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Abstract

Friction is a ubiquitous phenomenon of great research interest in engineering practice. Fundamental frictional 
features of two solids in contact and in relative motion are governed by microscopic single asperity contacts 
at their interface. A structured multidisciplinary approach to the experimental determination of friction in the 
nanometric domain is presented in this work. The dependence of nanoscale friction on process parameters 
comprising the materials in relative motion, normal forces, sliding velocities and the temperature conditions is 
studied experimentally by employing scanning probe microscopy. The data hence attained from multidimensional 
experimental measurements on thin-film samples is used for the development of machine learning-based models. In 
fact, due to the stochastic nature of the considered phenomena, conventional regression methods yield poor predictive 
performances, prompting thus the usage of the machine learning numerical paradigm. Such an approach enables 
obtaining an insight into the concurrent influence of the process parameters on nanoscale friction. A comparative 
study allows thus showing that, while the best typical regression models result in coefficients of determination (R2) 
of the order of 0.3, the predictive performances of the used machine learning models, depending on the considered 
sample, yield R2 in the range from 0.54 to 0.9. The proposed method, aimed at accomplishing an in-depth insight 
into the physical phenomena influencing nanoscale frictional interactions, will be complemented next with advanced 
studies based on genetic programming-based artificial intelligence methods. These could, in fact, allow obtaining 
a functional description of the dependence of nanoscale friction on the studied variable parameters, thus enabling 
not only true nanoscale friction prediction but also an important tool for control purposes.
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1. Introduction

Devices characterised by micro- and nanopositioning 
precision are often required in precision engineering 
as well as in micro- and nanosystems’ technologies. 
When conventional devices based on sliding and 
rolling mechanisms are used in this frame, positioning 
precision is mostly limited by friction with its stochastic 
nonlinear characteristics [1]. Frictional phenomena on 
the macro- and meso-scales are described quite well 
in prior art, enabling their effects to be simulated via 
suitable models, as well as proficiently compensated 
via proper control typologies [2-3]. On the other 
hand, however, the available friction models do not 
take into due account true nanometric motions or 
the scaling phenomena related to friction [4]. In fact, 
the understanding of friction at the level of atomic 
interactions was enabled only in the last 20 to 30 years 
by the availability of scanning probe microscopy (SPM) 
methods [5], which enable experimental investigations 
of frictional single-asperity contacts [6].

A structured multidimensional experimental approach is 
thus developed in this work to study the dependence of 
the nanoscale friction force Ff on different concurrently 
varying process parameters comprising the materials in 
relative motion, normal forces FN, sliding velocities ν 
and temperatures ϑ.

Technologies (NANORI) of the University of Rijeka, 
Croatia [8]. The data obtained on thin-film samples is 
then used for the development of machine learning-
based nanoscale friction models with the aim of gaining 
a deeper insight into the physical phenomena that 
influence nanotribological interactions.

2. Experimental set-up

The used experimental procedure involves SPM in 
the lateral force microscopy (LFM) mode (Figure 2), 
enabling measurements on Al2O3 and TiO2 thin-film 
samples synthesized via atomic layer deposition (ALD) 
[9] at the NANORI premises, as well as Al, MoS2 
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and stainless steel X39CrMo17-1 thin-film samples 
synthetized by using pulsed laser deposition (PLD) [10] 
at the Institute of physics in Zagreb, Croatia. Lateral 
(transversal) scans are hence performed on 500 x 500 nm2  
surfaces of the analysed samples, inducing a torsion of 
the cantilever bearing the measurement tips [11]. The 
resulting voltages are converted to values of the lateral 
(transversal) force exerted on the sample by calibrating 
the mechanical behaviour of the probe itself by using 
multiple methods, comprising the calibration based on 
using the TGF11 calibration sample [12], finite element 
modelling (FEM) and analytical calculations [6]. It was 
hence established that calibration is strongly dependant 
on the actual dimensions of the cantilevers. Considering 
that these dimensions are in micrometric range, while 
the production process of the probes inherently prevents 
the achievement of uniform dimensions in the whole 
production batch, calibration generally constitutes a 
hard and tedious task [6].

3. Definition of the measurement points
The considered parameters influencing nanoscale 
friction on the described samples, and their respective 
value ranges, are: normal force FN = 10 nN… 150 nN, 
sliding velocity ν = 5 nm/s … 500 nm/s and temperature  
ϑ = 20 °C … 80 °C. Design of experiment (DoE) is 
thus conducted by defining the experimental space via 
sampling methods that enable the development of a meta-
model. Since recent studies indicate that, among these, 
centroidal Voronoi tessellation (CVT) [13] has several 
advantages, CVT is used to generate 50 sampling points 
in the considered multidimensional experimental space.

Given the set of desired points (“generators”) and 
a distance function from each generator to its mass 
centroid, Voronoi tessellations are then subdivisions of 
the thus defined experimental space. The variation of the 
influencing parameters is herein defined via a discrete 
uniform distribution, i.e., a distribution where a finite 
number n of homogeneously spaced values has the same 
probability to be observed [13]. The integer parameters 
of the distribution are:

		       	 (1)

where a and b are the lower and upper limit of the values 
of the considered parameter.

A distribution of sample points is thus generated by a 
discrete probability distribution k attained by using a 
probability mass function f(k) defined in equation (2). 
The cumulative distribution function F(k), given by 
equation (3), is, in turn, used to specify the placement of 
the multivariate random variables (i.e., the points in the 
considered multidimensional influencing parameters’ 
space):

	 	 (2)

	 	 (3)

Given a density function, the centre of mass of each 
subset making up the Voronoi tessellation can thus be 
determined. Since, however, generally the locations 
of the generators do not coincide with the centres of 
mass of the data subsets, distinct Voronoi tessellations 
called CVTs are used to assure the convergence of these 
locations [13].

To gain insight into the stochasticity of the measured 
friction coefficients, five repetitive LFM measurements 

n=b-a+1

Fig. 1. Bruker Dimension Icon SPM

Fig. 2. Scheme of the LFM measurement configuration [6]
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are then performed in each of the 50 measurement points 
defined via the above DoE procedure [6].

4. Experimental results

Besides calibration, the inherent difficulties in the 
considered measurement procedure are amplified by 
synergetic effects occurring in the nanometric contact 
region, comprising the inevitable wear of the tip, thermal 
dilatations, and effects induced by the adhesive forces 
FA. The latter proved to be especially tedious, since 
it has a strong nonlinear dependence on temperature 
on its own. It was hence determined that in the herein 
considered cases the correlation factor linking the 
LFM voltage readings to the corresponding nanoscale 
friction force values can vary by a whole order of  
magnitude. On the other hand, the wear of the used 
tips induces the necessity to use a fresh tip after 
every 50 LFM measurement cycles. The experimental 
methodology developed in this work in any case not 
only takes into account all these effects, but also limits 
their influence on measurements’ uncertainties [6].

After taking into account the adhesion-corrected 
calibration factors, the obtained LFM scan signals 
are analysed in order to obtain the actual nanoscale 
friction force Ff in the 50 measurement points defined 
by employing the described CVT DoE methodology. 
The thus determined Ff values are shown, as typical 
result for the ALD and the PLD synthesized samples, 
in the colour-coded plots of Figure 3. In Figure 3a are 
thus depicted the results attained for the Al2O3, and 
in Figure 3b for the MoS2 sample, respectively [6]. 
The results allowed also evidencing the noticeable 
stochastic nature of frictional phenomena, which  

makes the modelling based on this data, using 
conventional methods, difficult. The results allow 
establishing first-order rough correlations between 
the multiple studied influencing parameters and the 
resulting Ff values but, to determine systematic and 
reliable correlations, advanced mathematical tools 
have to be used [6].

5. Modelling nanoscale friction
Empirical insights obtained via the above thorough  
experimental procedure [6], are used as a basis for 
the development of a predictive model of nanoscale 
friction. The data collected in the 50 experimental 
measurement points, defined by employing the CVT 
DoE methodology, are hence used as the main dataset 
for the development of appropriate friction models. Each 
models’ predictive performance is tested subsequently  
by employing the same experimental technique on 
a separate set of 15 measurement points defined  
randomly by using the Monte Carlo (MC) method [14].

Modelling is therefore primarily carried out using the 
conventional methods of regression analysis, i.e, linear, 
nonlinear, multivariate regression methods etc., but, 
due to the evidenced stochastic nature of the considered 
nanotribological phenomena, they yield poor results in 
describing the obtained experimental data, and even 
weaker predictive performances.

A machine learning (ML) paradigm is thus adopted 
to obtain an insight into the studied complex, 
multidimensional interactions and obtain a predictive 
model of nanoscale friction according to the 
schematics shown in Figure 4 [15]. Generally, ML 
algorithms for regression problems provide a so-called 

Fig. 3. Colour-coded distributions of experimental Ff values for the 50 CVT DoE points for the Al2O3 (a), and MoS2  
(b) samples with adhesion-corrected total load FN+FA [6]

(b)(a)
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black-box solution with predictive results. The models 
thus developed are based on the TensorFlow [16], 
Scikit-learn [17] and GoSUMD [18] implementations. 
The herein used ML algorithms are thus additive 
regression, stacking and bagging classifiers, lazy 
algorithms, multi-layer perceptron (MLP), support 
vector regression (SVR), decision trees and random 
forest (RF) ensembles [19]. These methods are used 
for obtaining important insights into the analysed 
experimental space trough visualization analyses, 
providing important knowledge for further studies 
but, unfortunately, do not result in a functional 
mathematical form of the underlying relationships.

random distribution of the 15-point test dataset, the thus 
performed measurements, shown in Figure 5 for the 
Al2O3 thin-film sample, assure thus truthful Ff values 
that provide, moreover, the most difficult predictive 
task for developed models.

Each models’ predictive performances are finally 
analysed by using performance metrics consisting of 
the mean absolute (MAE) as well as root mean square 
(RMSE) errors, and the respective coefficients of 
determination (R2) [15].

6. Results and discussion
All developed ML models show far better predictive 
performance (higher R2) than the conventional 
regression methods that yield R2 in the range of ca.  
0.3. What is more, all ML models, developed by 
training on a pooled (combined) dataset, comprising 
data acquired experimentally on multiple samples, 
show a higher level of predictive performances.

The finally obtained predictive performances on the MC-
based test dataset are shown in Figure 6 for each of the 
best performing developed ML model. The respective 
R2 values are reported in the Figure in parenthesis. In 
Figure 6 are depicted also the attained uncertainty levels 
in three shades of grey, representing, respectively, the 
variance of data (± 1σ as the darkest, ± 2σ as the medium 
and ± 3σ as the lightest shade of grey that presents, with 
empirical near-certainty, all data). 

For the Al2O3 thin-film sample synthesized via the 
ALD technique, in Figure 6a it can thus be evidenced 
that, even though the MLP algorithm results in high R2  

Fig. 4. Methodology for the development of ML-based  
predictive models of nanoscale friction

By employing binary encoding for the material class, 
the developed ML models are trained on the complete  
CVT-based dataset for each material separately, as  
well as on a combined (pooled) dataset pertaining to 
all studied materials, subjected in all cases to a 10-fold 
cross-validation. The ML models are then thoroughly  
assessed on the mentioned separately measured  
MC-based experimental dataset – the test dataset. To 
ensure realistic (habitual) conditions of the samples, 
these measurements are conducted, in contrast to the 
main CVT DoE-based measurements, without drying 
the samples prior to the measurements. Coupled to the 

Fig. 5. Colour-coded distribution of experimental  
Ff values for the test dataset of 15 MC-based  

points for Al2O3 [15]
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7. Conclusions and outlook

The activities and topics described in this work provide 
an overview of the obtained experimental and numerical 
results in the ongoing research effort on frictional 
phenomena in the nanometric domain carried on at the 
University of Rijeka, Croatia. The developed experimental 
methodology allows for the first time to determine 
the concurrent influence of multiple variable process 
parameters on the value of the nanoscale friction force.

The attained measurement results imply, however, the 
necessity of developing also suitable mathematical 
modelling tools, since the multidimensionality and the 
stochastic nature of the studied phenomena are an evident 
challenge for the conventional modelling methods. The 
analysis of the obtained measurements is thus performed 
by using state-of-the-art black-box ML models. It is 
hence established that their predictive performances can 
generally be considered satisfactory, but their practical 
applicability is limited, since they do not allow to obtain 
explicit functional dependencies of nanoscale friction on 
the multiple considered variable process parameters.

Further numerical analyses, based on employing novel 
genetic programming-based artificial intelligence 
(AI) methods are hence needed to fully characterize 
the influencing effects of nanoscale friction through a 
mathematical expression. Preliminary results obtained 

			        (a)        						                (b)

Fig. 6. Predictive performances of the considered ML models on the MC test dataset  
for the Al2O3 (a), and MoS2 (b) samples [15]

values, it is visually far quite far away from the 
experimental data. The RF and SVR predictions follow, 
in turn, the experimentally obtained data much better.  
In the case of the MoS2 sample synthetized by using 
the PLD methodology, the test data predictions shown 
in Figure 6b allow noting much better predictive 
performances for all the ML models. The SVR algorithm 
captures in this case 90 % of the variance of Ff.

Such considerations allowed, therefore, concluding that 
the developed ML models allow providing effective 
predictions of the influence of the multiple concurrently 
acting process parameter on the value of the friction force 
with satisfactory levels of accuracy, i.e., with R2 values 
ranging from a minimum 0.54 for the SVR algorithm 
on the Al2O3 sample, to a maximal value of 0.9 for the  
SVR prediction on the MoS2 sample.

Although the developed ML models provide, thus, 
generally good predictive performance, their practical 
usage is quite limited by their inherent black-box 
nature. Further research has thus to be focused on 
obtaining models that allow obtaining mathematical 
expressions which will have equally good (or better) 
predictive performance as the ML models, but will 
enable practical usage in developing suitable control 
typologies that will allow an active compensation of 
nanotribological effects.
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in this frame are comforting since, despite the evidenced 
complexity of the herein studied phenomena, the AI-
based symbolic regression models [20] could allow 
attaining excellent predictive performances, but indeed 
result also in a simple functional description of the 
multidimensional dependence of nanoscale friction on the 
studied variable influencing parameters. An operational 
and efficient tool for nanoscale friction prediction, for 
further scientific and technological analyses, but also 
for eventually enabling the compensation of frictional 
effects via appropriate adaptive control typologies, could 
thus be on the verge of being successfully obtained.

What is more, further studies on the considered topics 
are focused on bridging the multiscale gap in tribological 
studies, ranging from atomic and molecular to micro- and 
macroscales. To provide further and deeper insights into 
the fundamental principles of friction, the current efforts 
of our research group are therefore also directed towards 
active cooperation with the Molecular biology and 
nanotechnology laboratory (MoIBNL) at the University 
of Trieste, Italy, [21] on molecular dynamic studies of 
nanoscale friction phenomena.
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