and the lowest RMSE values 
(Table 5). RF achieved similar accuracy trend as IDW for input data with a 
lower accuracy. SVM was ranked as the third-best method in all cases. High 
prediction accuracy of RF and SVM for heavy metal soil contents in similar 
studies (Keskin et al. 2019) implies that the lack of independent predictors, 
as well as low sample count with low normality and stationarity, potentially 
caused lower accuracy for RF and SVM. The high amount of extreme values 
specific for soil heavy metal contamination due to the proximity to contamina-
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tion sources implies a necessity for denser soil sampling. The sampling density 
of data used in this study of one sample per 65.8 km2 allows only for the pre-
diction on a macro level, comparatively to Ballabio et al. (2016), with the sam-
pling density of one sample per 199 km2. Based on these observations, the IDW 
method offers a stable prediction choice for the heavy metal soil content data, 
performing similarly regardless of input data properties and sampling density 
(Kravchenko 2003). The integration with Sentinel-2 or Landsat 8 multispectral 
satellite images series used as predictors could significantly increase the accu-
racy of RF and SVM prediction, based on Castaldi et al. (2019).

Table 5. Accuracy assessment for the prediction of the spatial distribution of soil heavy 
metals.

Heavy metal
RF SVM IDW

R2 RMSE R2 RMSE R2 RMSE

Cd 0.505 0.043 0.438 0.042 0.533 0.041

Cr 0.518 6.229 0.410 4.214 0.630 3.225

Cu 0.524 8.564 0.465 8.930 0.404 8.312

Ni 0.729 7.405 0.429 9.052 0.726 4.372

Pb 0.461 4.920 0.449 4.994 0.534 4.002

Zn 0.404 7.224 0.470 8.089 0.561 6.481

The predicted heavy metal soil contents for three applied prediction methods 
are displayed in Fig. 3. IDW retained local heterogeneity for most of the ap-
plied methods, also having the highest predicted value ranges for all heavy 
metals. Both RF and SVM resulted in the smooth, continuous values with high 
homogeneity. This is particularly valid for SVM, which retained the spatial 
variability of DEM and Slope predictors. RF mostly enabled the detection of 
similar contaminated areas as IDW, particularly for Cd and Zn. The presence 
of soil Cr and Zn was the highest for all prediction models, but for the most of 
the study area the results were below the maximum permitted heavy metal 
soil contents. Cr soil content predicted by IDW showed potentially dangerous 
levels at the southern and western parts of the study area, while Ni and Zn 
were predicted as close to the maximum permitted values in the proximity of 
Zagreb and southern part of the study area. High Cr values were continously 
distributed in the study area, which indicates low anthropogenic contamina-
tion sources and more likely geogenic origin of these values (Šorša et al. 2018). 
Contrary to soil Cr values, the distribution of Cd, Cu and Pb contamination 
sites indicate the presence of discrete point sources, which could originate from 
industrial sources in the proximity of larger settlements. Elevated Ni values 
were observed alongside the flow of Sava river, whose sources most probably 
are industrial sites in Slovenia, spreading downstream through the study area 
(Milačič et al. 2010).
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Fig. 3. Predicted heavy metal soil contents.

The highest soil contamination by heavy metals was observed at artificial sur-
faces, dominantly representing urban areas, followed by similar moderate dis-
tribution on agricultural areas and forests (Fig. 4). Heavy metal soil contents 
on agricultural areas resulted in a high correlation with forests, which implies 
that common contaminants in agriculture, such as fertilizers and pesticides, 
were not the primary sources of contamination in the study area, which re-
quires further research (Atafar et al. 2010). A high local heterogeneity of IDW 
prediction can be observed through the highest mean values for all six heavy 
metals in all observed land cover classes. The predicted value ranges were 
higher for RF and SVM, which resulted in lower mean values, but higher SD in 
some instances, especially for Cu and Ni prediction in all land cover classes.
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Fig. 4. Heavy metal soil content distribution according to CLC 2018 land cover classes.

4. Conclusions

The application of both conventional interpolation and machine learning meth-
ods for the precision of six heavy metal soil contents allowed efficient mapping 
on a macro scale in continental Croatia. The availability of soil sample data 
provided by WFS from the Ministry of environment protection and energy was 
successfully applied for the evaluation of prediction methods and mapping on 
a macro scale with moderate prediction accuracy. Open-source GIS software is 
as well available for widespread use of the interpolation and machine learning 
methods in the research of heavy metal soil contents, allowing high process-
ing possibilities with no cost for the user. For the analyses of heavy metal soil 
content spatial distribution on a micro scale at the city or municipality level, 
higher soil sampling density is required for the prediction with the same ac-
curacy. IDW method performed the best in the specific conditions of low sam-
pling density and moderately low input data normality and stationarity. Based 
on the existing literature, with the availability of more abundant input soil 
sample data and more independent predictors, machine learning methods are 
expected to produce significantly higher prediction accuracy. The highest pres-
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ence of soil heavy metals was detected at artificial surfaces land cover class, 
which primarily consists of the urban area. As urbanization is a growing issue 
both globally and in Croatia, more population is exposed to the negative health 
impacts of heavy metals and should be managed to restrict their further input 
in the environment. Based on the relative comparison of heavy metal soil con-
tent in agricultural areas and forests, no major deviation was observed for all 
six analyzed heavy metals, which implies that fertilizer and pesticides were 
not a primary contamination source in agricultural areas. Dangerously high 
levels of soil Cr, Ni and Zn showed that soil contamination of heavy metals is a 
present concern in Croatia and should be a subject of future research and the 
adjustment of land-use management.
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Prostorna predikcija udjela teških metala u tlima 
kontinentalne Hrvatske usporedbom metoda 
strojnog učenja i prostorne interpolacije

SAŽETAK. Onečišćenje tla uzrokovano teškim metalima uzrokuje potenci-
jalno dugoročnu opasnost za zdravlje ljudi i biološku raznolikost zbog učinka 
bioakumulacije. Prethodna istraživanja na mikro razini u Hrvatskoj otkrila su 
onečišćenje tla teškim metalima iznad maksimalno dopuštenih vrijednosti, što je 
ujedno impliciralo potrebu poznavanja njihove trenutne prostorne zastupljenos-
ti na makro razini u Hrvatskoj. Cilj ovog istraživanja bio je provesti prostorno 
predviđanje šest teških metala u tlu koji se smatraju onečišćujućima u konti-
nentalnoj Hrvatskoj koristeći dva pristupa: konvencionalni pristup zasnovan na 
interpolaciji i pristup strojnog učenja. Predviđanje je provedeno na najnovijim 
dostupnim uzorcima tla kadmija (Cd), kroma (Cr), bakra (Cu), nikla (Ni), olova 
(Pb) i cinka (Zn), prikupljenim od strane Ministarstva zaštite okoliša i energet-
ike. Konvencionalni pristup predviđanja sastojao se od interpolacije korištenjem 
uobičajenog kriginga (OK) u slučaju normalnosti i stacionarnosti ulaznih poda-
taka, zajedno s metodom inverzne udaljenosti (IDW). Za pristup strojnog učenja 
korištene su metoda slučajnih šuma (RF) i metoda vektora podrške (SVM). IDW 
je nadmašio rezultate predviđanja RF i SVM za sve sadržaje teških metala u tlu, 
prvenstveno zbog nedovoljno gustog uzorkovanja tla. Sadržaj Cr u tlu predviđen 
je iznad najveće dopuštene granice, dok su za Ni i Zn utvrđene opasne razine 
onečišćenja tla na dijelovima istraživanog područja. Najveće razine onečišćenja 
tla zabilježene su u urbanim područjima generaliziranih klasa zemljišnog pok-
rova, što ukazuje na potrebu za njegovim praćenjem i prilagođavanjem planova 
upravljanja korištenjem zemljišta.

Ključne riječi: onečišćenje tla, metoda slučajnih šuma, metoda vektora podrške, 
obični kriging, metoda inverzne udaljenosti, pokrov zemljišta.
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